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Abstract 
 
A supply chain design problem based on a two-echelon single-product system is 
addressed. The product is distributed from plants to distribution centers and then to 
customers. There are several transportation channels available for each pair of facilities 
between echelons. These transportation channels introduce a cost-time tradeoff in the 
problem that allows us to formulate it as a bi-objective mixed-integer program. The 
decisions to be taken are the location of the distribution centers, the selection of the 
transportation channels and the flow between facilities. Three variations of the classic ε-
constraint method for generating optimal Pareto fronts are studied in this paper. The 
procedures are tested over six different classes of instance sets.  The three sets of smallest 
size were solved completely obtaining their efficient solution set. It was observed that 
one of three proposed algorithms consistently outperformed the other two in terms of 
their execution time. Additionally, four schemes for obtaining lower bound sets are 
studied. These schemes are based on linear programming relaxations of the model. The 
contribution of this work is the introduction of this model for this new bi-objective 
optimization problem, and a computational study of implementations of both the ε-
constrained methods for obtaining optimal efficient fronts, and the lower bounding 
schemes. 
 
 
Keywords: supply chain design, facility location, multi-objective, lead time, 
transportation channel, lower bound set 
 
 



1   Introduction 
 
Supply chains have received much attention recently after recognizing the importance of the 
logistic costs in the cost structure of the products. Their efficient management provides a 
competitive advantage to domestic and international firms. At the strategic level the managers 
must design the supply chain to achieve the minimum cost and to meet a level of customer 
service. This task concerns aspects of inventory, transportation and facility location (Ballou, 
1999). The supply chain, also known as distribution network is composed of facilities and 
transportation flows between facilities. These facilities perform different roles as suppliers, 
plants, warehouses, distribution centers and retailers. Thus, the decisions implied in supply 
chain design are (Simchi-Levi, Kaminsky, and Simchi-Levi, 2000): 
 

• To determine the number of facilities 
• To determine the location of the facilities 
• To determine the capacities of the facilities 
• To allocate products to facilities 
• To determine the flow of products between facilities 

 
Network design decisions determine the supply chain configuration and have a significant 
impact in logistic costs and responsiveness (Chopra and Meindl, 2004). For instance, facility 
location has a long term impact in the supply chain because of the high cost to open a facility 
or to move it. Opening and inventory costs induce to reduce the number of facilities while 
responsiveness causes a contrary effect. A high number of facilities may reduce the lead time 
to deliver a product to the final customer. In certain products lead time can be viewed as an 
added value so that the firm that makes them available first can obtain short and long term 
advantages in the market. 
 
Many models developed to design distribution systems are based on discrete location of 
facilities where a set of potential sites is known. The earliest models were formulated by 
Baumol and Wolfe (1958), and Kuehn and Hamburger (1963). These and subsequent models 
have been formulated as mixed-integer programming problems. The evolution of such models 
has considered until recently (Klose and Drexel, 2005) the following elements: 
 

• Number of echelons 
• Facility capacity 
• Number of products 
• Time periods 
• Stochastic demand 
• Side constraints to include: 

o Single or multiple sourcing 
o Routing 

 
However an area of opportunity in supply chain design is to address the influence of the 
transportation channels. The decision to use a certain transportation channel has an effect on 
the lead time to deliver a product which often is an indicator of customer service level. The 
availability of different channels to transport the product between a pair of facilities is a 
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feature of modern logistic services. These transportation channels can be seen as 
transportation modes (rail, truck, ship, airplane, etc.), shipping services (express, normal, 
overnight, etc.) or just as simple as the offer from different companies. Transportation choices 
are differentiated by parameters of time and cost. Commonly these parameters are negatively 
correlated with shorter times for the most expensive alternatives. For many years distance was 
treated as surrogate of transportation cost and time. Nowadays this is not a valid assumption. 
 
In this paper we introduce a problem for supply chain design of a two-echelon distribution 
system. We include the decision of selecting the transportation channel between each pair of 
facilities. The problem is treated as a bi-objective optimization problem where cost and time 
criteria are minimized. This problem has been named “Capacitated Fixed Cost Facility 
Location Problem with Transportation Choices” (CFCLP-TC). A literature review is 
presented in Section 2. Section 3 shows the problem description in detail. The mathematical 
framework is explained in Section 4. Section 5 is dedicated to present three algorithms to 
obtain the set of efficient solutions for an instance. These algorithms are variations of the ε-
constraint method. The algorithms are compared later in terms of efficiency (run time) and 
solution quality. Four schemes for obtaining lower bound sets are described in Section 6. 
These schemes are based on linear relaxations of the model and on the information of the MIP 
solutions. Therefore to define their quality they are used for small instances where the set of 
efficient solutions is known. Section 7 shows the results of the computational experience with 
the algorithms proposed and the lower bound schemes studied. The final conclusions are 
presented in Section 8. 
 
 
2   Literature Review 
 
Several reviews about models for supply chain design (Aikens, 1985; Thomas and Griffin, 
1996; Vidal and Goetschalckx, 1997; Klose and Drexel, 2005) exist in the literature.  In 
general the optimization models described were formulated as mixed-integer programs and 
solved by decomposition techniques and heuristic methods. However, as mentioned before, 
the influence of the availability of different transportation channels between facilities has not 
been studied in depth. The transportation choices are qualified in terms of time and cost 
producing a tradeoff that affects the distribution network configuration. This feature induces 
naturally to re-formulate the supply chain design problem as a bi-objective optimization 
model. Looking at the review by Current, Min, and Schilling (1990) it is evident that the 
balance of these measures has not been studied extensively. Some relevant works produced 
recently are highlighted next. 
 
 
2.1   Cost-time tradeoff with one transportation mode between facilities 
 
A first set of works include those that identify the cost-time tradeoff as an important element 
in supply chain design. However, these papers do not relate this balance to the availability of 
transportation choices between facilities. Zhou, Min, and Gen (2003) introduced two separate 
objective functions for cost and time. The total sum of transportation times is minimized in 
one objective function. In that paper only one transportation alternative between each pair of 
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warehouse-customer nodes is considered. The facility location decision is not included in the 
model. A genetic algorithm is used to construct a set of non-dominated solutions. Eskigun et 
al. (2005) use an aggregated function for time and cost. Although different transportation 
modes are included in their model (rail and truck), the problem is to select between a direct 
and an inter-modal shipping strategy. They do not have transportation choices between each 
pair of locations. A Lagrangian heuristic is developed to solve the mixed-integer 
programming model. In the problem proposed by Truong and Azadivar (2005) the cost-time 
tradeoff is recognized. In this case the time measure is included in the objective function as a 
parameter that influences inventory cost. Lead time is based on the complete production-
distribution path for the product without transportation alternatives between nodes. Their 
solution approach is based on an iterative method that uses a hybrid genetic algorithm. In an 
intermediate stage of the algorithm a mixed-integer programming model and a simulation 
model are created and solved. The results are used as entries for the external cycle of the 
genetic algorithm. Altiparmak et al. (2006) handle transportation time as a constraint. In their 
problem a set of feasible distribution centers is selected a priori. These facilities are those that 
are able to deliver the product to the customer before a time limit. Selection of transportation 
mode is not considered in their model. Three objective functions are proposed to minimize 
total cost, to maximize total customer demand satisfied, and to minimize the unused capacity 
of distribution centers. In this case a genetic algorithm is used to obtain a set of non-
dominated solutions.  
 
 
2.2   Multiple transportation modes between facilities without cost-time tradeoff 
 
A second set of papers appreciate the influence of the transportation channel selection in the 
distribution network design. The main feature of this set of works is that the cost-time tradeoff 
is not related to that decision. In the model proposed by Benjamin (1990) the selection of the 
transportation mode is based on the capacity of the channel. The time parameter is not 
considered. The problem is formulated as a non-linear programming model that minimizes an 
aggregated cost objective function. This function combines transportation and inventory costs. 
The solution procedure is a heuristic method based on Benders decomposition technique. 
Wilhelm et al. (2005) also include transportation mode selection but it is based on cost. In this 
case a portion of the quantity transported can be assigned to different transportation modes. It 
is a multi-period problem where the supply chain configuration changes dynamically. A set of 
scenarios were solved to optimality for relatively small instances. Cordeau, Pasin, and 
Solomon (2006) presented a model that has many of the elements of classic distribution 
network design. Additionally, the selection of transportation mode is one of the decisions in 
the model. Nevertheless, the cost-time tradeoff is not studied. The selection of the 
transportation mode is based on capacity and cost. They used a Benders decomposition 
method, commonly used in these types of problems.  
 
 
2.3   Cost-time tradeoff with multiple transportation modes between facilities 
 
The last set of works recognizes the importance of the cost-time tradeoff and relates it to the 
availability of transportation choices between facilities. In the paper by Arntzen et al. (1995) 
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the cost-time balance is handled as a weighted combination in the objective function. The 
decision is made on the quantity to be sent through each transportation mode available. Here, 
transportation time is a linear function of the quantity shipped. The problem is solved using 
elastic penalties for violating constraints, and a row-factorization technique. In the work by 
Zeng (1998) the importance of the lead time-cost tradeoff is emphasized. This feature is 
directly associated to the transportation modes available between pairs of nodes in the 
network. The author proposed a mathematical model to optimize both measures in the process 
of supply chain design. A main difference with traditional models is that facility location is 
not addressed. A dynamic programming algorithm was presented to construct the efficient 
frontier assuming the discretization of time measure. Graves and Willems (2005) propose a 
model that aggregates cost and time in the objective function. Their approach is not directly 
related to transportation modes but it is open to any alternative to be chosen at each stage of 
the network design process. They use a dynamic programming algorithm to solve this 
problem. Chan, Chung, and Choy (2006) present a multi-objective model that optimizes a 
combined objective function with weights. Some of the criteria include cost and time 
functions. In this case the objective function for time is composed by many sources in 
addition to transportation time. The selection of the transportation channel is associated to the 
cost-time tradeoff. It is a complex model that includes stochastic components. However, in 
this case facility location is not considered. Similarly to other approaches the transportation 
time is a linear function of the quantity transported. In this case a genetic algorithm is the base 
of an iterative method to solve the problem for several weight scenarios. 
 
 
2.4   Remarks 
 
It is evident that there are few works that handle the cost-time tradeoff derived from the 
transportation channel selection in the supply chain design problem. The scarce models 
proposed in the literature are different from the CFCLP-TC model presented. Those models 
make some assumptions that facilitate the solution of the problem but that are unreal or 
inconvenient for the decision making process. The first assumption is the linearization of 
time. While this assumption helps to make the problem easier to solve it is not adequate to 
represent real transportation conditions. Usually the time to transport a product is independent 
of the quantity to be shipped. In the negotiation of a transportation service the quantity may 
affect cost because of economy of scale but time is not affected. Hence the transportation time 
is tied directly to the transportation channel and it is independent of the quantity transported. 
The second assumption is the preference for some criterion, usually the cost objective. The 
use of this assumption is implicit when the multi-objective problem is transformed to a single-
objective problem combining the cost and time criteria in an aggregated (utility) function. It 
helps also to reduce the complexity of the problem but it is inconvenient for the decision 
making process because some times the preferences of the decision maker are not known a 
priori. Additionally, the selection of the appropriate weights is a difficult task for criteria with 
different measures like cost and time that can not be compared directly. Hence an approach to 
show different non-dominated solutions as alternatives to the decision maker is eluded while 
it may be a good choice when his/her preference is not known or the criteria can not be 
compared easily. These assumptions were excluded from the formulation and the solution 

4 
 



approach to obtain a more realistic model capable of providing a set of alternatives to the 
decision maker. 
 
 
3   Problem Description 
 
The “Capacitated Fixed Cost Facility Location Problem with Transportation Choices” 
(CFCLP-TC) is based on a two-echelon system for the distribution of one product in a single 
time period. In the first echelon the manufacturing plants send product to distribution centers. 
The second echelon corresponds to the flow of product from the distribution centers to the 
customers. The number and location of plants and customers are known. 
 
There is a set of potential locations to open distribution centers. The number of open 
distribution centers is not defined a priori. Each candidate site has a fixed cost for opening a 
facility. Each potential site has also a limited capacity. This capacity is related to dispatching 
rate which depends on factors like physical limits, equipment and productivity of the facility.  
The plants have limited manufacturing capacity. This capacity represents the production rate 
at each plant. A supply constraint states that each distribution center is supplied at most by 
one distribution center, what is called a single source constraint. However, the demand of 
each customer must be met. 
 
 

 
Figure 1.  Single product, single period, and two-echelon distribution system. Each 

transportation channel has a time and a unitary cost associated.  
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The most important feature added to the problem, and one of the main contributions of this 
work is to consider several alternatives to transport the product from one facility to the other 
in each echelon of the network. Each option represents a type of service with associated cost 
and time parameters. The existence of third party logistic companies (3PL) makes available 
different transportation services in the market. The alternatives are generated by the offer 
from different companies, the availability of different types of service at each company (e.g. 
express and regular), and the use of different modes of transportation (e.g. truck, rail, airplane, 
ship or inter-modal). Commonly, these differences involve an inverse correspondence 
between time and cost, i.e. a faster service will be more expensive. A scheme of the 
distribution network is shown in Figure 1. 
 
The idea of this problem is to select the appropriate sites to open distribution centers and the 
flow between facilities to minimize the combined cost of transportation and facility opening. 
This problem is very common in distribution networks where manufacturing plants and points 
of demand already exist. However, this problem also includes the selection of the 
transportation channel. This decision has an impact in the transportation time from the plant to 
the customer. The tradeoff between cost and time must be considered in the formulation of a 
mathematical model that minimizes both criteria simultaneously. Hence, the problem should 
be addressed with a bi-objective optimization model. Following this approach one criterion 
minimizes the combined cost of transportation and facility location. The other criterion looks 
for the minimum time to transport the product along the path from the plant to the customer. 
 
Some assumptions have been made and some elements have been left out of the problem to 
maintain the tractability. Inventory costs, production costs, capacity on the transportation 
links, congestion times at the facilities, international supply chain aspects, and non-linear 
transportation costs are not considered. Therefore we have assumed that distribution centers 
do not retain inventory and their function is only to split the product received from the plants. 
The distribution centers may receive product from any plant. There is no incentive to ship the 
product directly from the plants to the customers. Also, transshipment between facilities at the 
same stage is not allowed. Locally, at each pair of nodes origin-destination the transportation 
channels with dominated parameters are eliminated, i.e. those with coincident longer time and 
greater cost than any other. The sum of the capacity of the plants is enough to satisfy the total 
demand. The sum of the capacity of the potential distribution centers is enough to satisfy the 
total demand. An important assumption is the discretization of the time parameter. Therefore, 
given reasonable times for transportation (hours, days) the values can be represented as 
integer units. 
 
 
4   Mathematical Framework 
 
4.1   Model and notation 
 
The CFCLP-TC problem described previously is represented in a bi-objective mixed-integer 
programming model. The model formulation is preceded by the notation shown below. 
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Sets: 
 
I : set of plants i 
J : set of potential distribution centers j 
K : set of customers k 
LPij : set of arcs l between nodes i and j; i ∈ I, j ∈ J 
LWjk : set of arcs l between nodes j and k; j ∈ J, k ∈ K 
 
Parameters: 
 
CPijl : cost of transporting one unit of product from plant i to distribution center j using arc 

ijl; i ∈ I, j ∈ J, l ∈ LPij 
CWjkl : cost of sending one unit of product from distribution center j to customer k using arc 

jkl; j ∈ J, k ∈ K, l ∈ LWjk 
TPijl : time for transporting any quantity of product from plant i to distribution center j 

using arc ijl; i ∈ I, j ∈ J, l ∈ LPij 
TWjkl : time for transporting any quantity of product from distribution center j to customer k 

using arc jkl; j ∈ J, k ∈ K, l ∈ LWjk 
MPi : capacity of plant i; i ∈ I 
MWj : capacity of distribution center j; j ∈ J 
Dk : demand of customer k; k ∈ K 
Fj : fixed cost for opening distribution center j; j ∈ J 
 
Decision variables: 
 
Xijl : quantity transported from plant i to distribution center j using arc ijl; i ∈ I, j ∈ J, l ∈ 

LPij 
Yjkl : quantity transported from distribution center j to customer k using arc jkl;  j ∈ J,  

k ∈ K, l ∈ LWjk 
Zj : binary variable equal to 1 if distribution center j is open and equal to 0 otherwise; j ∈ 

J 
Aijl : binary variable equal to 1 if arc ijl is used to transport product from plant i to 

distribution center j and equal to 0 otherwise; i ∈ I, j ∈ J, l ∈ LPij 
Bjkl : binary variable equal to 1 if arc jkl is used to transport product from distribution 

center j to customer k and equal to 0 otherwise; j ∈ J, k ∈ K, l ∈ LWjk 
 
Auxiliary variables: 
 
T : maximum time that takes sending product from any plant to any customer 

1
jE  : maximum time in the first echelon of the supply chain for active distribution center j, 

i.e. ( )ijlijllij ATPE
,

1 max= ; i ∈ I, j ∈ J, l ∈ LPij 
2
jE  : maximum time in the second echelon of the supply chain for active distribution 

center j, i.e. ( )jkljkllkj BTWE
,

2 max= ; j ∈ J, k ∈ K, l ∈ LWjk 
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MODEL 1: 
 
  ( )21 ,min ff
 
 ∑∑∑ ∑∑ ∑∑

∈∈ ∈ ∈ ∈ ∈∈

++=
Jj

jj
Ii Jj Jj

jkl
Kk LWl

jkl
LPl

ijlijl ZFYCWXCPf
jkij

1  (1) 

  (2) Tf =2

 
subject to 
 
  j ∈ J (3) 021 ≥−− jj EET

  i ∈ I,  j ∈ J, l ∈ LPij (4) 01 ≥− ijlijlj ATPE

  j ∈ J,  k ∈ K, l ∈ LWjk (5) 02 ≥− jkljklj BTWE

  k ∈ K (6) ∑ ∑
∈ ∈

=
Jj

k
LWl

jkl DY
jk

  i ∈ I (7) ∑ ∑
∈ ∈

≤
Jj LPl

iijl
ij

MPX

  j ∈ J (8) 0

1

1

0

≥−∑ ∑
∈ ∈Kk LWl

jkljj
jk

YZMW

 j ∈ J (9) ∑ ∑∑ ∑
∈ ∈∈ ∈

=−
Kk LWl

jkl
Ii LPl

ijl
jkij

YX 0  

 1 k ∈ K (10) =∑ ∑
∈ ∈Jj LWl

jkl
jk

B

  i ∈ I,  j ∈ J (11) ≤∑
∈ ijLPl

ijlA

  j ∈ J, k ∈ K (12) ≤∑
∈ jkLWl

jklB

  i ∈ I,  j ∈ J, l ∈ LPij (13) 0≥− ijlijl AX
  j ∈ J,  k ∈ K, l ∈ LWjk (14) 0≥− jkljkl BY
 0  i ∈ I,  j ∈ J, l ∈ LPij (15) ≥− ijlijli XAMP
 0  j ∈ J,  k ∈ K, l ∈ LWjk (16) ≥− jkljklj YBMW

  j ∈ J (17) ≥−∑ ∑
∈ ∈

j
Ii LPl

ijl ZA
ij

  i ∈ I,  j ∈ J, k ∈ K, l ∈ LPij, l ∈ LWjk (18) 0,,,, 21 ≥jklijljj YXEET
  i ∈ I,  j ∈ J, k ∈ K, l ∈ LPij, l ∈ LWjk (19) { }1,0,, ∈jklijlj BAZ
 
In this formulation, objective function (1) minimizes the sum of the transportation cost and 
the cost for opening distribution centers. Objective function (2) minimizes the sum of the 
maximum lead time from the plants to the customers through each distribution center. This 
function was reformulated from equation (20) to eliminate the non-linearity: 
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 ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ += jkljkllkijlijllij

BTWATPf
,,2 maxmaxmaxmin  (20) 

 
Constraints (3) -(5) complete the linearization of equation (20) into objective function (2). It is 
evident that variables Aijl and Bjkl should take the value of 1 only for open distribution centers. 
Therefore, equation (20) considers the paths through open distribution centers and minimizes 
the maximum time along the supply chain.  Constraint (6) requires the demand satisfaction of 
each customer. Constraint (7) is formulated for not exceeding the capacity limits of the plants. 
Constraint (8) states that the flow going out from a distribution center must not exceed the 
capacity of the facility, but at the same time requires that the flow of product only can be done 
through open distribution centers. Constraint (9) keeps the flow balance at the distribution 
center. Constraint (10) establishes that each customer must be supplied by a single source. At 
most one arc may be selected between nodes i-j and nodes j-k, as required in constraints (11) 
and (12) respectively.   Constraints (13)-(17) are formulated to make an appropriate link 
between the sets of variables Aijl, Bjkl, Xijl, Yjkl and Zj. When solving for f1 as main objective 
function the model tries to minimize the values of Xijl, Yjkl and Zj. In the other direction, when 
solving for f2 the model tries to minimize the values of Aijl, Bjkl.  Constraints (13) and (14) 
require that an arc must be inactive if it does not have flow through it. This avoids 
overestimating Aijl and Bjkl when solving for f1.  The flow of product only can be done through 
active arcs as stated in constraints (15) and (16). Constraint (17) ensures that a distribution 
center must be closed if it has no active incident arcs on it, i.e. the distribution center does not 
receive flow of product. In this way, when solving for f2 the model does not overestimate Zj 
and avoids passing flow through inactive arcs.  Constraint (18) is for continuous non negative 
variables. Binary variables are required in constraint (19). If demands and capacities have 
integer values it is not necessary to change constraint (18) to require integer values for Xijl and 
Yjkl. This is because once fixed the values for Aijl, Bjkl and Zj, the remaining structure is a 
transportation problem. It is well known that the unimodularity property of this problem 
produce these integral results under such condition. 
 
It should be noted that constraint (10) implies that a problem has a feasible solution only if for 
each customer there exists at least one distribution center with enough capacity to satisfy its 
demand. 
 
 
4.2   Computational complexity 
 
Theorem:  The CFCLP-TC is NP-hard. 
 
Proof:  To prove this, we first observe that given that there is a polynomial number of both 
variables and constraints, feasibility of any solution can be checked in polynomial time.  The 
second part of the proof consists of showing that the well-known UFLP, which is known to be 
NP-hard, can be polynomial reduced to CFCLP-TC.  The main idea is to consider a special 
case that disregards the decisions in the first echelon of the supply chain.  Let us consider a 
special case of CFCLP-TC.  First, let |LPij| = |LWij| = 1 and TPijl = TWjkl = 0.  This implies that 
subindex l can be dropped from the formulation, that time-related constraints (3)-(5) become 
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redundant, and objective f2 becomes constant (=0) and can thus be dropped from the problem.  
This also implies that (10)-(12) and (17) are always satisfied.  Then, by letting MPi = M 
(relaxing the plant capacity), where M is a very large number, constraint (7) becomes 
redundant.  It is clear to see that, by considering an instance with CPijl = 0, the first term in the 
objective function reduces to zero, and constraints (9) and (13)-(16) become redundant.  
Finally, by letting MWi = M (relaxing the distribution center capacity), and redefining Yjk as 
the fraction of the demand required by customer k supplied by distribution center j, the 
demand parameter Dk is moved from constraint (6) to objective function (1), and constraints 
(6) and (8) are rewritten to obtain the following model: 
 
 ∑∑∑

∈∈ ∈

+=
Jj

jj
Jj Kk

jkjkk ZFYCWDf1min        

 
subject to 
 
  k ∈ K      ∑

∈

=
Jj

jkY 1

  j ∈ J, k ∈ K      0≥− jkj YZ
  j ∈ J, k ∈ K      0≥jkY
  j ∈ J        { }1,0∈jZ
 
This is the uncapacitated facility location problem (UFLP).  Since UFLP is NP-hard 
(Cornuejols, Nemhauser, and Wolsey, 1990), it follows CFCLP-TC is NP-hard too and the 
proof is complete. ■ 
 
 
5   True Efficient Sets 
 
One of the most popular approaches for generating efficient frontiers is the ε-constraint 
method (Steuer, 1989; Ehrgott, 2005).  This method is preferred because some results in 
multi-objective optimization theory show that for combinatorial problems the weighted sum 
technique may not find all the efficient solutions (Ehrgott, 2005). The complete set of 
efficient solutions for an instance is defined as the true efficient set.  In this work, three 
versions of the ε-constraint method are developed.  These algorithms try to take advantage of 
the use of an incumbent solution in the branch and bound algorithm used by any commercial 
solver for MIP problems. 
 
 
5.1   Forward ε-constraint method (eC) 
 
In this version of the ε-constraint method, function f1 is used as the objective function and f2 is 
used as a constraint. Therefore the model described by (1)–(19) is rewritten as follows, 
keeping the same objective function (1): 
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MODEL 2: 
 
 ∑∑∑ ∑∑ ∑∑

∈∈ ∈ ∈ ∈ ∈∈

++=
Jj

jj
Ii Jj Jj

jkl
Kk LWl

jkl
LPl

ijlijl
t ZFYCWXCPf

jkij

1min   

  
subject to 
 
  (21) tT ε≤
 
and constraints (3)-(19). 
 
The index t is used for the iteration into the algorithm. When the objective function (1) is 
optimized without constraint (21) it is expected that variable T takes its highest value. Thus it 
is natural to think of reducing the value of εt sequentially. With this logic at each iteration the 
value of εt is reduced by a constant δ = 1. 
 

 

Algorithm eC 
 
BEGIN 
Input:   Data instance of CFCLP-T. 
Output:  List of non-dominated solutions (NDS). 

 
1. NDS = Ø, t = 1. Optimize Model 1 dropping objective function f2. 
2. Recalculate T using equation (22). 
3. Register the solution in NDS with tff 11 =  and Tf =2 .  
4. while (obtaining an optimal solution for Model 2) 

4.1. t = t + 1.  
4.2. Recalculate εt with δ =1: 

δε −= Tt  
4.3. Optimize Model 2. 
4.4. Recalculate T using equation (22). 
4.5. Register the solution in NDS with tff 11 =  and Tf =2 . 

5. endwhile 
6. Eliminate dominated solutions from NDS. 
7. Return NDS. 
END 

 
Figure 2.  Pseudocode for the forward ε-constraint algorithm (eC). 

 
 
However, an optimal solution for this problem may result in constraint (21) being inactive. 
Hence it is convenient to recalculate the value of T from the values of Aijl and Bjkl of that 
solution using equation (22):  
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 ( ) ( )⎟
⎠
⎞⎜

⎝
⎛ += jkljkllkijlijllij

BTWATPT
,,

maxmaxmax  (22) 

 
This strategy avoids solving problems with loose values of εt in constraint (21) for the next 
iteration of the algorithm. The algorithm is shown in Figure 2. The exit condition in Step 4 
implies that the value of T has a lower limit. Hence there is a point where the value of εt 
results in an infeasible problem. 
 
 
5.2   Backward ε-constraint algorithm with lower and upper limits for f2 (ReC-2B) 
 
The branch-and-bound algorithm used by many commercial solvers allows using a known 
solution as incumbent solution to start the solution of a MIP. This utility improves the 
efficiency of the branch-and-bound algorithm because many solutions can be discarded 
initially from the tree. Also this incumbent solution may help to produce useful cuts in the 
first stages of the branch-and-bound algorithm. We implemented this feature trying to reduce 
the run time of algorithm eC. This is possible when the following is observed. Consider two 
solutions S1 and S2 that are efficient solutions where ( ) ( )2111 SfSf <  and ( ) ( )2212 SfSf > . 
Thus, S2 is a feasible solution for Model 2 when ( )12 Sft =ε . Hence S2 can be used as the 
incumbent solution for that iteration of the ε-constraint method. This incumbent solution is 
used by the solver as initial solution and may reduce the run time in that iteration. 
 
To implement the starting solution tool a modification to the algorithm has to be made. 
Instead of running the cycle reducing εt, now the value of this parameter has to be increased. 
Two issues have to be considered here. The value of T has to be recalculated in each iteration 
as well; however, this parameter is no longer useful for knowing the next value of εt in 
advance. Hence the movement of εt is always of δ = 1 and some more weakly-efficient points 
are obtained. Also, the initial and final values of εt are not known unless a previous 
computation is made. To identify the lower limit of f2, i.e. the initial value of εt, Model 1 must 
be optimized dropping objective function f1. To identify the upper limit of f2, i.e. the final 
value of εt, Model 1 must be optimized dropping objective function f2 and recalculating the 
value of T with equation (22). The loops run between these extreme points. The algorithm is 
shown in Figure 3. 
 
 
5.3   Backward ε-constraint method with estimated lower limit for f2 (ReC-1B) 
 
The third version uses the same idea as that of the previous version, that is, using an existing 
solution as incumbent for the next iteration of the algorithm. It was observed that the linear 
relaxation of Model 1 dropping objective function f1 was very loose, resulting in long times 
for Step 5 of the ReC-2B algorithm. One way to avoid this optimization was to estimate a 
lower limit for f2 from the instance data and start the computation cycle from that point. The 
initial value of εt is estimated as follows: 
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Algorithm ReC-2B 
 
BEGIN 
Input:   Data instance of CFCLP-TC. 
Output:  List of non-dominated solutions (NDS). 

 
1. NDS = Ø, t = 1. Optimize Model 1 dropping objective function f2. 
2. Recalculate T using equation (22). 
3. Register the solution in NDS with tff 11 =  and Tf =2 . 
4. Register Tlast =ε  as the final value for tε . 
5. Optimize Model 1 dropping objective function f1. 
6. Register 2ffirst = . ε
7. Initialize t = 2 and firstt ε= . ε
8. while ( lastt εε < ) 

8.1. Optimize Model 2. 
8.2. Recalculate T using equation (22). 
8.3. Register the solution in the NDS with tff 11 =  and Tf =2 . 
8.4. Register the solution as start solution for the next iteration. 
8.5. t = t + 1.  
8.6. Recalculate εt with δ=1: 

δεε += −1tt  
9. endwhile 
10. Eliminate dominated solutions from NDS. 
11. Return NDS. 
END 

Figure 3.  Pseudocode for the Backward ε-constraint algorithm with lower and upper limits 
for f2 (ReC-2B). 

 
 

 ( ) ( )⎟
⎠
⎞⎜

⎝
⎛ += jkllkijllij

first TWTP
,,

minminminε  (23) 

 
The implication of this procedure is that the cycle may begin from an infeasible problem for 
the start value of εt, so that some extra computations may be made. The algorithm is shown in 
Figure 4. 
 
 
6   Lower Bound Sets 
 
Because of the computational complexity of the CFCLP-TC, relatively large instances of this 
problem may no longer be tractable from an exact optimization perspective.  In that case, one 
sorts to heuristic methods that find an approximate set of non-dominated solutions.  In that 
sense, having information about lower bounds for these non-dominated sets allows a measure 
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of the quality of these solutions.  In multiobjective problems it is more appropriate to talk 
about a “lower bound set” (Ehrgott and Gandibleux, 2007).  
 
 

 
 

Algorithm ReC-1B 
 
BEGIN 
Input:   Data instance of CFCLP-TC. 
Output:  List of non-dominated solutions (NDS). 

 
1. NDS = Ø, t = 1. Optimize Model 1 dropping objective function f2. 
2. Recalculate T using equation (22). 
3. Register the solution in the NDS with tff 11 =  and Tf =2 . 
4. Register Tlast =ε  as the final value for tε . 
5. Estimate the value firstε  with equation (23). 
6. Initialize t = 2 and firstt ε= . ε
7. while ( lastt εε < ) 

7.1. Optimize Model 2. 
7.2. if (a feasible solution is obtained) 

7.2.1. Recalculate T using equation (22). 
7.2.2. Register the solution in the NDS with tff 11 =  and Tf =2 . 
7.2.3. Register the solution as start solution for the next iteration. 

7.3. endif 
7.4. t = t + 1.  
7.5. Recalculate εt with δ=1: 

δεε += −1tt  
8. endwhile  
9. Eliminate dominated solutions from NDS. 
10. Return NDS. 
END 

Figure 4.  Pseudocode for the Backward ε-constraint algorithm with estimated lower limit for 
f2 (ReC-1B). 

 
 
In this paper, several strategies based on linear relaxations within the branch-and-bound 
framework are proposed and tested.  The idea is to attempt to exploit the fact that relaxing 
some sets of the variables may result in more tractable subproblems.  The schemes are 
described next. 
 

a) Scheme LP (linear programming relaxation): It consists of relaxing all the integer 
variables.  It is the most common method to obtain lower bounds. The quality of this 
bound is closely related to the formulation of the problem.  In a branch-and-bound 
framework, this bound is equivalent to the LP relaxation computed at the root node. 
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b) Scheme LPc (LP relaxation with cuts). It is basically the LP relaxation of the MIP 
followed by an effort to identify and add some common cuts.  The addition of these 
cuts may in some cases strengthen considerable the LP relaxation.  The following cuts 
used by default with CPLEX were Clique Cuts, Cover Cuts, Implied Bound Cuts, 
Flow Cuts. Flow Path Cuts, and Gomory Fractional Cuts.  

c) Scheme ABr (LP relaxation of variables Aijl and Bjkl). These variables represent a big 
portion of the number of binary variables in large instances. By doing this relaxation, 
the resulting problem has as decision variables only those for selecting the distribution 
centers. Given that it is not a complete linear relaxation of the model this lower bound 
should be better than the lower bound obtained through the scheme LPc. 

d) Scheme Zr (LP relaxation of variables Zj). These variables are closely related to the 
facility location problem. Hence their relaxation may reduce the complexity of the 
problem and a good lower bound may be obtained in shorter time. By this relaxation, 
the problem of facility location becomes a linear problem where variables Zj take on 
fractional values and the flows in equation (8) are bounded by the value of MWjZj. 
This scheme should have a better quality than the one obtained by scheme LPc. 

 
For generating the complete lower bound set, each of these schemes are embedded within an 
algorithm similar to the ε-constrained method (ReC-1B) by fixing εt at each iteration using a 
fixed value of δ = 1.  Of course, in this algorithm, rather than solving the original MIP 
formulation, the focus is on solving the related relaxations. 
 
 
7   Empirical Evaluation 
 
The specific goals accomplished by the experiments are as follows.  First, to evaluate the 
proposed exact algorithms to identify which of these is more efficient in obtaining the 
efficient frontier.  Then, to present a detailed study of the profile of the efficient frontier, and 
to establish empirically that the two model objectives are indeed in conflict.  Another goal 
was to identify the size of instances that can be solved in a reasonable time with the 
computing resources available. In terms of the lower bound sets, to identify the characteristics 
of the lower bound sets obtained through the schemes proposed and their efficiency in run 
time and quality. 
 
To perform the computational study, instances are randomly generated as follows.  For each 
instance, there are four main size parameters: the number of plants, the number of potential 
distribution centers, the number of customers, and the number of arcs between nodes.  The 
sizes generated are shown in Table 1, where the group code indicates: [number of plants - 
number of potential distribution centers - number of customers - number of arcs between 
nodes].  The other parameters were randomly generated assuming some relations between 
these parameters.  The customer demand is an integer random variable with values between 
5000 and 10000 according to a uniform distribution.   To guarantee to some extent that the 
single source constraint can be met, the capacities of the distribution centers must be higher 
than the maximum demand.  
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Table 1.  Generated instances. 
Group code Number of 

instances 
Number of 

binary variables 
Number of 
constraints 

5-5-5-2 10 105 385 
5-5-5-5 10 255 835 

5-5-20-2 10 255 940 
5-10-10-2 10 310 1115 
5-10-20-2 10 510 1835 
5-5-20-5 10 630 2065 

 
 
To avoid an “easy” facility location decision, some distribution centers must be able to supply 
the total demand. The assumption is that providing more options makes the instance harder. 
Hence the total demand DT is the base to generate the distribution center capacity. The 
distribution center capacity is an integer random variable with values between MWlow and 
MWhigh with a uniform distribution, where these parameters are defined as follows: 
 
             ∑= kT DD

)
∈Kk

k
MWlow

∈
=            ( kK

Dmax

 ( ) MWlowDMWlowDDMWhigh TTT −=−+= 2        
 
The plant capacity must be generated taking into consideration the total demand also. In a 
feasible instance the total capacity of the plants must satisfy the total demand. However to 
generate a hard instance some plants are allowed to have a high capacity near to the total 
demand. The assumption is again that providing more options makes the problem harder. The 
plant capacity is an integer random variable with values between MPlow and MPhigh with a 
uniform distribution, where these parameters are defined as shown below:  
 

 
I

DMPlow T=             

             TDMPhigh =
 
An assumption is that transportation cost and time are negatively correlated. For each arc the 
time and cost are calculated but repeated parameter values are avoided for each pair of 
facilities. The transportation time is an integer random variable Tarc with values between 5 
and 25 with a uniform distribution. The unitary transportation cost Carc is a floating-point 
variable calculated with the Tarc value generated, as follows: 
 

 
Tarc

Carc 50
=  (23) 

 
The generation of the distribution center fixed cost is based in some parameters already 
generated. An assumption is that the fixed cost is positively correlated with the distribution 
center capacity. To produce a hard instance, the total fixed cost must be close to the total 
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transportation cost. As can be seen in equation (23) the maximum cost has a value of 10 
which is used to estimate a reference transportation cost Cref. The average distribution center 
capacity MWave is calculated and used to compute the fixed cost. 
 

 
J
DCref T*10

=         

   

 
J

MW
MWave Jj

j∑
∈=         

   

 
MWave
MW

CrefF j
j *=  j ∈ J        

 
These are all the parameters required for an instance of the CFCLP-TC.  
 
 
7.1   True efficient sets 
 
The three algorithms previously presented were used to solve the generated instances. All 
procedures (exact algorithms and lower bounding schemes) were coded in C and compiled 
with Visual Studio 6.0. CPLEX 9.1 callable library (ILOG SA, 2005) was used to solve 
optimally the sub-problems involved in the ε-constraint based algorithms (and in the lower 
bounding schemes also). These routines were run in a 3.0 GHz, 1.0 Gb RAM, Intel Pentium 4 
PC. 
 
The instances of the groups 5-5-5-2, 5-5-5-5 and 5-5-20-2 were solved completely with the 
proposed algorithms, i.e. their complete true efficient sets were obtained. The results are 
shown in Table 2 comparing in the last columns the improvement in efficiency achieved by 
the algorithms ReC-2B and ReC-1B against the algorithm eC. The following is observed in 
these results: 
 
• In 10 cases out of 30 (33%) ReC-2B was faster than eC. 

o Only for the favorable cases this improvement can be up to 56.1% of time 
reduction and 24.1% in the average. 

• In 26 cases out of 30 (87%) ReC-1B was faster than eC. 
o Only for the favorable cases this improvement can be up to 59.5% of time 

reduction and 19% in the average. 
 
Run times were similar between ReC-2B and ReC-1B, when individual iterations (each εt 
value) were compared. Yet, an overhead time is produced in ReC-2B when the initial value of 
εt is obtained through the optimization of f2. Hence, a benefit is achieved in ReC-1B when the 
start value of εt is obtained through the computation of a lower limit. Although some 
additional points had to be solved the time consumed is insignificant. The greatest benefits 
were obtained for the largest instances in both cases.  
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Table 2.  Comparison of algorithms in terms of time usage. 

Group 
code Instance 

Time (CPU seconds) Reduction in run time (%) 
vs. eC algorithm 

eC ReC-2B ReC-1B ReC-2B ReC-1B 
5-5-5-2 1 6.6 7.5 6.3 - 4.7 

 2 12.0 13.6 11.2 - 6.5 
 3 11.2 12.5 10.4 - 7.8 
 4 20.5 18.6 17.7 9.3 13.9 
 5 9.8 11.1 9.5 - 3.7 
 6 20.1 19.8 19.3 1.6 4.0 
 7 12.9 15.2 11.6 - 9.8 
 8 12.2 17.9 11.4 - 6.8 
 9 12.1 12.5 10.3 - 14.6 
 10 34.8 35.0 28.8 - 17.1 

5-5-5-5 1 152.7 164.5 141.3 - 7.4 
 2 343.0 337.2 334.8 1.7 2.4 
 3 402.2 2551.4 346.5 - 13.8 
 4 442.2 808.1 359.2 - 18.8 
 5 159.5 246.8 139.0 - 12.8 
 6 193.2 430.2 161.6 - 16.4 
 7 175.6 321.8 176.3 - - 
 8 254.0 829.1 182.7 - 28.1 
 9 536.3 1052.8 452.8 - 15.6 
 10 1722.4 1651.9 1444.3 4.1 16.1 

5-5-20-2 1 1976.0 2614.8 1981.9 - - 
 2 4096.4 1975.3 1658.1 51.8 59.5 
 3 10466.4 12745.5 12709.4 - - 
 4 4350.8 2637.9 2436.2 39.4 44.0 
 5 7161.7 3776.4 3676.3 47.3 48.7 
 6 3627.2 1590.6 1598.0 56.1 55.9 
 7 8513.4 7786.1 7727.7 8.5 9.2 
 8 12117.6 9567.5 9456.2 21.0 22.0 
 9 2896.1 3338.9 2973.0 - - 
 10 9884.9 10327.8 6573.0 - 33.5 

 
 
The groups of instances 5-10-10-2, 5-10-20-2 and 5-5-20-5 were not solved completely 
because the computer ran out of memory during the process. The instances of the group 5-10-
10-2 were solved with a time limit of 3600 seconds (TILIM) to reinforce the conclusions 
about the efficiency of the algorithms. Given the previous results, only the eC and ReC-1B 
algorithms were tested for these instances. Here, in both algorithms several iterations reached 
the time limit and thus the individual gaps (%) were compared for those points. Table 3 
displays the results for these instances. Columns 5 and 6 show the number of iterations where 
TILIM was reached before obtaining the optimal solution. Column 7 shows the number of 
iterations where TILIM was reached before obtaining the optimal solution in common for both 
algorithms. Column 8 compares the number of iterations where TILIM was reached before 
obtaining the optimal solution with the ReC-1B algorithm and with a better Gap compared to 
the eC algorithm. Finally, Column 9 shows the average gap (%) for both algorithms where 
TILIM was reached before obtaining the optimal solution. 
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Table 3.  Evaluation of eC and ReC-1B for the largest set of instances (group 5-10-10-2) with 
a time limit of 3600 sec. 

Ins. Time (CPU 
seconds) 

Time 
reduction 
(%) vs. eC 
algorithm 

Points where 
the algorithm 

reached TILIM 

Points 
where 
both 

reached 
TILIM 

Points 
where  

ReC-1B 
had better 

gap 

Average Gap (%) 
for common 

cases, where the 
algorithm reached 

TILIM 
eC ReC-1B ReC-1B eC ReC-1B eC ReC-1B 

1 75488.1 71868.7 4.8 17 16 14 12 7.17 5.71 
2 36938.7 30803.5 16.6 4 3 3 3 4.94 4.10 
3 55727.3 56616.8 -1.6 12 11 10 7 7.17 6.17 
4 57796.9 57010.1 1.4 11 11 10 7 5.80 4.78 
5 70297.0 69771.8 0.7 17 16 16 12 6.51 5.63 
6 52441.5 52481.9 -0.1 10 12 10 10 6.79 4.45 
7 40767.2 36204.2 11.2 8 7 6 4 5.10 3.60 
8 45126.7 36820.1 18.4 6 4 3 2 6.25 3.10 
9 26588.0 20870.6 21.5 4 1 1 1 7.00 0.63 

10 49415.2 40121.6 18.8 10 7 7 5 5.79 5.46 
 
 
The comparison between the eC and ReC-1B algorithms for this group of instances can be 
summarized as follows: 
 

• About the run time: 
o In 8 out of 10 instances (80%) ReC-1B was faster than eC. 
o Only for the favorable cases this improvement can be up to 21.5% of time 

reduction and 11.7% in the average. 
• About the quality of the solution: 

o For the iterations (εt values) where both algorithms reached the time limit, in 
63 out of 80 points (78.8%) the ReC-1B algorithm found a better gap than eC. 

 
Figure 5 shows the efficient frontier for the instance 5-5-5-5-2. The efficient frontier for the 
rest of the mentioned instances is similar. The points are not connected because of the 
discretization of time units. It is evident the tradeoff between cost (f1) and time (f2).  
 
Figure 6 shows the run times for the iterations of the eC algorithm in the 5-5-20-2-1 instance. 
This behavior is similar in all the instances. It is observed that intermediate values of εt create 
problems that are more difficult to solve in general. This behavior can be explained as 
follows. First, as it is empirically shown in more detail in the following section, the initial gap 
in the branch-and-bound algorithm increases from high to low values of εt. This trend of the 
initial gap may be related to the increase of time to solve each MIP from high to intermediate 
values of εt. Nevertheless, when the value of εt is decreased the solution space becomes more 
constrained, and a reduced number of solutions must be explored. Also, for low values of εt 
CPLEX is more efficient in finding cuts to reduce the initial gapt. 
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Figure 5.  Set of non-dominated solutions for the instance 5-5-5-5-2. 
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Figure 6.  Run time behavior of eC algorithm as a function of the value of εt. 

 
 
7.2   Lower bound sets 
 
The goals of these experiments are to study the quality of the lower bound sets obtained with 
the proposed schemes, and to gain insight in the structure of the problem. Four lower 
bounding schemes based on linear relaxations of the MIP were evaluated. These are described 
in Section 6.  In summary, scheme LP is the linear programming relaxation of the MIP. 
Scheme LPc is the LP relaxation with cuts. Scheme ABr is the LP relaxation of the variables 
Aijl and Bjkl. Finally, scheme Zr is the LP relaxation of variables Zj. For generating the lower 
bound sets in a specific instance, the lower bounding schemes were  used within the 
framework of ReC-1B algorithm with some modifications about fixing the initial and last 
values of the parameter εt according to the instance data. This procedure was coded in C and 
compiled with Visual Studio 6.0. CPLEX 9.1 callable library (ILOG SA, 2005) was used to 
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solve optimally the sub-problems. The routines were run in a 3.0 GHz, 1.0 Gb RAM, Intel 
Pentium 4 PC. 
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Figure 7.  Quality of the lower bound sets for instance 5-5-5-2-1. 

 
 
To define the quality of the lower bound set the schemes were tested in instances with known 
true efficient solution sets. Five instances of the sizes 5-5-5-2, 5-5-5-5, and 5-5-20-2 were 
studied. For a fixed value of εt the ratio f1 (scheme) / f1 (MIP) was calculated. The behavior of 
these ratios is shown in Figures 7, 8 and 9 for instances 5-5-5-2-1, 5-5-5-5-1 and 5-5-20-2-1 
respectively. This trend is similar for the other instances examined. 
 
Table 4 presents the average, minimum and maximum values of the f1 (scheme) / f1 (MIP) 
ratios for the lower bound schemes proposed.   It is evident from the results that the best lower 
bound set is obtained with the scheme Zr that uses the linear relaxation of variables Zj. In 
order of quality the second best is the LPc scheme. The third best is obtained with the ABr 
scheme through the linear relaxation of variables Aijl and Bjkl. The worst lower bound set is 
obtained with the complete linear relaxation of the MIP model, i.e. the LP scheme.  A 
degradation of the lower bound set is observed for the lowest values of εt in the ABr and LP 
schemes. It is because the value of εt is loose in constraint (21) and the value of f1 barely 
changes between the lowest and highest values of εt, while the value of f1 in the MIP increases 
for lower values of εt. 
 
The run time for the linear relaxation schemes are displayed in Table 5.  The column MIP 
represents the time required by the ReC-1B algorithm to obtain the optimal solution. 
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Figure 8.  Quality of the lower bound sets for instance 5-5-5-5-1. 
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Figure 9.   Quality of the lower bound sets for instance 5-5-20-2-1. 

 
 
In the case of the LPc scheme a recovery can be observed in the lowest and highest values of 
εt. The reason may be the default use heuristics and cuts in CPLEX to improve the lower 
bound of the MIP. Although the quality of the lower bound set with the Zr scheme is high, the 
run time is a disadvantage because it is longer than the time used to solve the CFCLP-TC with 
the ReC-1B algorithm. This behavior is counterintuitive because it is expected that a linear 
relaxation may be solved in less time than the MIP model. There is one reason for this 
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behavior. The magnitude of the cost associated with variables Zj in the objective function f1 is 
high. When these variables are continuous CPLEX is unable to find useful cuts with a high 
impact in the gap. Therefore the gap is not improved fast enough during the exploration of the 
nodes in the branch and bound algorithm. 
 
 

Table 4.  Comparison of f1 (scheme) / f1 (MIP) ratios for the lower bounding schemes. 

  
average ratio 

 f1 (scheme) / f1 (MIP) 
minimum ratio  

f1 (scheme) / f1 (MIP) 
maximum ratio 

 f1 (scheme) / f1 (MIP) 
Group 
code Ins. LP LPc ABr Zr LP LPc ABr Zr LP LPc ABr Zr 

5-5-5-2 1 0.598 0.867 0.649 0.913 0.304 0.643 0.350 0.841 0.933 1.000 1.000 0.956 
 2 0.684 0.841 0.761 0.916 0.375 0.739 0.418 0.871 0.897 0.970 0.998 0.963 
 3 0.606 0.832 0.726 0.891 0.327 0.767 0.403 0.836 0.835 0.963 0.994 0.944 
 4 0.629 0.808 0.707 0.859 0.331 0.679 0.386 0.808 0.892 1.000 1.000 0.905 
 5 0.557 0.848 0.667 0.871 0.318 0.750 0.414 0.828 0.846 1.000 1.000 0.928 

5-5-5-5 1 0.622 0.802 0.656 0.941 0.267 0.538 0.288 0.905 0.953 1.000 1.000 0.977 
 2 0.679 0.825 0.719 0.950 0.324 0.713 0.347 0.911 0.946 1.000 1.000 0.971 
 3 0.641 0.789 0.728 0.903 0.278 0.654 0.318 0.850 0.882 0.964 1.000 0.937 
 4 0.637 0.781 0.678 0.915 0.288 0.661 0.310 0.879 0.941 0.992 1.000 0.951 
 5 0.627 0.799 0.652 0.914 0.235 0.650 0.258 0.778 0.965 0.998 1.000 0.965 

5-5-20-2 1 0.819 0.892 0.853 0.958 0.535 0.835 0.557 0.882 0.959 0.964 0.998 0.970 
 2 0.801 0.880 0.828 0.959 0.533 0.811 0.552 0.923 0.965 0.971 0.999 0.976 
 3 0.783 0.870 0.800 0.952 0.516 0.783 0.528 0.905 0.977 0.980 0.998 0.979 
 4 0.784 0.854 0.809 0.958 0.507 0.762 0.526 0.926 0.967 0.969 0.998 0.978 
 5 0.771 0.854 0.806 0.943 0.490 0.787 0.513 0.894 0.957 0.974 1.000 0.969 

 
 

Table 5.   Run time (CPU sec.) for the lower bounding schemes. 
  Lower bounding schemes 

Group 
code Instance MIP LP 

 
LPc ABr Zr 

5-5-5-2 1 6.33 0.06 0.14 3.02 61.83 
 2 11.25 0.05 0.12 2.61 53.36 
 3 10.36 0.05 0.12 3.28 44.92 
 4 17.66 0.05 0.18 4.69 98.28 
 5 9.47 0.05 0.17 3.24 63.33 

5-5-5-5 1 141.31 0.09 0.31 7.09 141840.50 
 2 334.77 0.09 0.33 6.33 98279.72 
 3 346.50 0.08 0.38 10.36 140449.33 
 4 359.17 0.08 0.37 6.50 157355.89 
 5 139.05 0.08 0.33 5.70 109087.41 

5-5-20-2 1 1981.89 0.16 0.41 8.83 2711.25 
 2 1658.08 0.14 0.41 11.72 7957.02 
 3 12709.45 0.16 0.46 9.48 253041.64 
 4 2436.19 0.17 0.46 11.41 35591.46 
 5 3676.30 0.14 0.55 16.20 43516.73 



8   Conclusions 
 
In the process of supply chain design many decisions have to be made and several aspects 
must be taken into account. However, an area of opportunity was identified by 
incorporating the selection of the transportation channel in the distribution network 
design. Although several works have considered this decision before, few models studied 
the effect of this decision in the total cost and transportation time simultaneously 
(Arntzen et al., 1995; Zeng, 1998; Graves and Willems, 2005; Chang, Chung and Choy, 
2006). Those few models that consider this simultaneous decision are limited because 
they do not generate a set of efficient solutions and simplify the problem treating one 
function as a constraint or combining both functions in an aggregated objective.  
 
In our work we are addressing this issue by treating cost and time functions in a bi-
objective programming framework.  Additionally, these models do not include the 
facility location component. In this sense, the problem introduced in our paper considers 
the facility location and the transportation mode selection decisions, generating a set of 
efficient solutions for the cost-time tradeoff. We have named this new problem as 
“Capacitated Fixed Cost Facility Location Problem with Transportation Choices” 
(CFCLP-TC). In this problem the design of the supply chain is based on decisions about 
facilities to be opened, the flows between facilities and the selection of transportation 
channels between facilities. The problem is modeled as a bi-objective mixed-integer 
program. The model seeks to minimize both the total cost and the maximum delivery 
time from the plants to the customers. The total cost is a combination of transportation 
cost and fixed opening cost. To the best of our knowledge this problem has not been 
addressed before. 
 
To solve the model three versions (named eC, ReC-2B, and ReC-1B) of the classical ε-
constraint method were studied. Within the ε-constraint, the cost function was considered 
as objective function while the time function was handled as a constraint with changing 
right-hand side values (εt). In the eC algorithm, the value εt of the time function was 
reduced sequentially. In the ReC-2B and ReC-1B algorithms, the value of εt is increased. 
By proceeding this way in each optimization step, the previous solution can be used as 
incumbent solution, which is used advantageously within a branch-and-bound algorithm 
to solve the mixed-integer program involved. The difference between the ReC-2B and 
ReC-1B algorithms is in the way the initial and final values of εt are computed. In the 
ReC-2B algorithm, these values are obtained through independent optimization of each 
objective function. In the ReC-1B algorithm, the initial value of εt is estimated from a 
lower limit calculated from the instance data. These algorithms were designed to obtain 
the set of efficient solutions for a problem instance. 
 
The numerical results showed that the ReC-1B algorithm was more efficient (faster) than 
algorithms ReC-2B and eC. The ReC-1B algorithm takes advantage of using a start 
solution in each optimization step, in comparison to the eC algorithm. Also, the ReC-1B 
algorithm obtains the start value of εt from a lower limit estimated with the instance data, 
avoiding a time overhead that occurs in ReC-2B. Even for large instances the ReC-1B 
algorithm was able to obtain best gaps than the eC algorithm in most of the cases for the 
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hardest iterations. We infer that the ReC-1B algorithm may be adapted to other bi-
objective problems easily.  The exact algorithms were successfully applied for instances 
of up to 255 binary variables and 940 constraints. For larger instances, computer memory 
was insufficient to solve the MIP related to some values of εt. 
 
In addition, four different strategies for obtaining lower bound sets were examined. These 
were based on linear relaxations of the MIP model. One scheme is the linear relaxation of 
the complete MIP model (LP). The second one is the linear relaxation with cuts added 
(LPc). The others make the linear relaxation of variables Aijl and Bjkl (ABr), and of 
variables Zj (Zr). The best lower bound sets in terms of quality were obtained with the Zr 
scheme with a more homogeneous behavior along the efficient frontier. The main 
disadvantage is its relatively large run time. One explanation for this is the difficulty 
CPLEX observes in identifying useful cuts in the relaxed problems, which may be caused 
by the poor numerical representation of the polyhedron. The other schemes produced low 
quality bound sets and should not be considered. Therefore further work must be done to 
obtain lower bound sets of high quality for this problem in reasonable run times. An 
option is to attempt to speed up scheme Zr by means of a Lagrangian relaxation scheme.  
 
Because of the computational complexity of the CFCLP-TC a heuristic method must be 
employed to solve larger instances. A modification of the ReC-1B algorithm was used to 
obtain reference sets (upper bound sets) for large instances. The heuristic rule was to 
impose a time limit in each main iteration (i.e, when fixing the value of εt.) 
 
In summary, the first contribution of this work is the introduction of a model that 
considers the selection of the transportation channel in the supply chain design under a 
bi-objective optimization approach. This has never been addressed before to the best of 
our knowledge.  We also provide a proof about the complexity of the problem.  Another 
contribution is a detailed empirical study of three versions of the ε-constraint method for 
this bi-objective combinatorial optimization problem. One of these versions consistently 
found the optimal efficient frontiers for many of the instances tested.  Our belief is that 
this method can be extended to other bi-objective combinatorial optimization problems 
with similar characteristics.  We also proposed and empirically evaluated some lower 
bounding schemes. One of the procedures tested found lower bounds of better quality 
than those found by the LP relaxation.  Further work for speeding up the solution time of 
this scheme is needed.   
 
Acknowledgements: This research has been supported by ITESM Research Fund CAT128 
and the Mexican National Council for Science and Technology (grant SEP-CONACYT 
61903). 
 
 
References 
 
C. H. Aikens (1985). Facility location models for distribution planning. European 
Journal of Operational Research, 22(3):263-279. 
 

25 
 



F. Altiparmak, M. Gen, L. Lin, and T. Paksoy (2006). A genetic algorithm approach for 
multi-objective optimization of supply chain networks. Computers & Industrial 
Engineering, 51(1):197-216. 
 
B. C. Arntzen, G. C. Brown, T. P. Harrison, and L. L. Trafton (1995). Global supply 
chain management at Digital Equipment Corporation. Interfaces, 25(1):69-93. 
 
R. H. Ballou (1999). Business Logistics Management. Prentice Hall, Upper Saddle River, 
USA. 
 
W. J. Baumol and P. Wolfe (1958). A warehouse-location problem. Operations 
Research, 6(2):252-263. 
 
J. Benjamin (1990). An analysis of mode choice for shippers in a constrained network 
with applications to just-in-time inventory. Transportation Research Part B, 24(3):229-
245. 
 
F. T. S. Chan, S. H. Chung, and K. L. Choy (2006). Optimization of order fulfillment in 
distribution network problems. Journal of Intelligent Manufacturing, 17(3):307-319. 
 
S. Chopra and P. Meindl (2004). Supply Chain Management: Strategy, Planning, and 
Operation. Prentice Hall, Upper Saddle River, USA. 
 
J. F. Cordeau, F. Pasin, and M. M. Solomon (2006). An integrated model for logistics 
network design. Annals of Operations Research, 144(1):59-82. 
 
G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey (1990). The uncapacitated facility 
location problem. In P. B. Mirchandani and R. L. Francis (editors), Discrete Location 
Theory, Chapter 3, pp. 119-171. Wiley, New York, USA. 
 
J. Current, H. Min, and D. Schilling (1990). Multiobjective analysis of facility location 
decisions. European Journal of Operational Research, 49(3):295-307. 
 
M. Ehrgott (2005). Multicriteria Optimization. Springer-Verlag, Berlin, Germany. 
 
M. Ehrgott and X. Gandibleux (2007). Bound sets for biobjective combinatorial 
optimization problems. Computers & Operations Research, 34(9):2674-2694. 
 
E. Eskigun, R. Uzsoy, P. V. Preckel, G. Beaujon, S. Krishnan, and J. D. Tew (2005). 
Outbound supply chain network design with mode selection, lead times and capacitated 
vehicle distribution centers. European Journal of Operational Research, 165(1):182-206. 
 
S. C. Graves and S. P. Willems (2005). Optimizing the supply chain configuration for 
new products. Management Science, 51(8):1165-1180. 
 
ILOG SA (2005). ILOG CPLEX Callable Library 9.1 Reference Manual. ILOG, France. 

26 
 



27 
 

 
A. Klose and A. Drexl (2005). Facility location models for distribution system design. 
European Journal of Operational Research, 162(1):4-29. 
 
A. A. Kuehn and M. J. Hamburger (1963). A heuristic program for locating warehouses. 
Management Science, 9(4):643-666. 
 
D. Simchi-Levi, P. Kaminski, and E. Simchi-Levi (2000). Designing and Managing the 
Supply Chain: Concepts, Strategies and Case Studies. McGraw Hill, Boston, USA. 
 
R. E. Steuer (1989). Multiple Criteria Optimization: Theory, Computation and 
Application. Krieger Publishing Company, Malabar, USA. 
 
D. J. Thomas and P. M. Griffin (1996). Coordinated supply chain management. European 
Journal of Operational Research, 94(1):1-15. 
 
T. H. Truong and F. Azadivar (2005). Optimal design methodologies for configuration of 
supply chains. International Journal of Production Research, 43(11):2217- 2236. 
 
C. J. Vidal and M. Goetschalckx (1997). Strategic production-distribution models: A 
critical review with emphasis on global supply chain models. European Journal of 
Operational Research, 98(1):1-18. 
 
W. Wilhelm, D. Liang, B. Rao, D. Warrier, X. Zhu, and S. Bulusu (2005). Design of 
international assembly systems and their supply chains under NAFTA. Transportation 
Research Part E, 41(6):467-493. 
 
D. D. Zeng (1998). Multi-issue Decision Making in Supply Chain Management and 
Electronic Commerce. PhD Dissertation, Graduate School of Industrial Administration 
and Robotics Institute, Carnegie Mellon University, Pittsburgh, USA, December. 
 
G. Zhou, H. Min, and M. Gen (2003). A genetic algorithm approach to the bi-criteria 
allocation of customers to warehouses. International Journal of Production Economics, 
86(1):35-45. 


