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center-body, both of axially variable cross section, in order to determine the fluid-
dynamic forces exerted on the center-body. Based on this theory, a first-
approximation solution as well as a more accurate solution are derived for the

unsteady incompressible fluid flow. The stability of the center-body is investigated,
in terms of the aerodynamic (or hydrodynamic) coefficients of damping, stiffness
and inertia (virtual mass), as determined by this theory. The influence of various
system parameters on stability is discussed.

1 Introduction

The dynamics and stability of flexible cylindrical pipes
conveying fluid have been studied very extensively, partly as a
means to solving real flow-induced vibration problems in
industrial installations, and partly because of the inherent
interest in the dynamical behavior of this class of fun-
damental problems in Applied Mechanics [1]. In the first set
of studies, a historical review of which may be found in
reference [2], the pipe was considered to be a tubular beam.
Later, the case of thin-walled pipes, considered to be thin
cylindrical shells, was also analyzed; a literature review in this
case is given in reference [3].

The dynamics of cylindrical bodies in axial flow has also
received considerable attention, e.g., [4-6], the impetus in this
case coming from the presence of such systems in nuclear
reactors and in aeronautical and underwater applications —
vide [7] for a review of this topic.

However, the study of dynamics of coaxial cylindrical
bodies, with flow in the annular space in between, has
received considerably less attention, despite the fact that such
geometries are common in many engineering systems (e.g., in
PWR and AGR nuclear reactors, in heat exchangers, certain
types of valves, and large jet pumps) and that they have been
shown to be particularly prone to a host of vibration-induced
problems [1]. Some of the few studies on this topic were
limited to cylindrical beams in cylindrical conduits, e.g., [8,
9], utilizing analytical tools not particularly suitable for very
narrow annuli (which are of particular interest here), and very
recently to coaxial cylindrical shells [3, 10]. The problem of a
nonuniform body of revolution in annular flow has been
given most attention in the United Kingdom, in conjunction
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with flow-induced vibration of the fuel stringers of AGR-type
nuclear reactors, experienced while refueling [11-15]. The
early work by Miller and Kennison [16, 17] and a recent
review by Mulcahy [18] also ought to be mentioned.

Hobson [14} considered the problem of a rigid, flexibly
mounted cylindrical structure with a rounded leading edge
(*‘nose’’) in a cylindrical conduit or a diffuser. Based on the
assumption of a very narrow annular clearance and neglecting
the radial variation of the fluid velocity, interesting solutions
for the fluid forces on the center-body were obtained, which
were found to be in good accord with experiment. This work
[14, 15] is of particular interest, because it attempts to solve a
similar type of problem as that addressed in the present
paper —although by a completely different approach and
method of solution.

The present paper, which is the first part of a larger
research program undertaken by the authors in this field, is
devoted to the study of flow-induced vibrations of a flexibly
mounted rigid body of revolution in a duct or nozzle, where
the annular clearance is small and where both center-body and
duct have specified axial variations of their cross sections.
Despite the assumption of a small annular clearance with
respect to the center-body radius, radial variations in the
unsteady annular flow are nevertheless taken into account.

In order to determine the generalized unsteady fluid-
dynamic (aerodynamic or hydrodynamic) forces, the present
analysis of the unsteady annular flow will deal with the case
of incompressible and inviscid fluids. A subsequent paper will
be devoted to the analysis of the effect of fluid viscosity on the
flow-induced vibrations of the center-body. In fact, a
preliminary investigation of the influence of viscosity [19]
indicates that it is not very important and that its effect on the
dynamics of the center-body is stabilizing. Hence, the analysis

presented here is a valid first approximation for the problem

at hand.
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Fig. 1

Geometry of the oscillating body of revolution inside the duct
of variable cross section

In the first part of the paper, the equations of unsteady
annular flow are considered and solved by a method based on
a local linearization scheme to determine the pressures and the
fluid-dynamic forces acting on the center-body. This method
of solution is applied to the usual case, where the length of the
oscillating center-body is larger than, or comparable with, the
mean annular radius; however, an extension of the method to
the case of smaller center-body length is also presented, in
Section 7.

With the fluid-dynamic forces acting on the body deter-
mined, the stability of the system is considered next, with the
aim of establishing the conditions under which fluid-elastic
instabilities are possible. The influence on flow-induced
vibration of some geometrical parameters is also investigated,
e.g., the effect of the shape of the annular passage (con-
vergent or divergent), the position of the point of support of
the body, and so on.

2 Problem Formulation

The system under consideration is shown in Fig. 1. It
consists of a rigid center-body of revolution, hinged at point
H and lying in a duct, so that it is subjected to an annular
flow, as shown. The center-body is considered to perform
oscillatory motion about the hinge-point, under the action of
motion-dependent fluid forces, and restoring and retarding
forces of a rotational spring and a dashpot (not shown). The
circular cross sections of both center-body and duct are
assumed to be axially variable, such that the annular clearance
has a specified axial variation over the length of the center-
body.

Two fixed cylindrical bodies are considered to be situated
upstream and downstream of the oscillating center-body, and
the corresponding annular clearance over these portions is
considered to remain constant.

The following notation will be used in formulating the
analytical model:

7* =length of oscillating center-body
/§ =length OH, derining the position
of the hinge, as shown in Fig. 1
a=mean radius of the annular
passage
x*,r*,6=cylindrical coordinate system
ri{x*)=a— h*(x*)=center-body radius at location x*
ry(x*)=a+h}(x*) =duct-wall radius at location x*
H*(x*)=h*(x*)+h}(x*)=overall annular clearance at
location x*

H§ =H*(0),H{ = H*(/*) =annular clearances upstream and
downstream of the oscillating
center-body, respectively

a(t) = angle of rotation of center-body
axis, in oscillatory motion about
hinge-point

&) =do/dt =angular velocity of center-body
about hinge-point )
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Q=circular frequency of center-
body oscillation
ej(x*,0) = (x* —I)a(f) =lateral displacement of center-
body axis

The starred dimensional quantities have been utilzied here,
so that their dimensionless counterparts, which are more
widely used, may be defined later in simpler form; e.g., x =
x*/a.

At the upstream end of the system, where the annular
clearance is constant, the fluid flow is assumed to be uniform
and steady, with velocity {/,. Furthermore, assuming in-
compressible fluid flow, the velocity potential in cylindrical
coordinates is

P?e  3?e 1 9 1 0249_0 )
ax*2 o ot ot a0t
subject to the boundary conditions
a® _ae:+[a¢] {6«31‘
ar* lr=ry ot Lax*lr=r Cox*
oh* 1 a® 1 de}
L[], e
ax* r* 88 dr=ry r* 06
P . P
2 =[] o =U,, @D
ar* lre=n, ox*dr=ryy dx*  Ox* lx*—-o

where e, *(x*, 6, ) represents the radial displacement of the
oscillating center-body surface,

eXox*,0,0) =ef(x*,) cos 0= {(x* —I§)a(t) cos § 3)

in which the oscillatory motion of the center-body may be
expressed as follows:

a(t) = ag exp (i) “

Introducing the dimensionless quantities
x=x*/a,r=r*/a, r=Uyt/a, w=0a/U,, 5
e, =eta,h=h*/a, h,=h},/a, Hx)=h(x)+h,(x), 6)

and separating the fluid flow into a steady axisymmetric
component (denoted with the subscript ‘‘s’’) and an unsteady
one (without subscript), so that

S(x*,r*0,0) = Upalds(x,r) + ¢(x,r,0,7)] O]
equation (1) becomes
2¢, ¢, 1 dd,
sS4z =0
ax*r o r or ®
r¢ ¢ 1d¢ 1 3%
— =t - — + = =0 9
ox* ot rar r* a¢* ©
subject to the boundary conditions
ds [a(xbs 3¢] oh
=— + — —, 10
or lr=1-n ox Oxdr=1-n 9x (10a)
39, [, 2] ohy 3¢ B
or lr=t+n, L oax axlr=1+n, dx  0x lx—-o ’
(10b)
LA AT,
or ir=1-h or ax dx dr=1-n 0x
(e Lo ’
r 86 dr=1-nr 99° (11a)
ﬁ . =0, ﬁ =0. (115)
3]’ r=l+h, ax X— — 00

Denoting by p,(x, r) and p(x, r, 0, 7) the perturbation
pressures corresponding to the axisymmetric steady fluid flow
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and the unsteady fluid motion, respectively, and applying the
Bernoulli-Lagrange equation, one obtains

Ps(x, )+ plx,r,0,7)= — Vsz%{Z % +(Vo,+ Vo) — 1} . (12)

Obviously, the generalized unsteady fluid-dynamic forces
acting on the oscillating center-body do not depend on the
perturbation pressure p,(x, r), because it is axially symmetric
and time-independent; hence, the axisymmetric steady flow
corresponding to the potential ¢,(x, r) will not be discussed in
the subsequent analysis.

3 Linearization Procedure

In order to obtain an analytical solution of the problem,
equations (10)-(12) have to be linearized, through the use of
the small disturbance assumption.

In this connection, it is noted that the usual procedure of
linearization with respect to the undisturbed fluid velocity U,
(or, in nondimensional form, with respect to U, = 1) is not
sufficiently accurate for the case of narrow annuli, because
the mean axial velocity U*(x*) at location x* could be sub-
stantially different from U, i.e.,

rdr*de.

(13)

For this reason, a procedure of local linearization will be

used, with respect to the local dimensionless mean axial flow

velocity, U(x) = U*(x*)/U,, which may be obtained by
applying the equation of continuity in integral form, so that

1 a+hy, 27
e ]
O = i T @at = k) da-ie Jo B

U(x) = Hy/ H(x) where Hy = H(0) = H*(0)/a. (14)
At the same time, defining the nondimensional variable
z={*—-a)ya=r-1, (15)

the assumption of a narrow annular passage (z << 1) is
introduced in the potential flow equations, (8) and (9).

Taking into consideration the form of boundary conditions
(11 a, b), it is convenient to introduce the reduced motion
potentials ¢(x, z) and ¢, (x, 2), defined by the relation

da . N
8%,2,6,0={ T b0+ abo2] cosh,  (16)

where

an

af71) = oy exp (fw7).

In this manner, the problem may be formulated by the
following linearized equations:

62 &j 62 ¢j a¢j

+ — 0, j=0,1, 18
ax? 0z* ~9,=0. J a8

subject to the boundary cond1t10ns

%I N (19)
0z lz=—h Hx) 32,' z=h,,
3, _ 39,
a_z z=-h =* 10, 0z z=h,, _0’ (20)

where!/ = I*/aand [, =1§/a.

The perturbation pressure equation, in linearized form,
now becomes
2

d o
wp(xzef){ X dna)+ [%(xz)

+ U(x) —] + (7)) U(x) —] cos 4. @1
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4 Equation of Motion of the Center-Body

The equation of motion of the oscillating center-body may
be written as

Jyéi+Ca+Ka=M, (22)

where J is the moment of inertia of the body about the hinge
axis, K and C are the mechanical spring stiffness and
damping; M represents the moment of pressure forces about
the hinge axis,

M= _03501!-0% (x—1I)pCx, —h,0,1S(x) cos fdx ds.  (23)
where

O 1-h( h(X) 1-h(x)
S0= [1+h’2(x)]”2{ x—ly " © )} [L+h"2()72

accounts for the local slope of the body surface; #(x) has been
defined in equation (6) and A’ (x) = dh/dx.
Introducing the dimensionless parameters

Ca
,k2= ,k= )
I 7 R

the foregoing equation of motion may be written in non-
dimensional form as

wpa’ Ka?

(29

Tg=

(1+U(I2) +(k1 +UCI1)“*“‘“+(k + 0qo)e(7) =0, 25)
where go and g; represent the dimensionless coefficients of
the fluid-dynamic stiffness and damping, respectively, and ¢,
is the nondimensional added or apparent (virtual) mass; more
specifically,

= —fl o= lo)S(x)U(x) - (x,

h)dx, (26a)

. a¢
4= —sg(x—lo>S<x){¢o(x, )+ U o G~ ), (260)

G2 = = §0(x—10)SC)$, (x, — h)dlx. (26¢)

As previously mentioned, these coefficients, which in fact
represent the generalized unsteady fluid-dynamic forces, in
nondimensional form and with inverted sign, do not depend
on the steady flow potential, ¢(x, r), because of the axial
symmetry of the flow passage. For this reason, in this
analysis, only the reduced motion potentials ¢¢(x,z) and
¢>1(x z), will be examined, wherein are included all unsteady
effects.

5 First-Approximation Solution

A further simplification of the 'problem in the case of
smooth axial variation of the narrow annular clearance may
be introduced, based on the slender body assumption. In this
case, the first term of equation (18) may be neglected, so that
it simplifies to

-
aajf +%‘Zi—¢j=o, Jj=0,1. 27
This clearly has a solution of the form
;(z;%) = A, (x) exp (B,2) + B;(x) exp (8,2), (28)
where
B =Y2(B-1), By =~ a(B+1),B=V5 (29)

The coefficients A; and B; are smooth functions of x and
may be determined from boundary conditions (19) and (20).
Thus, for example, in the case of a cylindrical center-body
and a variable cross-section duct, i.e., H(x) = h,(x), the
solutions for the reduced potentials ¢; and their axial
derivatives d¢;/dx on the oscillating center-body may be
expressed in the form
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bo(— h3x) = UX)G(H), (30)
%’ (—hix) = Ux)G' (H) + U’ ()G(H), (30b)
$1(=hx) = (x= 1) G(H), (31a)
% (—h;xX) = (x—10)G’ (H) + G(H), (31b),
G =- —P e,
exp (BH)~ 1
G (Hy=pr P [BH] 62)

[exp (BH) —1]*

Introducing these results into equations (26a-c), the
determination of the nondimensional fluid-dynamic coef-
ficients of stiffness, damping and virtual mass is reduced to
simple quadratures. Numerical examples of these solutions
will be presented in Section 8.

6 A More Accurate Method of Solution

It is expected that for higher frequency oscillations, the first
approximation solution developed in Section 5 is not suf-
ficiently accurate. This is because the virtual mass coefficient
and the coefficient of fluid-dynamic damping, which depend
on the reduced potential ¢,, cannot be accurately reproduced
if the slender body approximation is utilized, even for very
smooth or null axial variation of the annular clearance.

In this case, the complete form of partial differential
equation (18) must be considered. A solution of the following
form is substituted therein,

$;06,2)= Zklﬁk(x)zz«k(z), (33)
which yields the ordinary differential equations
SO =1k () =0, (34a)
@+ Fi@)~ (1= v})Fj () =05 (34D)
these admit the general solutions
S () = A exp (yxx) + By exp (—vxX), (35a)
Fiy () =aj, exp (B1x2) + bjx exp (— Bxy2), (35b)
where
Bie="2(Bx— 1), Bo = Vo (B + 1), B =5 — 4t (36)

Assuming imaginary values for the constants vy, (v = ick)
the expressions U(x) = Hy/H(x) and x—1/,, which appear in
boundary conditions (19) and (20), may be expanded in the
form of truncated Fourier expansions

H,

Ux)= —— = E Dy, coscpx+ E Eoy sin ¢cx, (37a)
Hx) & keN
Xx—ly= E Dy coscpx+ Z Ey sincgx, (37b)
KeN* keN
where
N={1,23,...,n,...},N*={0,1,2,...,n,...}. (38)

Introducing these expressions in (19) and (20), for example,
in the case of a cylindrical center-body and a variable cross-
section duct, i.e., H(x) = A,,(x), the solutions

b;(x,—h)= E D G (H) cos ¢px

keN*

+ E E;Gi(H)sin¢yx,
keN

(39)
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may be obtained, where
443, 1 2
Bi—1exp(BeH)—1 Br+1

G (H)= - , Be=5+4ct.

(40)

The determination of the nondimensional fluid-dynamic
coefficients of stiffness, damping and virtual mass has been
thus reduced again to simple quadratures.

A comparison between the solutions obtained with this
more accurate method and with the approximate method
developed earlier is presented in Section 8.

7 Extension of the Method for the Case of Short
Center-Bodies

The foregoing solutions have been derived on the assump-
tion that the length of the oscillating center-body is larger
than or comparable with the mean annular radius, and hence
that it is much greater than the width of the narrow annular
passage. In fact, this is the usual situation in the majority of
concrete applications involving narrow annular passages.
Under such conditions, small variations in the pressure
distribution at the two ends of the center-body (resulting from
differences in the upstream and downstream boundary
conditions of the unsteady fluid flow) have very little effect
on the fluid-dynamic coefficients of stiffness, damping and
virtual mass.

Nevertheless, the case where the length of the oscillating
body is smaller than its radius, and hence not very large with
respect to the narrow annular clearance, can also be treated by
the method of Section 6. Special precautions have to be taken
in this case, however, in order to obtain solutions satisfying
accurately all the boundary conditions.

The boundary conditions (19) and (20) on the oscillating
center-body have to be expressed in convenient truncated
expansions (with real or imaginary values for the constants
v¢) of the form

3 _ H,
3 leeon = H—(x) Hx)H(—-x)
= ) ( Doy exp (v4x) + Eor exp (— 1%}, (41)
keN*
3¢,
- = (x—1p)IX) I —x)
az z=—h
= ) Dy exp (ven) + Eyg exp (= 7)1, “#2)
KeN®
where JC(x) denotes the Heaviside generalized function
0 for X<O0,
JHX) = (44)
1 for X>0.

8 Stability of Flow-Induced Vibrations of the Center-
Body in a Variable Cross-Section Duct

The dynamics of the oscillating center-body is governed by
the equation of motion (25), where the nondimensional
coefficients of fluid-dynamic stiffness g,, damping q,, and
virtual mass ¢q,, as well as all the other parameters, have been
defined in Section 4.

All essential characteristics of vibration of the center-body
in the annular flow, e.g., the frequency, amplitude and
stability of the vibrations, depend critically on the fluid-
dynamic coupling terins (fluid-dynamic stiffness, damping
and virtual mass), as well as on the relative magnitude of these
terms vis-a-vis the mechanical stiffness and damping
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Fig. 2 Typical variation of the nondimensional coefficient of fluid-
dynamic damping, by the analysis of Section 6; Hy = 0.1

-5 !
-0.05 0] 0.05 0.10
HP
Fig. 3 Typical variation of the nondimensional coefficient of fluid-
dynamic stiffness, by the analysis of Section 6; Hy = 0.1

parameters. A very important role is played by the dimen-
sionless parameter o, defined by equation (24), and involving
the fluid density, the mean radius of the annular passage and
the moment of inertia of the oscillating center-body.

For the sake of simplicity —and without any loss of
generality —the case of vanishingly small mechanical stiffness
and damping coefficients (k; = ko =0) will be considered first.
In this case, amplified (unstable, in the linear sense) vibrations
will occur, provided that the fluid-dynamic stiffness coef-
ficient is positive and the corresponding damping coefficient
negative (i.e., gy > 0, g, < 0).

The case of negative fluid-dynamic stiffness is of course
also possible —which could lead to divergence, if logy! >
ko% —but will not be examined here in great detail, again for
simplicity, and because it is considered that, for a real system,
the condition k¢%2 + ogy > 0 is likely to be satisfied, in any
case.

Of course, the condition of an overall negative damping
must be satisfied if amplified vibrations are to materialize, so

Journal of Fluids Engineering
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Fig. 4 Nondimensional coefficient of fluid-dynamic damping (Hy =
0.1. H, = 0.1); comparison between: 1 Accurate solution (by the
analysis of Section 6); 2 First approximation solution based on local
linearization (by the analysis of Section 5); 3 Approximate solution
based on normal linearization (by an analysis similar to that of Section
5).
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Fig. 5 Influence of the wall curvature parameter H, on the non-
dimensional coefficient of aerodynamic damping (Hy = 0.1; Hp =
0.05)

that, generally, the condition k; + oq, < 0 must be satisfied.
It is noted that this condition is more restrictive than the one
specified in the foregoing for k&, = 0. Nevertheless, if the
damping characteristics of a system are known, so that k;
may be determined, the results to be presented may be used as
they stand, simply by linearly shifting the condition of am-
plified vibrations fromq, < 0tog; < —k /0.

There is a great variety of possible geometrical systems
which could be analyzed. However, to illustrate the effect of
some of the system parameters and to show the type of results
which can be obtained by means of the analytical models
developed here, calculations are confined to one particular
type of system: a cylindrical center-body, hinged at a variable
dimensionless distance /[, = [3/a (see Fig. 1), in a duct of
variable cross section; the resulting clearance of the annular
passage may be linear or parabolic, as defined by the
relationships

H@)=H,+H,x, H,=(H, — Hy)/l,
H(x)=H,+H,x+H_.x?,

“4)
(45)

" respectively.
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The variation of fluid-dynamic damping coefficient q,,
with /, is shown in Fig. 2, for four values of H,,, as defined by
equation (44). It is seen that in all cases, if /, is sufficiently
large, i.e., as the hinge-point is moved downstream, g,
eventually becomes negative, indicating the possibility of
amplified vibrations. It is of interest that for H, = 0, i.e., for
a cylindrical duct, if the hinge-point is downstream of the

mid-length of the center-body, approximately, amplified

vibrations are predicted to occur.

It is seen, furthermore, that a linearly divergent (diffuser-
" shaped) duct, corresponding to H, > 0, destabilizes the
system vis-a-vis a cylindrical duct — so that it is necessary to
place the hinge-point further upstream to ensure stability. The
opposite is true for a convergent duct shape, which has a
stabilizing influence on the system.

The dependence of the fluid-dynamic stiffness coefficient,
qo, on H,, is illustrated in Fig. 3 for three values of /;. It is
seen that for H, > 0, l.e., a diffuser-shaped duct, it is
possible to have a slightly negative g,, provided that the
hinge-point is located at the foremost end of the body (/y =
0); however, this does not correspond to an instability,
because for this set of parameters g; > 0. On the other hand,

for a convergent duct and /, = 1.0, g4 can be, strongly
negative in a region of ¢; < 0, indicating the possibility of
divergence.

A comparison between the two variants of the analytical
model, i.e., between the first-approximation (slender-body)
solution of Section 5 and the more accurate soluton of Section
6, is made in Fig. 4. These two solutions were obtained by the
method of local linearization, developed in Section 3; results,
based on the normal (as opposed to local) linearization
scheme, with respect to the undisturbed flow velocity Uy, are
also shown. It is important to note that significant differences
in the predicted g, arise, specifically if the inferior ‘‘normal
linearization”’ scheme were to be employed (curve 3), instead
of that based on local linearization; moreover, predictions of
instability, based on the former, are nonconservative.

Considering parabolic variations of annular width, as given
by equation (45), the results of Fig. 5 indicate that the effect
on ¢, is not very strong. Nevertheless, in the case of a
divergent annular passage, a concave shape, as viewed from
the annulus-side of the system, tends to destabilize the system,
as compared to a linear diffuser-shaped one; while the op-
posite is true for a convex shape.

At this point, it would be useful to present a concrete
example, so as to illustrate the utilization of the results of
Figs. 2-5 and to discuss stability in terms of the annular flow
velocity, U,. Consider, therefore, a cylindrical center-body of
radius ¢ = 0.05 m, in a divergent duct defined by H, = 0.10
and H, = 0.05. Consider further that the center-body is
supported at its midpoint ({; = 0.5), in such manner that its
natural frequency is w,=60 rad/s and the mechanical
damping factor {=C/Quw,Jy) = 0.005. Furthermore,
assuming that the fluid is water, let o, defined in (24), take on
the reasonable value of 0=0.2 (to which corresponds a certain
Jy for given a and p).

Now, from Fig. 3 it is seen that the fluid-dynamic stiffness
coefficient g, is positive (which precludes the possibility of
divergence), and from Fig. 2 it is found that the fluid-dynamic
damping coefficient is negative, g, = —0.79, indicating that
the system could be susceptible to amplified oscillation. The
instability threshold, defined by k&, + og, =0 in equation
(25), may be rewritten in dimensional terms as Uy = 2X
{w,a/(— q; o). Utilizing the numerical values given previously,
it is found that the system develops amplified oscillation for
U, = 0.19 m/s, which is a very small flow velocity indeed; of
course for [, > 0.5 the critical U, would be lower. On the
other hand, if the center-body were located in a convergent
duct (Hy = 0.10, H, = ~0.05), then g¢; > 0 for [, = 0.5,
indicating that the system would be unconditionally stable for
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all values of U, and {. In this case, increasing U, would
generate additional fluid-dynamic damping which will in-
crease the stability of the system.

9 Conclusions

An analytical theory for studying the unsteady potential
flow in an axially variable narrow annular passage has been
developed in the first part of this paper. Based on a new and
more accurate method of local linearization of the problem,
this theory has permitted to determine analytically, for the
first time, a first-approximation solution, as well as a more
accurate one.

To the best of the authors’ knowledge, this theory for the
unsteady annular flow is original and is presented for the first
time in this paper.

The stability of flow-induced vibrations of the center-body
has been studied with the aid of the fluid-dynamic forces
obtained by means of the foregoing analyses. It was found
that the most influential parameter on the stability of flow-
induced vibrations is the position of the center-body hinge.
Amplification of flow-induced vibrations occurs when the
hinge-point is situated toward the downstream end of the
center-body, behind a critical position at which the fluid-
dynamic damping coefficient vanishes.

The critical position of the hinge axis is substantially in-
fluenced by axial variations of the annular clearance. A
divergent annular passage will move upstream the critical
position of the hinge, having a destabilizing effect, while a
convergent annular passage will do the opposite, having a
stabilizing effect.

The curvature of the duct wall and the ratio of annular
clearance to mean radius of the center-body have smaller
effects on the stability of flow-induced vibrations.

Currently, work is under way to extend the theoretical
model in order to take into account the influence of viscosity
(vide some preliminary results in reference [19]) and to test the
theoretical results experimentally.
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