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ABSTRACT 

Efficiency improvement of thermal power plants is one 
of the key technologies to protect the global environment 
because of lower emission gas. There are many approaches 
in this regard, which are investigated and developed around 
the world. Thermal efficiency of fossil power plants has 
been improved by raising steam temperature as high as 620 
C in a realization of Ultra Super Critical (USC) steam 
turbine system. In order to enhance the thermal efficiency 
further, we are developing the Advanced Ultra Super 
Critical (A-USC) steam turbine system using high pressure 
and high temperature steam of 700 C or over 700 C. 

The main focus of the Research & Development of 
A-USC steam turbine is the verification of the alloys for the 
large rotor, casing and valve components, and the main issue 
for application to the power plant is an economical aspect 
and field of technology for the realization of such steam 
conditions with cost-effectiveness, for instance, 
optimization of cycle heat balance, turbine design, welding 
technology and so on. 

This paper describes briefly about R&D results of 
A-USC steam turbine and suggests an economical strategy 
in order to make it possible to be realized sooner. 
 
 
INTRODUCTION 

Demand of electric power has increased all over the 
world, and carbon dioxide emissions and global warming 
have become critical problem in proportion to increase of 
power plants. In view of environmental protection and 
energy saving, the efficiency enhancement is one of the most 
effective and indispensable countermeasures. As the reserve 
capacity of natural gas and oil has been increasing in recent 
years due to the new development of gas fields and oil shale 
fields around the world, construction of combined cycle is 
expected to increase hereafter. On the other hand, coal fired 
power plant system is still much utilized and will be 
attractive due to their rich reserve capacity of wide area and 
cost competitiveness. However, the critical issue for coal 
fired power plant system is the large amount of carbon 
dioxide emission, therefore raising efficiency is one of the 
most fundamental ways of decreasing carbon dioxide 
emission.  

Integrated Gasification Combined Cycle (IGCC) and 
Advanced Ultra Super Critical plants (A-USC) are 
promising next generation power plant systems using coal. 
In IGCC, coal is converted to gas and sent to a Combined 

Cycle system. Coal of lower melting point is suited to IGCC. 
On the other hand, that of higher melting point is suited to 
A-USC because slugging and fouling should be avoided in 
A-USC boilers. In this context, both IGCC and A-USC are 
valuable to be allowed flexible and wide usage of coal.  

Thermal efficiencies of both systems are almost equal 
level, but A-USC has advantages in following points. Firstly, 
A-USC is an extension of existing technology without 
changing the system itself. Therefore, there will be no big 
difference between present technology of operation and 
maintenance and that of future A-USC. Secondary, 
innovative area of technology to achieve A-USC can be 
clearly defined and focused on. Namely, if proper material is 
developed the most critical issue for A-USC can be solved. 
Thirdly, this technology can be partially applied to existing 
units in the case of retrofitting, which promises wider 
application to old existing coal fired units.  
 
TREND OF RAISING STEAM CONDITIONS 

Figure 1 shows the transition of steam conditions in 
Japan. The standard steam conditions for large fossil-fired 
steam plant were 24Mpa, 538/566 C until early 1990s. The 
improvement of main steam temperature and reheat steam 
temperature has come into reality by turns. During this trend 
of raising steam conditions, we have some epoch making 
machines. Kawagoe 700MW, whose main steam pressure is 
31Mpa, and double reheat temperatures are 566/566/566 C 
[1],[2]. Nanao 700MW has temperatures of 593/593 C both 
for main steam and reheat steam. Hekinan No.4 and No.5 
are 566/593 degree C, and their capacity is 1000MW, which 
is still the largest one in the world as a 60Hz 
tandem-compound turbine. 
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Being supported by material development, design tools, 

and operational experience, steam temperature in Japanese 
steam plant reached 610 C at the beginning of this century. 
This trend has spread worldwide. For instance, we exported 
two sets of steam turbines to China recently, whose main 
steam and reheat steam temperatures are 600 C. Also Ultra 
Super Critical steam condition has become very common in 
most parts of the world from the beginning of 2000s. The 
highest temperature in Japan is 620 C at reheat temperature, 
namely, 600/620 C of 600MW plant. An important aspect of 
this improvement is that raising reheat steam temperature 
always realized prior to that of main steam. This is because 
enhancement of reheat steam temperature is easier than that 
of main steam temperature and because the cost impact on 
initial investment of power plant is lighter. 

Next approach will be reheat temperature of 700 C or 
more than 700 C, and then main steam of 700 C will be 
realized based on material development within next decade 
in order to raise plant efficiency up to 49% level. 

Figure 2 is A-USC steam turbine by our design of 
1000MW (60Hz). Inlet steam conditions are 35MPa, 
700/750/750 C of double reheat turbine. It consists of a 
single flow VHP cylinder, a single flow HP cylinder, a 
double flow IP cylinder and two double flow LP cylinders 
with 48in length titanium last stage blades. Its plant 
efficiency is 48 to 49% (LHV base) and its cycle 
optimization is being carried out to increase economical 
benefit in consideration of material properties, welded rotor 
and cooling method etc. 
 
 
 

 
 
 
MATERIAL DEVELOPMENT 

The main focus of the R&D for realizing such high 
temperature is, of course, developing high heat-resistant 
material as described in Figure 3. We have developed and 
improved high Cr content ferritic steel with resistance to 
higher temperature from 538 C to more than 600 C since 
1960s. Next step in this decade is developing Nickel-based 
alloys keeping enough creep rupture strength up to 750 C 
which can be applied to 1000MW double reheat steam 
turbine mentioned above. We are now focusing on large 
component verification with an actual size rotor and casing. 
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As far as material selection for A-USC turbine is 
concerned, there are many features to be considered. They 
are creep rupture strength, welding applicability, forging 
applicability and so on. Table 1 compares these features 
among the Ni-base alloys applied to gas turbine high 
temperature parts. As steam turbine parts are considerably 
larger than gas turbine parts, its required features are 
deferent and peculiar, for example, forging applicability for 
its large rotor. Therefore, special consideration and 
modification is necessary in order to apply these Ni-base 
alloys to steam turbine. Based on this comparison and survey, 
we selected “IN617” for a rotor base material because of its 
high welding and forging applicability. Welding applicability 
is also important because Ni-base rotors should be welded 
with cheaper conventional material rotors which can be 
applied to lower temperature part in order to cost 
optimization and/or to keep strength constrained by weight 
or size of forging (i.e. forging applicability) . 

Fig. 2  A-USC Steam Turbine of Toshiba Design
Double reheat turbine
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Based on “IN617”, we modified it to improve creep 
rupture strength within the limits of forge-ability and phase 
stability by optimal chemical composition, and then 
“TOS1X-I” and “TOS1X-II” (higher strength) have been 
developed. Actual size verification is now carried out and 
creep rupture strength is being verified as well as 
mechanical properties. Enough creep rupture strength at 700 
to 750 C is forecasted in case of “TOS1X-II” as shown in 
Figure 4. 
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Table. 1  Comparison of Ni-base alloy Forging Materials

Material Welding 
Applicability

Forging 
Applicability

“IN706” - ○ ◎

“Waspaloy” 175 △ △

“IN718” 164 ○ △

“IN617” 120
48inch Titanium 
Last Stage Blades

Welded Rotor 
(Ni Alloy & Ferrite)

Cooling Pipe

Creep Rupture 
Strength(700 C 105h)

Welded Rotor
(Ni alloy & Ferrite)

◎ ○

Material Welding 
Applicability

Forging 
Applicability

“IN706” - ○ ◎

“Waspaloy” 175 △ △

“IN718” 164 ○ △

“IN617” 120

Creep Rupture 
Strength(700 C 105h)

◎ ○

High Welding Applicability
High Forging Applicability

“IN617”
Improve Creep Rupture Strength

“TOS1XーＩ”
Product names mentioned herein may be trademarks of their respective companies

“TOS1XーＩＩ”
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As results from the material development so far, a 

basic design of double reheat steam turbine shown in Figure 
2 has been completed. Figure 5 shows material application 
and design consideration for VHP turbine, which inlet steam 
conditions are 35MPa and 700 C. Ni-base alloys are applied 
to limited parts which suffer directly high temperature steam, 
namely, inner casing, rotor of higher temperature part, 
nozzle box (first stage nozzle), and higher temperature parts 
of nozzles and blades. The other parts are of conventional 
ferritic material because of lower 
shell construction and welded rotor. 

 

ATEGY FOR EARLIER APPLICATION 
Main issues for realization of A-USC are not only for 

reliability of new material and construction, but also for 
economical benefit for users. Figure 6 shows relative 
improvement of thermal efficiency and cost performance 
comparison (image) of several steam conditions. Toshiba is 
carrying out a feasibility study for 35MPa, 700/750/750 C 
double reheat system, however, capital cost increase is fairly 
large, and therefore, cost performance of capital cost 
increase v.s efficiency improvement may be worth than the 
phase I condition, namely, 25MPa,600/700 C. We consider 
Phase I is earlier applicable than phase II because of more 
economical and reliable. As for phase II condition, it could 
be an option for the plant of very low CO2 emission in 
future, which will be discusse
economics is necessary, anyhow. 
 
 

 

 
Figure 7 shows our concept for phase I of reheat 700 C 

system. As shown in the figures, phase I applies fewer 
Ni-base new material and its design is simpler including 
boiler portion in comparison with phase II of double reheat. 
That is why we consider phase I is practical and econo
th
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Figure 8 shows our design concepts of phase I turbine. 

As shown clearly, Ni-base material is applied only for IP 
nozzle box and higher temperature portion of nozzles and 
blades of IP turbine, which application is fewer than phase 
II (Figure 5). It has double shell structure and cooling will 
be applied to rotor, casing and so on. Reheat steam of 700 C 
flows into the turbine from inlet pipes located on upper half 
and lower half. In order to avoid direct contact of inlet 
steam from outer casing, inlet pipe is double structured with 
cooling. The most important part is, of course, rotor material. 
Cooling and protection of bucket fixation are promising 
candidate measure to solve this task. External cooling of 
reheat section has been used in steam turbine design, and in 
fact, extraction of cooling steam is possible from high 
pressure section. This external cooling makes it possible to 
apply ferritic steel to both rotor and inner casing. Otherwise, 
Ni-base material (“TOS1X”) of IP rotor can be used in 
limited area by we
higher efficiency. 
 
 

 
ATEGY FOR FUTURE APPLICATION 
In general, CO2 emission will be restricted more 

severely in future because of protection of global 
environment. However, coal-fired power plant will be still 
utilized because of rich reservation of coal mine and 
increase of demand for electric power. Under this situation, 
efficiency improvem

e future.  
Figure 9 shows our concept and approach to near-zero 

emission for coal-fired power plant for the future. CCS 
(Carbon Capture and Storage) requires energy for carbon 
capture, which comes from thermal power of the plant. 
Therefore, the thermal efficiency of a power plant with CCS 
is lower than the plant without CCS, although CO2 emission 
reduction is very large. It is fundamental issue for the future, 
and one of countermeasures may be A-USC with CCS 
integration. As shown in Figure 9, the net thermal efficiency 
of existing plants of sub-critical and USC are less and more 
than 40% (LHV base). In case of A-USC (Phase II) with 
CCS (90% CO2 capture), its efficiency will be around 40%, 
which is almost same as existing level. In other words, 
thermal efficiency can be kept as it is and CO2 emission can 
be greatly reduced by A-USC with CCS integration. In case 

of 50% CO2 capture, thermal efficiency and CO2 emission 
are both as same as LNG combined cycle with 1100 C class 
gas turbine. Please note that USC+CCS with 90% CO2 
capture will result in lower efficiency than existing plants, 
which can not be accepted in g
A-USC+CCS is important in the future. 

 
 Fig. 9  Approach to Near-Zero Emission coal Power Plant
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As far as carbon capture technologies are concerned, 

there are three methods as shown in Figure 10, namely, post 
combustion capture, oxy-fuel combustion and pre 
combustion capture (IGCC). Each technology has 
advantages and challenges (issues). Toshiba has selected and 
is developing a post combustion capture, because it can be 
applied widely to thermal power plant even for retrofit and 
industrial plant with proven technologies. Issues are energy 
loss mentioned above and capital cost increase, which will 
be discussed later. Anyhow, some incentives are necessary 
in order to introduce CCS technology to power 
because of increase of capital cost and less efficiency. 

 
 

 

 
Figure 11 describes integration of thermal power plant 

with CCS. It is important to make the energy loss for 
capture minimal by integration between CCS and power 
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et cost performance of phase II 
with

oiler manufactures should 
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Lower half of Figure 11 describes a road map for 
A-USC validation and A-USC+CCS integration. Phase I and 
Phase II of A-USC will be realized co
decade followed by CCS integration. 

 
 

SUGGESTION AND RECOMMENDATION 
We have a strategy to introduce A-USC phase I and 

phase II by step as described before. Phase I is very recent 
when the existent law is applied and there is no incentives 
for CO2 capture in the field of power plants. Target cost and 
efficiency must be reached without any incentives or credits. 
In this situation, phase I is rather appropriate and easier to 
be economical than phase II as described in Figure 6. For 
future incentives, some credit for CO2 reduction may be 
regulated, and then the targ

 CCS will be decided. 
It is suggested that under recent situation and common 

regulations, phase I is recommended from economical and 
realistic aspects without CCS. Then for the future case of 
CCS regulation and incentives with CO2 credit, phase II is 
recommended after validation which will take several years 
from now on. Turbine and b

are for the future market. 

more than 48% (LHV) of plant efficiency being studied 
based on the Phase I system. 

Turbine manufacturer and Boiler manufacturer should 
cooperate in feasibility studies on the selection of 

parameters between each portion in order to realize 
economical and reliable A-USC plant for the future in 
consideration of CCS option. 

Fig. 11  Thermal Power Plant IntegrationFig. 11  Thermal Power Plant Integration

 

Figure 12 is an example of the Phase II system aimed to 

CONCLUSION 
We have developed heat-resistant alloys such as 

“TOS-1X” rotor which can be applied to 750 C. The reheat 
700 C turbine cycle (phase I) can be realized sooner than 
double reheat 750 C turbine cycle (phase II). A-USC with 
CCS is one of the near-zero emission cycles, which can be 
optimized integrally by our experiences. We are carrying 
out feasibility studies and we can contribute to realize 
reliable, economical and environmentally friend coal-fired 
power plants.  

 
ACKNOWLEDGMENT 

”TOS1X” rotor forging was manufactured as a part of 
Strategic Development Energy Conservation Technology 
Project sponsored by NEDO (New. Energy and Industry 
Technology Development Organization,. Japan) 
 

Product names mentioned herein may be trademarks 
of their respective companies. 

 
 
REFERENCES 

1. Suzuki, A., Nomoto, H., and Kakishima, M., 
Development of a 700MW Double Reheat Turbine 
with Advanced Supercritical Conditions, IMechE, 
C386/002, 1990. 

2. Mimuro, H., and Nomoto, H., The Development and 
the Operational Experience of the Steam Turbine with 
Advanced Steam Conditions, American Power 
Conference, April 1990.  

3. Hideo Nomoto, Yoshikazu Kuroki, Masafumi Fukuda, 
Shinya Fujitsuka, Recent Development of Steam 
Turbines with High Steam Temperature, Proceedings 
of the International Conference on Power 
Engineering-05 (ICOPE-05) April 5-7, 2005, Chicago, 
USA 

4. Kazutaka Ikeda, Hideo Nomoto, Koichi Kitaguchi, 
Shinya Fujitsuka, and Takashi Sasaki,  Development 
of Advanced-Ultra Super Critical Steam Turbine 
System, Proceedings of the International Conference 
on Power Engineering-09 (ICOPE-09) November 
16-20, 2009, Kobe, Japan 

 
 

Integration with Power System
・ Heat & Mass Balance
・ System Operation

Integration with Exhaust System
・ DeNOx, FGD, EP     

Requirements
・ Pressure Losses, etc.

FGD

EP

DeNOx

Boiler

CO2

Steam Turbine

Generator

A
bs

or
be

r

St
rip

pe
r

Condenser

Steam Extractions

Carbon Capture System Stack

Compressor

Exhaust

boiler
Re-

Carbon Capture System

・ Energy Source of Re-boiler

・ Integrated arrangement with
Power Island Components

2000 2010 2020 2030Timeline

A-USC＋CCSPerformance
Improvement

(A – USC)

A-USC
(600/700C)
Validation (700/750℃)

Validation

Existing
SC / USC 

Technology

CCS Integration

Integration with Power System
・ Heat & Mass Balance
・ System Operation

Integration with Exhaust System
・ DeNOx, FGD, EP     

Requirements
・ Pressure Losses, etc.

FGD

EP

DeNOx

Boiler

CO2

Steam Turbine

Generator

A
bs

or
be

r

St
rip

pe
r

Condenser

Steam Extractions

Carbon Capture System Stack

Compressor

Exhaust

boiler
Re-

Carbon Capture System

・ Energy Source of Re-boiler

・ Integrated arrangement with
Power Island Components

2000 2010 2020 2030Timeline

A-USC＋CCSPerformance
Improvement

(A – USC)

A-USC
(600/700C)
Validation (700/750℃)

Validation

Existing
SC / USC 

Technology

CCS Integration
2000 2010 2020 2030Timeline 2000 2010 2020 2030Timeline

A-USC＋CCSA-USC
(600/700C)
Validation (700/750℃)

Validation

Existing
SC / USC 

Technology

CCS Integration

Performance
Improvement

(A – USC)

5 Copyright © 2011 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




