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ABSTRACT 

Because of the inherent nonlinearities involving the 

behavior of CNTs when excited by electrostatic forces, 

modeling and simulating their behavior is challenging. The 

complicated form of the electrostatic force describing the 

interaction of their cylindrical shape, forming upper electrodes, 

to lower electrodes poises serious computational challenges. 

This presents an obstacle against applying and using several 

nonlinear dynamics tools that typically used to analyze the 

behavior of complicated nonlinear systems, such as shooting, 

continuation, and integrity analysis techniques. This works 

presents an attempt to resolve this issue. We present an 

investigation of the nonlinear dynamics of carbon nanotubes 

when actuated by large electrostatic forces. We study expanding 

the complicated form of the electrostatic force into enough 

number of terms of the Taylor series. We plot and compare the 

expanded form of the electrostatic force to the exact form and 

found that at least twenty terms are needed to capture 

accurately the strong nonlinear form of the force over the full 

range of motion. Then, we utilize this form along with an 

Euler–Bernoulli beam model to study the static and dynamic 

behavior of CNTs. The geometric nonlinearity and the 

nonlinear electrostatic force are considered. An efficient 

reduced-order model (ROM) based on the Galerkin method is 

developed and utilized to simulate the static and dynamic 

responses of the CNTs. We found that the use of the new 

expanded form of the electrostatic force enables avoiding the 

cumbersome evaluation of the spatial integrals involving the 

electrostatic force during the modal projection procedure in the 

Galerkin method, which needs to be done at every time step. 

Hence, the new method proves to be much more efficient 

computationally.  

 

1. INTRODUCTION 
Nanoelectromechanical systems (NEMS) are a growing 

area of research, which extends the microelectromechanical 

systems (MEMS) technology to the nanoscale [4,5]. Research 

on NEMS is developing very quickly. Currently NEMS are 

largely applied in a variety of different fields, e.g. 

communications, industrial, bioengineering, etc., where they 

cover many different functions, including sensing and 
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actuation. Their mechanical behavior analysis is a difficult and 

challenging task [6, 7]. Carbon nanotubes (CNTs), as one of the 

most promising kind of NEMS application have recently been 

the subject of much exciting research due to their unique 

electrical and mechanical properties. More in depth research 

however is needed for the mechanical response of CNTs to be 

able to implement them as functional devices and to utilize 

them as resonant sensors, switches, and actuators. Particularly, 

extensive and accurate nonlinear dynamic analysis is needed to 

explain many of the reported experimental data and to reveal 

the full potential of CNTs when employed in device 

applications [1-3]. Beside their interesting mechanical 

properties, carbon nanotubes inherit their remarkable electrical 

properties from the unique electronic band structure of 

graphene. Electrically actuated CNTs were shown to have rich 

nonlinear behavior characterized by inherent nonlinear 

response even for small electric loads [8] as well as a wide 

range of tunability of their natural frequencies with the DC load 

[9]. 

Many investigations on the vibration of CNTs under 

several dynamic loadings [4–19] have been done by several 

groups all over the world. For example, Ouakad and Younis [1] 

investigated using a Galerkin procedure the nonlinear dynamic 

behavior of electrically actuated CNT resonators. They showed 

complex nonlinear dynamics phenomena, such as hysteresis, 

dynamic pullin, hardening and softening behaviors, and 

frequency bands with an inevitable escape from a potential 

well. 

Most previous simulation studies model clamped–clamped 

CNTs to be perfectly straight. However, in practical fabrication 

process, fabricating perfectly straight CNTs with controlled 

geometry and orientation is hard. Actually, clamped-clamped 

CNTs are usually fabricated with some level of curvature 

(slack) [10–15]. Thus, it is important and instructive to model 

the mechanics of initially slacked CNTs as Gibson indicated in 

his study [10]. Experimental investigations by Sazonova et al. 

[11] and Sazonova [12] also show the importance of slack on 

estimating accurately the vibration behavior of CNTs.  

It is well known that curvature of arches introduces 

quadratic and cubic nonlinearities. Furthermore, electrostatic 

forces are inherently nonlinear. The interaction of these 

nonlinearities (how they compete, strengthen, or cancel each 

other) still is not fully understood. Ouakad and Younis [2,3] 

investigated in depth the nonlinearities of single-walled CNTs 

and their effects on the dynamics while varying the slack level 

and the DC voltages. 

Because of the inherent nonlinearities involving the 

behavior of CNTs when excited by electrostatic forces, 

modeling and simulating their behavior is challenging. The 

complicated form of the electrostatic force describing the 

interaction of their cylindrical shape, forming upper electrodes, 

to lower electrodes poises serious computational challenges. 

This presents an obstacle against applying and using several 

nonlinear dynamics tools that typically used to analyze the 

behavior of complicated nonlinear systems, such as shooting, 

continuation, and integrity analysis techniques. The objective of 

this paper is to investigate an efficient model to simulate the 

nonlinear dynamic behavior of CNTs with different slack level 

under a wide range of voltage loads. 

 

2. PROBLEM FORMULATION 
 

In this section, we formulate the problem governing the 

static and dynamic behavior of an electrically actuated slacked 

single-walled carbon nanotube, Fig. 1. The nanotube is actuated 

by an electrode underneath it with a gap width d. It is modeled 

as a cylindrical Euler–Bernoulli beam of radius R , shell 

thickness h, and length L. It has a cross-sectional area A and an 

area moment of inertia I. The nanotube is assumed to have a 

Young modulus E and a mass density  . The CNT is 

considered here to be initially curved in the direction of the 

lower electrode with an initial shape 
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Fig.1 Schematic of initially curved carbon nanotube 

The equation describing the deflection ˆˆ ˆ( , )w x t of the 

clamped-clamped CNT can be written as [2, 3] 
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where the electrostatic force ˆ
eF is expressed as [16] 
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In (1), t̂ is time, c  is the viscous damping coefficient, and 0  

is the air permittivity. 

The boundary conditions are: 
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Before proceeding further, it should be mentioned that the 

continuum mechanics beam theory of (1) is valid as long as the 

following conditions are satisfied [2,18,19]: 

/ 1ca L 
; 

/ 1NTd L 
; 

Where NTd  is the CNT diameter and ac is the width of the 

hexagonal carbon rings, which is estimated to be near 0.24 nm. 

In addition, to comply with the shallow arch theory, the initial 

curvature of the arch (the slack) needs to remain small,  i.e., 

0 / 0.1b L  . For the considered case studies of this paper, 

these conditions are satisfied. 

For convenience, we introduce the following 

nondimensional variables: 

ŵ
w

d


, 

x̂
x

L


, 

t̂
t

T


                          (4) 

where T  is a time constant defined by
4( ) / ( )T AL EI . 

By substituting (4) into (1)–(3), the nondimensional equations 

of motion and associated boundary conditions of the considered 

clamped-clamped CNT are written as: 
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3. TAYLOR EXPANSION 
To reduce computational difficulty, we attempt to expand 

the complicated form of the electrostatic force into enough 

number of terms of the Taylor series.  

 
 

 
 

From Fig.2 we can see that by comparing the expanded 

form of the electrostatic force to the exact form, at least twenty 

terms are needed to capture accurately the strong nonlinear 

form of the force over the full range of motion. Thus, we 

express the electrostatic force as  
2 3
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Where 0a
, 1a

…… 20a
are Taylor expansion coefficients which 

are constants. 

Then we substitute 20eF T  for eF  in (5) and get: 
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4. THE REDUCED-ORDER MODEL 
To solve the obtained nondimensional equation of motion 

with its associated boundary conditions of the slacked CNT, 

(5)–(7b) are discretized using the Galerkin procedure to yield a 

Reduced-Order Model (ROM) [1, 20]. Hence, the response of 

the CNT is approximated as 

1

( , ) ( ) ( )
n

i i

i

w x t u t x



                      (11) 

Where 
( )i x

 are the normalized linear undamped mode shapes 

of a straight beam and 
( )iu t

are the nondimensional modal 

coordinates. 

To obtain the ROM, we substitute (11) into (5)–(7b), 

multiply by ( )i x , use the orthogonality conditions of the 

mode shapes, and then integrate the outcome from 0 to 1. The 

results are differential equations in terms of the modal 

Fig.2 Taylor series expansion of the nondimentional 

electrostatic force. 
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coordinates ( )iu t . To simulate the dynamic behavior, the 

obtained ROM can be integrated in time using Runge–Kutta 

technique. 

Without substituting the electrostatic force with its Taylor 

expansion, the mode shapes ( )i x  will remain embedded 

inside the denominator of the electrostatic force term of (7a) in 

the ROM. To deal with the complicated integral terms due to 

that electrostatic force, we have to evaluate the spatial integrals 

containing the mode shapes ( )i x  numerically simultaneously 

while integrating the differential equations of the modal 

coordinates ( )iu t . 

By using the Taylor series to replace the original 

electrostatic force, we could avoid the cumbersome evaluation 

of the spatial integrals involving the electrostatic force during 

the modal projection procedure in the Galerkin method, which 

needs to be done at every time step [1]. 

5. LONG TIME INTEGRATION RESULTS 
As a case study, a non-hollow CNT of L = 1000 nm, 

5R nm , d = 200 nm, Young modulus E = 1 TPa, and mass 

density 
31.3 /g cm  is considered. 

Fig.3 shows the maximum frequency response of the CNT. 

Numerical response with the same parameter calculated without 

the Taylor expansion from previous study of [3] are plotted in 

the same figure with numerical results using the simplified 

governing equation with the electrostatic force term substituted 

as its Taylor series. It has been mentioned in [3] that to get this 

result is quite computational challenging and time consuming 

due to the complex electrostatic force term. Using our method, 

results were obtained fast.  

 
 

 

 

6. SHOOTING METHOD 
 

The long-time integration technique may not predict 

accurately the dynamical behavior, especially near bifurcation 

points. Toward this, we use the shooting method [21]. The 

shooting method is a powerful technique for capturing periodic 

motion and analyzing their stability for nonlinear systems. 

Hence, it is capable of predicting both stable and unstable 

solutions. In this section, we utilize the shooting method in 

conjunction with the Floquet theory to obtain both stable and 

unstable solution of the frequency response of the CNT excited 

by electrostatic force.  

 

We consider the same case study of Section 5. First we 

study the advantage of shooting method on revealing the 

nonlinear behavior of CNT under a certain electrostatic force. 

Fig.4 shows that the shooting method result and longtime 

integration method has a good match. Moreover, shooting 

method could give us not only unstable solution which 

Fig. 3 Frequency-response curves of (a) 2 nm and (b) 5 nm slacked 

CNT showing hardening and softening behaviors respectively. 

Results are shown for VDC = VAC = 1 V and a quality factor of 100 

(a) 

(b) 
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longtime integration method could not but it could show more 

comprehensive view of the entire range of the stable solution. 

  
 
Fig.4. Frequency response curve of 2 nm slacked CNT. Results are shown 

for 1DC ACV V V  and a quality factor of 100. 

 

Next, we use this shooting technique to obtain more 

results.  Fig.5 shows the response of a 5nm slacked CNT under 

1DC ACV V V   electrostatic force. The figure indicates 

softening behavior. Fig.6 shows the response of the 5nm 

slacked CNT under large load,  5DC ACV V V  .We could 

see a complicated nonlinear behavior in Fig.5 which is the CNT 

shows a general softening behavior and a local hardening 

behavior at around 26.5Hz . More impressive, the figure 

reveals the existence of another stable solution of larger 

amplitude. Similar results were revealed recently using 

continuation techniques [22].  

In the present research in this area, nonlinear behavior of 

slacked CNTs under large electrostatic force is missing. We can 

easily do simulation work with this efficient modal. In Fig.6, 

we could see an interesting phenomenon that there are two 

stable branch of solution at lower frequency. 

 
 

 

 

 
 

 

7. CONCLUSIONS 

In this paper, an investigation into the dynamic behavior of 

an electrically actuated slacked single-walled CNT when 

actuated by a DC force and an AC harmonic load was 

presented. Taylor expansion has been used to substitute the 

complicated electrostatic force term. It has been proven that 

this substitution could make the numerical simulation process 

much more efficient and would not affect the accuracy of the 

result. 

Moreover, this efficient modal gives us a chance to 

simulate more result under wider range of electrostatic force 

load. We found that there are some unique and interesting 

nonlinear behaviors of CNTs when actuated by larger 

electrostatic force, which have never been studied before. 

Understanding of these phenomena needs further analysis and 

in-depth investigations.  
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