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1 Introduction and Overview

Market expectations of future return volatility play a crucial role in finance; so too does

our understanding of the process by which information is incorporated in security prices

through the trading process. This paper seeks to learn something about both of these issues

by investigating empirically the role of trading volume (a) in predicting the relative infor-

mativeness of volatility forecasts produced by ARCH models versus the volatility forecasts

derived from option prices, and (b) in improving volatility forecasts produced by ARCH and

option models and combinations of models.

Previous studies have reported that trading volume cannot forecast volatility directly.

In this paper we uncover a new result: that volume does indeed have predictive power for

forecasting volatility, with volume playing the role of a switching variable between states in

which option-implied volatility is more or less informative than ARCH for volatility forecast-

ing. Indeed, we find that the accuracy of volatility forecasts can be significantly improved

by accounting for the volume effect and by combining information from ARCH models and

option prices accordingly. This finding is made possible because of the novel way we incor-

porate trading volume into our functional forms and because, while previous papers have

added either trading volume or option-implied volatility (but not both) to ARCH models,

our study is the first we know of to consider all three factors together.

Traditional ARCH models – including GARCH, EGARCH, and so forth – forecast future

return volatility given only information on lagged return innovations.1 Previous papers that

have studied the relationship between return-based volatility forecasts and trading volume

have found that, while volume and returns are correlated contemporaneously, lagged volume

has no power to forecast future volatility once the effects of lagged return innovations have

been fully accounted for.2 In other words, results from previous research suggests that in an

1Bollerslev, Cho and Kroner [1992] review the traditional ARCH literature. Examples and references
to more recent work in areas such as seminonparametric ARCH modeling can be found in Donaldson and
Kamstra [1997] and Engle and Ng [1993].

2See Brooks [1998], Heimstra and Jones [1994], Lamoureux and Lastrapes [1994] and Richardson and
Smith [1994] for an analysis of lagged volume effects and returns. The relationship between contemporaneous
volume and returns is outside the scope of our paper and thus the contemporaneous volume literature is not
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ARCH model that already accounts for the impact of lagged return innovations on future

volatility, lagged volume will have no marginal power to forecast future volatility. We find

a different result on our paper. In particular, when we interact lagged volume with option-

implied volatility in an augmented ARCH model, we uncover a significant role for lagged

trading volume in forecasting future return volatility. We find this important volume effect,

where others have not, because we include implied volatility in our ARCH investigation

whereas previous volume/return studies have not.

Previous papers that have added option-implied volatility to ARCH have done so pri-

marily to investigate the efficiency of option markets, not to improve ARCH forecasts per

se. If option markets are efficient then option prices will contain all available information

concerning the expected future volatility of underlying prices – including any information

used by ARCH models – and thus volatility forecasts implied by option prices should en-

compass volatility forecasts from ARCH models. However, most studies to date have found

that option-implied volatility cannot encompass ARCH in one-day-ahead volatility fore-

casting and have thus concluded that either the option market is not efficient or that the

option-pricing models employed are misspecified, or are at least problematic for short-term

forecasting.3 We find that option-implied volatility can encompass a simple ARCH model at

one day and one month horizons, but when the effects of lagged trading volume and option-

implied volatility are incorporated in an augmented ARCH model, an implied volatility

forecast is encompassed by this broader time series augmented information set. Consider-

ing relative trading volume as a proxy for changes in the set of information available to

investors,4 our findings reveal an important switching role for trading volume between a

volatility forecast that reflects relatively stale information (the historical ARCH estimate)

cited here. However, references can be found the in the aforementioned articles and in Karpoff [1987].
3See, for example, Day and Lewis [1992] and Lamoureux and Lastrapes [1993]. Note that Christensen

and Prabhala [1998] and Fleming [1998] have found that option-implied volatility can outperform ARCH at
longer horizons (e.g., one-month-ahead forecasts in Christensen and Prabhala [1998]) once certain biases are
accounted for (as in Fleming [1998]). Day and Lewis [1993] argue that applied to the crude oil futures market
the options-implied volatility appears to subsume the information contained in other volatility forecasts, at
the near-term horizon, though their near-term is 32.5 trading days on average, not one day.

4We thank the referee for pointing out this interpretation of relative trading volume.
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and the option-implied forward-looking estimate. With trading volume low relative to the

recent past ARCH is weighted more heavily in an augmented forecasting model than options

for forecasting future stock market volatility and conversely, with volume high relative to

the previous recent past, option-implied volatility is weighted more heavily than ARCH for

forecasting future volatility.

The data and basic model specifications we employ in our investigation are presented

in Section 2 below. In Section 3 we estimate an ARCH model of volatility and combine

the resulting forecast with both an option-implied volatility forecast and lagged trading

volume in order to observe the importance of each input. Section 4 presents a full Maximum

Likelihood modeling of volatility using volume, implied volatility from options prices, and

the history of returns, which we term augmented ARCH. In this section we detail our main

estimation results. Section 5 has us exploring out-of-sample forecasting results, and Section

6 concludes.

2 Basic Models and Data

Data employed in this study range over the period from 1988 to 2003, analyzed at the

daily and monthly frequency, with the stock returns coming from the S&P 100 index and

option-implied volatilities coming from the Chicago Board of Exchange’s VIX index.5 Model

selection is performed on in-sample data from 1988:1-1995:9, and data from 1995:10 to 2003:8

is our holdout sample for out-of-sample forecast evaluation,6 roughly a half and half split of

the data available to us.

Define stock returns, Rt, as the arithmetic return based on the daily closing value of the

S&P 100 Stock Price Index, multiplied by 100. E(Rt|It−1) is then the conditional forecast

of this return such that Rt = E(Rt|It−1) + εt, where It−1 is the date t − 1 conditioning

information set on which date t forecasts are based and the additive forecast error, εt, has

5The CBOE recently redefined their VIX index. We use the original series based on S&P 100 index prices.
6In the holdout sample we measure realized volatility for volatility forecast evaluation as the squared

residual from a model of the mean and the variance as constant, where the constants are measured with data
up to but not including the forecast period. There are virtually no differences to using the squared residual
from any other model we will discuss below.
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zero mean and conditional variance E(ε2
t |It−1) = σ2

t . A variety of specification tests on the

daily S&P 100 data post-1987 (which is the time period we study due to the fact that index

option markets were very thin prior to 1988) reveals that expected returns are appropriately

modeled with a constant, such that Rt = µ + εt. As a baseline in our own investigations

below we therefore employ the constant expected returns specification.7 The simplest model

we consider, the “Naive” model, has a constant mean and constant variance, forecasting

variance as the average variance from the in-sample period.

A well-documented feature of stock market data is that the return innovations, εt, appear

to be drawn from a time-dependent heteroskedastic distribution. An important goal of the

conditional volatility literature is to capture this feature of the data with the appropriate

model for the conditional variance process so as to produce a forecasted variance, σ̂2
t , along

with a return forecast error, ε̂t, such that the standardized residuals, ε̂t/σ̂t, are homoskedastic

and independent.

2.1 ARCH

In the ARCH family of models the conditioning information set traditionally used to make

volatility forecasts contains only the history of ε. Lagged ε2 are included to capture the

feature of volatility clustering; i.e., future volatility is related to lagged squared return in-

novations. Levels of lagged ε are also sometimes employed to capture the perception that

volatility may be related in an asymmetric way to lagged return innovations, with sharp

drops in stock prices causing more future volatility than upturns cause.8 One specification

that nests the popular GARCH model of Bollerslev [1986] and allows asymmetric responses

to lagged return shocks is the asymmetric Sign-GARCH model of Glosten, Jagannathan and

Runkle [1993] (GJR model), shown in Equations (1)-(3) below.

7In the interest of robustness we investigated a variety of alternative specifications for the expected
return, including specifications in which expected returns are modeled as a simple AR(1) process, or as
a more complicated seasonal process with dummy variables for January and Monday, plus AR terms as
necessary to completely whiten the in-sample data. Our volatility results did not change appreciably. We
therefore report the simple constant specification in the analysis below.

8See Engle and Ng [1993] for further discussion of asymmetric ARCH effects.
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Rt = µ + εt ; εt ∼ (0, h2
t ) (1)

h2
t = α + βh2

t−1 + γε2
t−1 + δDt−1ε

2
t−1 (2)

Dt−1 =

{
1 if εt−1 < 0
0 otherwise

(3)

A model with p lags of ht, q lags of ε2
t and r lags of Dtε

2
t is labeled GJR(p,q,r). Such a

model excluding the asymmetric volatility term Dtε
2
t is labeled GARCH(p,q). For simplicity,

models in the ARCH family will be referred to as simply “ARCH” when there is no ambiguity.

For this study, the ARCH model used is the lowest order model which removed evidence

of residual autocorrelation, ARCH and sign-ARCH effects9 and with our data and time

period, the a very simple GARCH(1,1) was sufficient and is also ranked best by the Schwarz

information criteria.10 The GARCH(1,1) model uses one lag each of h2 and ε2
t in Equation

(2) below. See Bollerslev [1986] for details on the GARCH model. The models we ranked and

from which choose the GARCH(1,1) from are all of the form in Equations (1)-(3), with as

many as two lags of h2, ε2 and the asymmetric volatility term. See Appendix 1 for summary

statistics and parameter estimates of the various models looked at.

Parameter estimates for the GARCH(1,1) model, estimated with Maximum Likelihood

assuming normality,11 are reported in Section 4 below, along with comparisons to other

9The sign-ARCH test probes for asymmetric volatility increases from negative shocks to the returns
process. See Engle and Ng [1993] for details on the sign-ARCH tests.

10The Schwarz Criterion is widely used in the literature (e.g., Nelson [1991] uses Schwarz to select EGARCH
models). The Schwarz Criterion has been shown to provide consistent estimation of the order of linear ARMA
models by Hannan [1980]. As noted by Nelson [1991], the asymptotic properties of this criterion are unknown
in the context of selecting ARCH models, hence we might also rely on the principle of parsimony among
models that do not fail common specification tests to pick the favored model. This would lead us again to
the GARCH(1,1) model.

11In the context of returns, which are arguably highly non-normal even after modeling their first two
moments, this estimation should be viewed as quasi-maximum likelihood. We present standard errors based
on Bollerslev and Wooldridge [1992], which are robust to non-normality.
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models. Results from various in-sample and out-of-sample diagnostic tests and performance

evaluations are also presented below in Sections 4 and 5.

2.2 Option-Implied Volatility

As our measure of the options-implied volatility we use the Chicago Board of Exchange

(CBOE) VIX index. The VIX is a popular measure of stock market volatility, based on

the classic Black-Scholes [1973] option-pricing formula using options prices on the S&P 100.

This volatility index is produced using eight S&P 100 index puts and calls, and allows for

market microstructure frictions such as bid-ask spreads, the American features of the option

contracts, and discrete cash dividends, measuring the implied volatility on a synthetic at-the-

money one month maturity option contract. The volatility estimate reported in the VIX is

an annualized standard deviation and so must be rescaled for our application.12 See Whaley

[2000] for a very detailed look at the construction of the VIX index.

There is a maturity mismatch when using the VIX for volatility forecasting over horizons

less than a month, given the VIX is specifically designed to forecast volatility over a 22

business day period (one calendar month, approximately). Although one can interpret the

VIX volatility forecast as the average volatility over the coming month and hence a measure

of the volatility over the coming day, at least two outcomes are likely. One, the VIX can be

expected to be less efficient at forecasting volatility one day rather than one month ahead.

Two, forecast errors from the VIX will be correlated over the month-long period that the VIX

forecasts overlap. As a result we will look at the performance of our volatility forecasting

techniques over both a daily and monthly period, and when comparing the VIX to other

forecasts of volatility on daily data we will employ econometric techniques designed to be

robust to a 22 day moving average forecast error process.

12While the derivatives and options literature typically makes use of the term “volatility” to mean standard
deviation we will continue to use volatility to mean variance.
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2.3 Volume

The final variable we consider is trading volume at the NYSE. Since our objective is to

forecast volatility, we are interested in lagged volume; i.e., V olumet−1, or some function of

V olumet−1, as an element of the It−1 forecasting information set. Since one purpose of our

investigation is to determine whether ARCH and options behave differently on high versus

low volume days, we first consider the high/low volume indicator variable Vt−1, where:

Vt−1 =

{
1 if V olumet−1 ≥ 1

(n−1)

∑n
i=2 V olumet−i

0 otherwise
(4)

We set n = 5 so that the variable Vt−1 is “one” if lagged volume is above its one-week lagged

moving average (in the case of daily data), and is “zero” otherwise.13 As shall be discussed

below, this simple discrete indicator variable works as well as, and in many cases better

than, continuous alternatives. We shall form this volume variable relative to the past week

of volume for the daily forecasting exercises, and relative to the past 5 months of data for

the monthly forecasting exercises below.

3 Combining Forecasts

3.1 The Combining Model and Results

Perhaps the most obvious way to isolate and compare ARCH, option and volume effects is

to estimate a simple linear combination of the ARCH forecasts and option-implied forecasts,

along with our high/low volume switching variable. We therefore first use Equations (1)-(3)

and returns information from period t−1 to calculate an ARCH volatility forecast for period

t, and denote this conditional volatility forecast as ĥ2
t , where the “hat” denotes “forecast

conditional on time t − 1 information”. We next use the VIX implied volatility estimate

(formed in period t − 1), noted Ŝ2
t . We then calculate our volume variable, Vt−1 from

13We also investigated a variety of other lag lengths, including a one-month lagged moving average, instead
of one week, for daily data. Results from the estimations and tests discussed below were not affected
qualitatively.
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Equation (4). Finally, we combine these three variables in a joint mean-variance Maximum

Likelihood regression to obtain our combined volatility forecast, σ̂2
t .

σ2
t = α0 + α1Vt−1 + φARCH,0ĥ

2
t−1 + φARCH,1Vt−1σ

2
t−1

+φOption,0Ŝ
2
t−1 + φOption,1Vt−1Ŝ

2
t−1 (5)

Vt−1 =

{
1 if V olumet−1 ≥ 1

(n−1)

∑n
i=2 V olumet−i

0 otherwise
(6)

Parameter estimates from the combining regression14 Equation (5) are reported in Table

1 below (with 2-sided t-tests in parentheses and Bollerslev-Wooldridge robust standard errors

in brackets). The results in Table 1 are for the daily data we have, January 1988 to September

1995, for a total of 1959 observations.

——————————————————————————————————–

Table 1
Parameter Estimates from the Combining Regression

{Robust t-tests in braces}
(Bollerslev-Wooldridge robust standard errors in parenthesis)

σ̂2
t = 0.009 – 0.034 Vt−1 + 0.364 ĥ2

t – 0.74Vt−1ĥ
2
t + 0.309Ŝ2

t + 0.406Vt−1Ŝ
2
t

{.100} {0.228} {1.54} {-2.21∗∗} {2.38∗∗} {1.89∗}
(0.016) (0.147) (0.237) (0.335) (0.13) (0.215)

* Significant at the 10% level, two-sided test.
** Significant at the 5% level, two-sided test.
*** Significant at the 1% level, two-sided test.

σ̂2
t = stock market return volatility on period t

Vt−1 = indicator variable - trading volume higher than average over past week

ĥ2
t = forecasted volatility from an ARCH model, conditional on t− 1 information

Ŝ2
t = forecasted volatility from option prices, conditional on t− 1 information

14Forecast combining has a long tradition in the forecasting literature. For a general literature review see
Clemens [1989]. For a more recent example see Donaldson and Kamstra [1996].
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Log Likelihood = -2269.69, BIC= 4600.026. The jointly estimated mean parameter from
Equation (1) is µ = 0.043, with standard error of 0.016. There is little or no evidence of
autocorrelation, ARCH or Sign-ARCH. The R2 is 0 as the mean is modeled with only a
constant term. A more parsimonious version of this model is presented in Section 4, and
more detailed diagnostics are presented there.
——————————————————————————————————–

From the theoretical studies on trading volume cited in the introduction to this paper

and discussed more fully below (e.g., Admati and Pfleiderer [1988], He and Wang [1995],

etc.), we would expect market prices may be more “informative” during high volume periods

and thus would expect option-implied volatility, which is based on market prices, to forecast

volatility more accurately, while ARCH models based on a long history of lagged prices would

not necessarily prove helpful in forecasting. The parameter estimates we find are consistent

with this expectation; when volume is light relative to the past week the weight assigned

to the ARCH forecast and the options implied forecast are roughly equal, with a coefficient

of 0.0309 on the option-implied term and 0.364 on the ARCH term (although the ARCH

coefficient is not quite significant at the 10% level) and when volume is heavy relative to the

past week the weight on the option-implied forecast more than doubles to 0.715 (the sum

of the coefficients on Ŝ2
t and Vt−1Ŝ

2
t ) and the weight on the ARCH forecast now becomes

negative, -0.376 (the sum of the coefficients on ĥ2
t and Vt−1ĥ

2
t ).

15

We conducted several tests to check the robustness of this result. First, we investigated

different definitions of volume (e.g., Equation (4) based on a one-month lag instead of a

one-week lag), different data series of option-implied volatility and returns (based on the

S&P 500) and different definitions of ARCH and the mean equation (e.g., different models,

different lag lengths, etc.). The resulting regression coefficients changed somewhat from spec-

ification to specification, but the basic finding remained: option-implied volatility dominates

ARCH in high volume states and ARCH matches or dominates option-implied volatility in

low volume states. Second, we separated our data into various subsamples and re-ran the

15Note that there is no restriction that the coefficients on ARCH and options sum to unity in our combining
regression and thus the regression intercepts can be nonzero, which is the case above. See Clemens [1989]
for a discussion of the pros and cons of restricting the intercept in a combining regression.
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regression. Again, coefficients changed somewhat from subperiod to subperiod, but the key

result was qualitatively robust. Third, instead of using the variance of the residual from

Equation (1) as the dependent variable in the combining regression, we tried defining the

dependent variable as option-implied volatility from day t. (Thus, we used ARCH, volume

and option-implied volatility from day t − 1 to forecast option-implied volatility from day

t.) Here again we found our familiar result: option-implied volatility is a better forecaster of

future volatility relative to ARCH when volume is high, no matter how the term “volatility”

is defined. Regardless of the specification for volatility, this core result was robust. We

also considered conducting various option-based tests on our volatility forecasts, including

tests for pricing/hedging effectiveness, but did not do so because pricing/hedging effective-

ness testing cannot be legitimately undertaken on the volume-ARCH-option combinations

we study given the menu of option pricing models currently in existence.16

3.2 Discussion

As stated in the introduction to our paper, we are not attempting to test market efficiency

in our study. It is, however, interesting to note that on days with high volume relative to the

past week17, option-implied volatility dominates ARCH and thus that, using the yardstick

suggested by previous authors, the market may indeed be efficient when enough information

is flowing into the market (assuming volume is a good proxy for information flow, as is

frequently assumed – see for instance Admati and Pfleiderer [1988]). The failure of option-

implied volatility to dominate ARCH on low relative volume days might suggest that, if

16To test the pricing/hedging effectiveness of combining ARCH and volume effects in an option pricing
framework, one would first need to build an option-pricing model that explicitly allows for both volume and
ARCH effects, and then test the pricing/hedging effectiveness of that volume-ARCH-option pricing model
relative to option pricing models that do not contain volume and/or ARCH effects (for a similar approach
to testing pricing/hedging effectiveness of various competing models see Bakshi, Cao and Chen [1997]). In
particular, it would not be legitimate to simply plug volatility forecasts from various ARCH-volume models
into the Black-Scholes Model (or indeed into any other currently available option pricing model) and observe
its resulting pricing/hedging performance. This is because no option-pricing model we know of permits
volume effects in the model and thus the option-pricing model, volatility forecasting procedure and test
procedure would be inconsistent with each other. While the mechanical exercise is of course feasible, the
resulting performance, good or bad, would vary unpredictably with new data since there is no way to reliably
establish the properties of such an internally inconsistent methodology.

17These are days we speculate exhibit important changes in the information set available to investors.
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the market is indeed somewhat inefficient, it may only be so when there is comparatively

little information flowing. Alternatively, our results could be interpreted to reveal that the

Black-Scholes model is misspecified in some way that is most clearly seen on low volume

days and that the market is always efficient.

There appears to be at least two possible (not necessarily mutually exclusive) expla-

nations for our finding that option-implied volatility provides a better volatility forecast

relative to ARCH following high volume days: (a) the informativeness of the ARCH volatil-

ity forecast declines in high volume states, and/or (b) the informativeness of option-implied

volatility increases in high volume states.

We begin by investigating whether there is any change in average volatility following

high versus low volume days since this could potentially lead ARCH to under-forecast future

volatility following heavy volume days and thus help to explain why ARCH does worse

relative to options following high volume days. To examine this possibility we compared

average squared errors from Equation (1) and average volatility forecasts from our ARCH

and option-implied models on day t when volume was high versus low on day t − 1. We

found18 that when volume was high on day t − 1 the average day t squared error is 0.724

and is 0.721 when volume was low on day t − 1, and that when volume was high (relative

to the past week) on day t− 1 the average day t deviation between the ARCH and option-

implied forecasts shrinks compared to the deviation following relatively low volume periods.

In other words, squared pricing errors are almost identical following high and low volume

days and the ARCH model matches on average the option-implied volatility better on days

following high volume. We see the close match of average squared pricing errors on high and

low volume days in the insignificant intercepts in the combining regression in Table 1. This

suggests that the ARCH versus options effect is not coming from average volatility levels and

thus that any explanation of our results is more likely to rest on intertemporal correlations

between forecasted and realized volatility.

To investigate correlation effects we computed the simple correlation between realized

18This analysis was conduced on our in-sample data, 1988 to September 1995.
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volatility at time t, as measured by time t’s squared return innovation, and the ARCH

(option-implied) volatility forecast at time t − 1.19 This correlation equals 24.8% (26.0%)

when volume is low on day t− 1 and is 15.8% (23.1%) when volume on day t− 1 is high. On

the full sample, January 1988 to August 2003, we see a similar pattern, with the correlation

between realized volatility at time t and the ARCH (option-implied) volatility forecast at

time t − 1 equaling 33.4% (34.5%) when volume is low on day t − 1 and 26.8% (35.4%)

when volume on day t − 1 is high. In other words, ARCH volatility works best following a

low volume market, and option-implied volatility is roughly as good following high or low

volume periods (relative to recent volume levels). It therefore seems likely that the ARCH

versus options effect is at least partially driven by ARCH doing worse following high volume

days than low volume days and option-implied volatility doing as well on either high or low

volume days. The conditional analysis and formal tests that follow will suggest further that

the benefit derived from the time series information embedded in ARCH and volume come

mainly from improving forecasts following low volume states, with the weight on time series

information flipping to 0 or negative values following high volume periods.

4 Augmented ARCH

Forecast combining was appropriate above because our purpose was to reveal starkly the basic

ARCH-volume-option relationship. Forecast combining is also a useful tool for situations in

which the econometrician possesses the forecasts produced by various models but not the

information sets used to produce the forecasts.20 However, we do possess the information

set on which at least the ARCH forecasts are based and thus, to produce optimal volatility

forecasts, we should ideally add option and volume information to the ARCH model directly

and estimate an augmented ARCH mega-model. We therefore investigate augmented ARCH

models in this section.

19Again, this analysis was conduced on our in-sample data, 1988 to September 1995.
20See Clemens [1989].
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4.1 The Model

The augmented-ARCH model we employ is given below, in which Rt is the daily arithmetic

stock return (multiplied by 100) and S2
t is option-implied return variance.

Rt = µ + εt ; εt ∼ (0, σ2
t ) (7)

σ2
t = α0 + α1Vt−1 + β0σ

2
t−1 + β1Vt−1σ

2
t−1 + γε2

t−1 + φOption,0S
2
t−1 + φOption,1Vt−1S

2
t−1 (8)

Vt−1 =

{
1 if V olumet−1 ≥ 1

(n−1)

∑n
i=2 V olumet−i

0 otherwise
(9)

Equations (7)-(9) are estimated jointly under Maximum Likelihood with n = 5, as are

a number of interesting restricted and extended versions of (7)-(9). Results are reported

below.

To better understand the effects of adding lagged volume and implied volatilities to

ARCH, we investigated many possible combinations and permutations within our model,

including: each variable alone, each possible combination, variables interacting with each

other, and so forth. We also expanded our model to investigate a variety of different func-

tional forms for the conditional volatility, including variables – and groups of variables –

added and interacted nonlinearly. Table 2 presents daily data in-sample estimation results

for a small collection of models which revealed the most interesting information concerning

the effects of volume and implied volatility, for daily data January 1988 to September 1995.

Summary statistics on daily and monthly data for these most interesting models follow in

Table 3. In all cases our core result – that options provide better forecasts relative to ARCH

on high volume days than on low volume days – remains qualitatively robust.
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4.2 Parameter Estimates

Panel A of Table 2 below reports parameter estimates (with Bollerslev-Wooldridge robust

standard errors in parentheses) for the most interesting specifications contained within Equa-

tion (5) and Equations (7)-(9). Panel B reports common diagnostics for each model in

question. These diagnostics include: the model log likelihood, the p-value from a test for

residual autocorrelation (Wald AR),21 the p-value from a traditional Ljung-Box [1978] test

for symmetric ARCH at 24 lags, and the p-values from an Engle-Ng [1993] Sign Bias Test,

Negative Sign Bias Test, Positive Sign Bias Test and Joint Sign Bias Test – all at 5 lags –

for the presence of asymmetric ARCH effects. P-values below Z% therefore reject, with Z%

confidence, the null hypothesis that there is no AR/ARCH effect in favor of the alternative

hypothesis that the model in question has uncaptured AR/ARCH. The model R2 is 0, as

the mean equation includes only an intercept term, and so this statistic is not reported.

We begin our analysis of Table 2 by considering the results from the basic GARCH(1,1)

specification, as reported in Column 3 (labeled “ARCH”). Note from Panel A Column 3 that

all the parameter estimates from the ARCH model are of the expected sign and magnitude

and, from Panel B, that the model passes all standard specification tests at conventional

significance levels (e.g., there are no p-values below 0.050 in Panel B, Column 2). Note in

particular from Panel A that the parameter on lagged conditional volatility, β0, is close to

unity, which reveals the highly persistent nature of stock return volatility.

Column 1 (“Naive”) of Table 2 reports results from a constant mean and constant variance

model, forecasting next period variance as the average variance from the in-sample period.

This model displays gross evidence of misspecification with very strong residual ARCH and

Sign-ARCH effects, though no evidence of autocorrelation.

Column 2 (“Options Only”) of Table 2 reports results from option-implied volatility alone;

i.e., results from the Equations (7)-(9) estimated with all parameters in Equations (7)-(8)

set to zero except for the intercepts and φOption,0. The interesting results from Column 2

21This test is a χ2 Wald test on 5 lags of the residual in the mean equation.
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come from Panel B. Note in particular that the log likelihood from option-implied volatility

alone exceeds the log likelihood from ARCH in Column 3. Also note from Panel B that

option-implied volatility passes all of the various ARCH tests at the 5% significance level.

Table 2
Estimation Results and Diagnostics for

Volatility Models based on Equations (5), (7)-(9) and Daily Data

Panel A: Parameter Estimates
(Robust Standard Error)

Column → 1 2 3 4 5
Parameter Naive Options ARCH Combining Full MLE
Name ↓ Only Model Model
µ 0.047∗∗ 0.042∗∗ 0.047∗∗∗ 0.043∗∗∗ 0.045∗∗∗

( 0.019) ( 0.016) ( 0.016) ( 0.016) ( 0.016)
α0 0.723∗∗∗ 0.010 0.002 0.019 0.032∗∗∗

( 0.049) ( 0.050) ( 0.001) ( 0.053) ( 0.010)
β0 0.980∗∗∗ 0.842∗∗∗

( 0.008) ( 0.114)
β1 -1.31∗∗∗

( 0.336)
γ 0.016∗∗ -.016

( 0.007) ( 0.014)
φOption,0 0.519∗∗∗ 0.307∗∗ 0.049

( 0.059) ( 0.130) ( 0.055)
φOption,1 0.411∗ 0.709∗∗∗

( 0.212) ( 0.184)
φARCH,0 0.350

( 0.222)
φARCH,1 -.706∗∗

( 0.330)
Panel B: Diagnostics

Log Likelihood -2461.41 -2274.27 -2311.62 -2269.75 -2269.71
BIC 4945.565 4578.857 4661.135 4592.553 4600.070
Wald AR Test 0.119 0.133 0.124 0.095 0.071
LM ARCH Test 0.000 0.965 0.980 0.968 0.965
Sign Test 0.529 0.609 0.521 0.639 0.639
Neg. Sign Test 0.000 0.851 0.446 0.792 0.801
Pos. Sign Test 0.000 0.063 0.059 0.042 0.100
Joint Sign Test 0.000 0.612 0.224 0.485 0.555

* Significant at the 10% level, two-sided test.
** Significant at the 5% level, two-sided test.
*** Significant at the 1% level, two-sided test.
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Column 4 (“Combining Model”) of Table 2 reports results from the combining regression

model of Equation (5) constraining the volatility intercept dummy variable Vt−1 to have a

coefficient of 0. This model also removes most evidence of Sign-ARCH effects and looks

very similar to the combining model including the intercept volume dummy variable. The

log likelihood is, of course, improved relative to either the ARCH or option-implied model

alone, although the BIC criteria favors the simple option-implied volatility model over the

more highly parameterized combining model.

Column 5 (“Full MLE”) of Table 2 reports results from adding option-implied volatility

and our high/low volume indicator variable to the standard ARCH model, a representative

but parsimonious model of the set of models that could be constructed from interacting the

volume variable with the various ARCH variables and the option-implied volatility variable.

Unreported results reveal that, either alone or when added to a standard ARCH model,

lagged volume has no power to predict volatility. From this one might be tempted to conclude,

as previous researchers have concluded, that lagged volume has no power to forecast future

volatility once the effects of lagged return innovations have been accounted for. However,

such a conclusion would be premature. It would be more accurate to argue that, while

volume cannot by itself forecast volatility, it does play an important regime-switching role,

interacting with other variables in the model as we have already seen. Here we see that, on

high volume days, the weight on option-implied volatility increases and the weight on the

lagged conditional variance decreases (i.e., β1 < 0 and φOption,1 > 0). In other words, the

“Full MLE” model from Table 2 confirms our findings from the simple combining exercise

we reported in Table 1. The results from this model are, however, even more dramatic

than those from the simple combining exercise. The weight on the option-implied variable

is effectively 0 in the low volume state, equal to 0.049 and statistically insignificant, and the

weight on the lagged conditional variance flips to nearly -0.5 in the high volume (relative to

the last weeks’ average volume). Compared to the Combining Model reported in Table 2,

however, the log likelihood and BIC give little reason to prefer the Full MLE model over the

Combining Model on daily data. As will be presented, out-of-sample forecast performance
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confirms this for daily data but shows advantage to the Full MLE model for monthly forecast

horizons.

Results for the daily data model estimations for the full sample, 1988 to 2003, as well as

for monthly data, 1988-1995 and the full sample, can be found in Appendix 2. These results

are qualitatively identical to the results discussed above. An outstanding difference is that

residual Sign-ARCH effects for the daily data full sample are not expunged by any of the

models, though standard ARCH and autocorrelation effects are not statistically significant

for these models and data. Also, the full sample daily results are not as statistically significant

and coefficient estimates of interest are not as large in magnitude as for the subsample 1988-

1995. In contrast, the monthly results are quite strong both in and out of sample, and

change very little as the sample is extended to 2003 from 1995. Given that the option-

implied volatility estimate is calibrated to make a one month volatility forecast, not a one

day forecast, it is perhaps not surprising that the one-month horizon results are more stable.

Related issues will be explored with out-of-sample forecasting experiments, reported further

below.

Finally, we investigated a number of nonlinear extensions to Equations (7)-(9), includ-

ing models based on the Artificial Neural Network specifications. Interestingly, results from

various (unreported) tests revealed that adding lagged volume and lagged option volatility

to ARCH models removes the need to explicitly model nonlinear effects in lagged return

innovations. In other words, volume, and especially options, seem to account for the non-

linear effects otherwise omitted from standard ARCH models. This suggests that ARCH

modelers may benefit at least as much from expanding the traditional ARCH information

set to include variables such as option-implied volatility and volume as from building ever

more complex nonlinear models based only on lagged return innovations.
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4.3 Summary Statistics

Tables 3.1 and 3.2 presents some summary statistics on all of Table 2’s models, at the daily

and monthly data frequencies.22 The first row of statistics in Tables 3.1 and 3.2, marked

“Raw Data”, reports statistics for the S&P 100 returns (recall that returns are arithmetic

and multiplied by 100). The row marked “ARCH” is for the basic GARCH(1,1) model in

Equations (1)-(3). “Option” signifies variance defined as lagged option-implied volatility23;

i.e., Equations (7)-(9) with all parameters zero except µ, α0 and φOption,0. The “Combining”

model is a modified version of the model presented in Section 3 of this paper, in which the

volume dummy variable Vt−1 is omitted, as in Column 4 of Table 2. The last row of Table 3

reports results from the “Full MLE”, which is the maximum likelihood combination of ARCH,

volume and options obtained by estimating Equations (7)-(9) including interaction terms

between volume and the option-implied volatility, and volume and the lagged conditional

variance, as in Column 5 of Table 2 above.24

TABLE 3.1
Summary Statistics

Daily Data, January 1, 1988 to September 29, 1995

Method Variance Forecasts Standardized Returns
Mean Std Skew Kurtosis RMSE Std Skew Kurtosis

Raw Data 0.723 2.161 13.660 275.757 2.991 1.000 -0.499 6.963
ARCH 0.723 0.456 1.855 4.130 2.725 1.001 -0.573 5.397
Option 0.715 0.510 2.396 8.092 2.503 1.000 -0.495 4.278
Combining 0.712 0.512 2.615 11.006 2.464 1.000 -0.490 4.084
Full MLE 0.707 0.507 2.774 11.709 2.470 1.000 -0.470 4.113

22The column reporting kurtosis presents the excess kurtosis, that is, the kurtosis in excess of 3. Were the
data normally distributed the excess kurtosis would be 0.

23Suitably rescaled for the forecast horizon.
24In-sample, the Naive model yields a constant variance forecast and standardized returns equal to the

raw data, and so are not reported.
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TABLE 3.2
Summary Statistics

Monthly Data, January 1988 to September 1995

Method Variance Forecasts Standardized Returns
Mean Std Skew Kurtosis RMSE Std Skew Kurtosis

Raw Data 12.353 20.892 2.637 6.764 1.691 1.000 -0.051 0.944
ARCH 12.276 5.479 0.687 -0.340 1.583 1.007 -0.293 0.566
Option 13.468 11.181 3.012 12.220 1.514 1.005 -0.245 0.364
Combining 13.117 10.041 2.459 7.507 1.448 1.005 -0.157 0.151
Full MLE 12.931 10.810 2.388 7.165 1.260 1.005 0.027 -0.382

Looking first at the variance (squared error) forecasts, all the forecasts, daily and monthly,

share some characteristics. Each has a mean close to the average squared error – the raw

data – (the raw option-implied volatility is biased but our estimate corrects this bias for

the most part by estimating an intercept and slope term, α0 and φOption,0). All models

produce forecasts that are, naturally, less volatile than the actual squared error – the raw

data. Similarly, the forecasts are generally less skewed and kurtotic than the raw data. The

root mean squared error (RMSE column) of each forecast method is a goodness-of-fit metric

calculated by standardizing the return innovation with its forecasted standard deviation,

squaring this, subtracting one, squaring the result, summing over the sample, and taking

the square root. We would expect a more highly parameterized model would have a lower

RMSE, at least in-sample, and for the most part this is true. For the Raw Data raw, the

RMSE is calculated by taking the return, subtracting its’ sample mean value, dividing by

the sample standard deviation, squaring this, subtracting one, squaring the result, summing

over the sample, and taking the square root.

Of particular interest in Tables 3.1 and 3.2 are results from the columns on Standardized

Returns; i.e., ε̂t/σ̂t. A desirable model is one that produces standardized returns with less

(excess) kurtosis than the raw data. By this criterion the models with ARCH, volume and

options (i.e., the Combining and the Full MLE models) perform best (i.e., deliver the lowest

kurtosis), while basic ARCH does worst. Tables 3.1 and 3.2 therefore confirm our conclusion

from Table 2 that, by adding volume and implied volatility to a basic ARCH model, we are
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able to capture important effects that a basic ARCH model alone cannot capture, at least

in-sample.

5 Forecasts

As important as a model’s ability to fit the data in-sample is its ability to forecast future

volatility.25 We therefore investigate our models’ forecasting abilities. We find that the

interaction of volume with options-implied and ARCH forecasts produces volatility forecasts

that encompass both the options-implied and ARCH forecasts themselves, with the cleanest

results being for the monthly data, the forecast horizon that the options-implied forecasts

are designed for.

To explore out-of-sample forecasting, we first use data from January 4, 1988 through

September 29th, 1995, to estimate model parameters. Then we use these parameters with

the data from January 1988 through September 1995 to produce for October 2, 1995 (the

next business day that markets were open), a one-step-ahead out-of-sample forecast of both

the level and volatility of the expected return innovation (i.e., both ε̂t and ĥt). Next, we

update our information set by one period and thus use data from January 4, 1988 through

to October 2, 1995 produce for October 3, 1995 a one-step-ahead out-of-sample forecast

of both the level and volatility of the expected return innovation. Then we again update,

re-estimate, and re-forecast to produce a one-step-ahead out-of-sample forecast for October

4, 1995, then October 5, 1995, and so forth. This process continues until we have obtained

one-step-ahead out-of-sample forecasts for October 2, 1995, through August 8, 2003. Tests

based on these one-step-ahead out-of-sample forecasts from the various models are reported

below.

25To measure realized volatility, we employ the squared residual from the Naive model. There are virtually
no differences to using the residual from any of the other models.
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TABLE 4.1
Summary Statistics

Daily Data, October 2, 1995 to August 8, 2003

Method Variance Forecasts Standardized Returns
Mean Std Skew Kurtosis RMSE Std Skew Kurtosis

Raw Data 1.737 3.609 5.986 53.673 3.916 1.000 0.003 2.324
Naive 0.917 0.177 0.315 -1.184 4.006 1.359 -0.069 2.505
ARCH 1.638 1.087 1.609 3.250 2.177 1.061 -0.340 1.710
Option 1.372 0.814 1.638 3.214 2.098 1.099 -0.194 0.977
Combining 1.397 0.856 1.664 3.283 2.118 1.097 -0.189 1.063
Full MLE 1.363 0.815 1.655 3.318 2.148 1.107 -0.195 1.029

TABLE 4.2
Summary Statistics

Monthly Data, October 1995 to July 2003

Method Variance Forecasts Standardized Returns
Mean Std Skew Kurtosis RMSE Std Skew Kurtosis

Raw Data 25.947 32.242 2.211 5.093 2.150 1.000 -0.049 -0.453
Naive 15.063 2.873 0.275 -1.471 2.268 1.315 -0.010 -0.412
ARCH 20.892 12.747 0.952 1.046 2.000 1.217 0.013 -0.206
Option 23.262 13.901 1.650 3.303 1.466 1.107 -0.247 -0.619
Combining 22.541 14.862 1.752 4.513 1.993 1.185 -0.411 -0.100
Full MLE 23.642 17.174 1.903 5.162 1.525 1.134 -0.172 -0.704

Tables 4.1 and 4.2 present statistics analogous to those presented above in Tables 3.1

and 3.2, but in addition we now include forecasts from the Naive model. Most of the models

manage to produce out-of-sample normalized returns that are less kurtotic than the raw

data for the daily data forecast horizon with the exception of the Naive model. For the

monthly forecast horizon there is no excess kurtosis, even for the raw data. All the models

produce one-step-ahead forecasts which are biased downward, so that the normalized returns

are too volatile. For both daily and monthly horizons, the option-implied forecasts yield the

smallest mean squared (forecast) error. We would hope to see the RMSE of the more complex

forecasting techniques to be much lower than that of the Naive model on the out-of-sample

data, and this is true, with the RMSE of the Naive model nearly twice that of all the models

on daily data, and as much as 50% larger than the best model on monthly data.
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To more carefully evaluate the out-of-sample forecasting performance of each model rel-

ative to the other models, we conduct forecast encompassing tests similar to Chong and

Hendry (1986), Fair and Shiller [1990] and Day and Lewis [1992,1993]. To examine forecast

encompassing we estimate a single bivariate regression with both forecasts as regressors and

test for the significance of the parameter estimates in the regression in Equation (10),

ε̂2
t = α + βjĥt,j + βiĥt,i + νt (10)

in which (ε̂2
t ) is the Naive Model’s forecast error,26 ĥt,j is Model j’s forecast, ĥt,i is Model

i’s forecast, and ν is a random error. Multicollinearity can lead to both β coefficients being

insignificant when Equation (10) is estimated, while sufficiently non-overlapping information

sets can lead to both estimated β coefficients being significant.

The estimation of Equation (10) parameters and standard errors reported below in Tables

5.1 and 5.2 was based on Hansen’s (1982) Generalized Method of Moments (GMM) and

Newey and West (1987) heteroskedasticity and autocorrelation consistent (HAC) covariances,

employing 1 lag of regressors as instruments and 22 lags for the construction of the HAC

standard errors in the case of daily data (to correct for the overlapping nature of the option-

implied forecast errors). The R2 reported below are based on a simple OLS regression.

The first block of results in the tables below are single regressor models for which the out-

of-sample squared residuals are regressed one-at-a-time on each of the models we consider.

The remaining blocks of results detail pairwise regressions described by Equation (10).

The daily and monthly out-of-sample regressions contained in the first panel of Tables

5.1 and 5.2 (the univariate results), provide very strong evidence that the Naive model

is inadequate compared to all the other models, with a very large jump in out-of-sample

R2 moving from the single regressor Naive forecast regression to any of the other forecast

regressions (2.2% R2 in Table 5.1 for the Naive Model, first row of results, to 12.1% R2

for the Combining model, with even more dramatic improvements for monthly forecasting,

Table 5.2). There is a similar, though less extreme advantage of the remaining models over

26Results are not sensitive to this choice.
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the simple ARCH model in terms of R2s or total out-of-sample explanatory power. All

the forecasts are individually statistically significant in the case of the daily data forecast

horizon,27 but only the Combining and Full MLE forecasts are individually significant at the

monthly horizon.

27There is also evidence that most of the forecasts are biased, with slope coefficients significantly different
than one and intercepts different from 0, (by inspection, not reported) echoing the results of research such
as Day and Lewis [1993]. As the relative efficiency of different forecast methods is our focus, this is issue
will not be pursued here.
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Table 5.1
Daily Data

Out-of-Sample Regression Results

Parameter Estimates
(Robust Std Error)

Regressors ↓
Naive ARCH Options Combining Full R2

Model MLE
Naive 3.15∗∗∗ .022

( .432 )
ARCH .870∗∗∗ .068

( .120 )
Options 1.45∗∗∗ .119

( .214 )
Combining 1.47∗∗∗ .121

( .207 )
Full MLE 1.51∗∗∗ .116

( .219 )
Naive .488 .828∗∗∗ .068
and ARCH ( .485 ) ( .132 )
Naive -.44 1.56∗∗∗ .120
and Options ( .625 ) ( .238 )
Naive -.86 1.66∗∗∗ .122
and Combining ( .691 ) ( .251 )
Naive -.52 1.64∗∗∗ .117
and Full MLE ( .648 ) ( .258 )
ARCH -.14 1.65∗∗∗ .120
and Options ( .215 ) ( .388 )
ARCH -.11 1.50∗∗∗ .125
and Combining ( .238 ) ( .420 )
ARCH -.10 1.65∗∗∗ .116
and Full MLE ( .202 ) ( .391 )
Options .772 .637 .121
and Combining ( .621 ) ( .620 )
Options 2.84∗∗ -1.5 .120
and Full MLE ( 1.26 ) ( 1.25 )
Combining 1.45∗∗ .023 .121
and Full MLE ( .730 ) ( .701 )

* Significant at the 10% level, two-sided test.
** Significant at the 5% level, two-sided test.
*** Significant at the 1% level, two-sided test.

Regression coefficients, standard errors and P-values are based on GMM estimation and HAC
covariances. The R2 is based on a simple OLS regression.
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Table 5.2
Monthly Data

Out-of-Sample Regression Results

Parameter Estimates
(Robust Std Error)

Regressors ↓
Naive ARCH Options Combining Full R2

Model MLE
Naive 1.00 .022

( .952 )
ARCH .387 .053

( .287 )
Options .539 .071

( .333 )
Combining .673∗∗ .097

( .338 )
Full MLE .661∗∗ .137

( .290 )
Naive .051 .347 .055
and ARCH ( 1.48 ) ( .425 )
Naive -.58 .714 .071
and Options ( 1.55 ) ( .461 )
Naive -.67 .781∗ .097
and Combining ( 1.49 ) ( .438 )
Naive -.27 .722∗∗ .137
and Full MLE ( 1.23 ) ( .340 )
ARCH .074 .526 .081
and Options ( .399 ) ( .477 )
ARCH .004 .599 .101
and Combining ( .451 ) ( .502 )
ARCH .029 .654∗ .145
and Full MLE ( .323 ) ( .356 )
Options -.09 .531 .099
and Combining ( .478 ) ( .581 )
Options -.72 1.20∗∗ .158
and Full MLE ( .527 ) ( .530 )
Combining -.15 .747∗ .139
and Full MLE ( .395 ) ( .401 )

* Significant at the 10% level, two-sided test.
** Significant at the 5% level, two-sided test.
*** Significant at the 1% level, two-sided test.

Regression coefficients, standard errors and P-values are based on GMM estimation and HAC
covariances. The R2 is based on a simple OLS regression.
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When we look at the first set of bivariate regressions, the second panel of Tables 5.1

and 5.2, we see that the addition of the Naive model forecast (the second panel in each

of Tables 5.1 and 5.2) to any of the other methods’ forecasts does little to increase the

explanatory power of the regression, at both the daily and monthly forecast horizons. Also,

the β coefficient on the Naive forecast is in each case greatly reduced in magnitude, from

over 3 to below 1 in absolute magnitude, is negative when included with all but the ARCH

forecast, and is statistically insignificant in all cases. In the bivariate regressions of the second

panel of Tables 5.1 and 5.2 all but the Naive forecast have statistically significant regression

coefficients in the case of the daily data forecast horizon, but only the Combining and Full

MLE forecasts are significant at the monthly horizon. Altogether these results suggest that

the Naive model is easily encompassed by the remaining models, which is consistent with

volatility being predictable.

The second set of bivariate regressions, in the third panel of Tables 5.1 and 5.2, permit us

to explore the incremental value of the time series ARCH forecast out-of-sample. For both

the daily and monthly horizons, adding ARCH to any of the remaining forecasts, Options,

Combining or Full MLE, increases the R2 very little relative to not including ARCH. Most

telling, the coefficient estimate on the ARCH forecast is not only statistically insignificant

(which it might be simply because of multicollinearity) but also very near 0 and greatly

reduced in magnitude from the regression with ARCH only. These results suggest strongly

that simple univariate time series information has little to add relative to the information

embedded in options prices, even when we look at a daily forecast horizon with its concurrent

mismatch of forecast horizon relative to the option-implied volatility forecast calibrated for

a monthly horizon. Altogether these results point to the ARCH model being encompassed

by the Options, Combining and Full MLE models.

The third set of bivariate regressions, in the fourth panel Table 5.1, reveal at the daily

horizon that there is too much multicollinearity between the Options forecast of volatility and

the Combining and Full MLE models (models that incorporate the option-implied volatility

with times series information) to discriminate between them. The leveraged coefficients we

26



see when Options and Full MLE are included together (Options having a coefficient of 2.84

and Full MLE of -1.5) are not particularly meaningful, in our opinion, as virtually no increase

in the R2 is associated with this pairing relative to either forecast used individually. Similarly

in the fifth panel of Table 5.1, the daily data horizon case, the paring of the Combining model

and the Full MLE barely budges the R2 relative to either forecast individually. Overall, this

suggests that there may be no value to the volume interaction variable and ARCH time

series forecast when using daily data, even though in-sample the volume interaction terms

appear significant. It may also be true that we do not have a long enough sample of daily

out-of-sample data to uncover a significant impact from volume and ARCH.

The monthly data horizon is more definitive for determining the incremental value of

the new time series information we introduce in this paper, the volume data, relative to

information embedded in the option-implied volatility forecast. Consider the third set of

bivariate regressions, the fourth panel of Table 5.2. Now we find that adding either the

Combining forecast or the Full MLE forecast to the Options forecast both drives down the

magnitude of the Options forecast coefficient estimate and drives out the coefficient estimates’

statistical significance. As well, the R2 of the models using volume information, Combining

and Full MLE, is a great deal more than the remaining models with use only univariate time

series information or option-implied volatility. The Full MLE model, dynamically estimating

the univariate time series coefficients, the volume interaction coefficients and the option-

implied volatility coefficient, demonstrates a large advantage out-of-sample relative to all

the rest of the models, being the only model which has a statistically significant coefficient

regardless of what other forecast is added to it, and the only other model that does not have

its coefficient driven down to 0 or negative values by any other forecast.

6 Summary and Conclusions

Previous studies have reported that trading volume cannot forecast volatility directly. In this

paper we uncover a new result: that volume does indeed have predictive power for forecasting
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volatility, with volume playing the role of a switching variable between states in which

option-implied volatility is more or less informative than ARCH for volatility forecasting,

perhaps reflecting important changes in information attendant with increases in trading

volume on the NYSE. We find that the accuracy of volatility forecasts can be significantly

improved by accounting for the volume effect and by combining information from ARCH

models and option prices accordingly. This finding is made possible because of the novel

way we incorporate trading volume into our functional forms and because, while previous

papers have added either trading volume or option-implied volatility (but not both) to ARCH

models, our study is the first we know of to consider all three factors together.

Results produced by our investigation reveal that if trading volume was “lower than

normal” during period t− 1 then the best forecast of time t volatility is found by combining

the ARCH forecast with the option-implied volatility forecast, with similar weight being

given to ARCH than to options. Conversely, if trading volume was “higher than normal”

during period t − 1, then the best forecast of time t volatility is obtained by placing more

weight on options and less on ARCH. This result is robust to a variety of perturbations of the

in-sample period and model specification and seems to be largely driven by improvements

in the quality of option-implied volatility forecasts relative to ARCH forecasts during high

volume periods.

Results from the combining exercise in Section 3 reveal that option prices appear to

contain better information about future volatility on high volume days than on low volume

days relative to ARCH forecasts. This suggests that market prices contain more information

relative to historical sources in high volume periods than in low volume periods (indeed,

our work suggests a new way to test the relative informativeness of market prices in various

volume regimes). Our results also suggest either that option markets are more efficient in

high volume periods – that prices encompass historical information only in high volume

periods – or else that option pricing models are less misspecified in high volume periods.

Results from the various ARCH tests in Section 4 further reveal that adding option

and volume information to ARCH models greatly improves the ARCH models’ forecasting
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performance, though most markedly at a monthly rather than a daily forecast horizon. This

suggests that ARCH modelers may profit from expanding the traditional ARCH information

set to include volume, options, and other types of information in addition to the history of

lagged return innovations.
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Appendix 1

Model Selection: GARCH Models

Parameter estimates and summary statistics for models of the form:

Rt = µ + εt ; εt ∼ (0, h2
t ) (11)

h2
t = α +

2∑

i=1

(
βih

2
t−i

)
+

2∑

i=1

(
γiε

2
t−i

)
+

2∑

i=1

(
δiDt−iε

2
t−i

)
(12)

Dt−i =

{
1 if εt−i < 0
0 otherwise

(13)

are found in Panel A for Tables A1.1 to A1.4 below. A model with p lags of ht, q lags of ε2
t

and r lags of Dtε
2
t is labeled GJR(p,q,r). Such a model excluding the asymmetric volatility

term Dtε
2
t is labeled GARCH(p,q). These models were estimated on the period from January

4, 1988 to the end of September 1995. Presented in Panel B of the tables are the model

Log Likelihood, Schwarz information criteria (BIC), and tests for residual autocorrelation

(Wald AR), ARCH and Sign-ARCH. The test for autocorrelation is a χ2 Wald test on 5 (3)

lags of the daily (monthly) data residuals in the mean equation. The test for ARCH is a

standard LM test, having us regress the current squared standardized residual on 24 (3) lags

of the daily (monthly) data squared standardized residual, collecting the regression R2 and

forming z = nR2, where n is the number of observations, and z is distributed χ2 with 24 (3)

degrees of freedom. The Sign-ARCH tests were proposed by Engle and Ng [1993] and test

for stronger (asymmetric) volatility increases from negative shocks to the returns process.

Our Sign-ARCH tests on daily data used 5 lags, 3 lags for monthly data.

The R2 for all the models below are 0 as the mean regression equation in each model

contains only a constant, and so this statistic is not included. Of the models that remove

significant evidence (at the 5% level) of time series dependence, including residual autocor-

relation, ARCH and Sign-ARCH, the GARCH(1,1) specification has the best BIC as well as

being the most simple model. The GJR(0,1,2) and GJR(0,1,1) models do very nearly as well
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on all criteria we investigate failing only one specification test at the 5% level, and slightly

better by the BIC, but we will favor the more familiar GARCH(1,1) model.
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Table A1.1

Daily Data, In-Sample 1988:1-1995:9

Estimation Results and Diagnostics for

Volatility Models based on Equations (11)-(13)

Panel A: Parameter Estimates
(Robust Standard Error)

Parameter MLE MLE MLE MLE MLE MLE
GARCH GARCH GARCH GARCH GARCH GARCH

(1,0) (2,0) (1,1) (2,1) (1,2) (2,2)
µ 0.041∗∗ 0.044∗∗ 0.047∗∗∗ 0.047∗∗∗ 0.047∗∗∗ 0.047∗∗∗

( 0.019) ( 0.019) ( 0.016) ( 0.017) ( 0.017) ( 0.016)
α 0.628∗∗∗ 0.610∗∗∗ 0.002 0.002 0.003 0.004

( 0.047) ( 0.054) ( 0.001) ( 0.001) ( 0.003) ( 0.003)
β1 0.980∗∗∗ 0.982∗∗∗ 0.527 0.010

( 0.008) ( 0.008) ( 1.168) ( 0.101)
β2 0.444 0.949∗∗∗

( 1.147) ( 0.100)
γ1 0.141∗∗∗ 0.132∗∗∗ 0.016∗∗ 0.036 0.023 0.013

( 0.044) ( 0.044) ( 0.007) ( 0.034) ( 0.019) ( 0.012)
γ2 0.033 -.021 0.020∗∗

( 0.026) ( 0.034) ( 0.010)

Panel B: Diagnostics
Log Likelihood -2440.90 -2439.30 -2311.62 -2310.45 -2310.94 -2311.22
BIC 4912.125 4916.499 4661.135 4666.378 4667.369 4675.501
LM ARCH 0.000 0.000 0.980 0.998 0.994 0.959
Wald AR 0.057 0.015 0.124 0.133 0.130 0.096
Sign Test 0.583 0.566 0.521 0.470 0.539 0.610
Negative Sign Test 0.001 0.001 0.445 0.293 0.629 0.451
Positive Sign Test 0.000 0.000 0.058 0.040 0.068 0.223
Joint Sign Test 0.000 0.000 0.223 0.242 0.304 0.446

* Significant at the 10% level, two-sided test.

** Significant at the 5% level, two-sided test.

*** Significant at the 1% level, two-sided test.
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Table A1.2

Daily Data, In-Sample 1988:1-1995:9

Estimation Results and Diagnostics for

Volatility Models based on Equations (11)-(13)

Panel A: Parameter Estimates
(Robust Standard Error)

Parameter MLE MLE MLE MLE MLE MLE
GJR GJR GJR GJR GJR GJR

(1,0,1) (2,0,1) (1,1,1) (2,1,1) (1,2,1) (2,2,1)
µ 0.039∗∗ 0.042∗∗ 0.043∗∗ 0.044∗∗∗ 0.043∗∗ 0.041∗∗

( 0.019) ( 0.019) ( 0.017) ( 0.017) ( 0.017) ( 0.017)
α 0.631∗∗∗ 0.613∗∗∗ 0.002 0.002 0.002 0.003∗

( 0.048) ( 0.055) ( 0.001) ( 0.001) ( 0.002) ( 0.002)
β1 0.983∗∗∗ 0.984∗∗∗ 0.511 0.108

( 0.008) ( 0.008) ( 0.999) ( 0.170)
β2 0.465 0.859∗∗∗

( 0.985) ( 0.171)
γ1 0.108∗ 0.096 0.008 0.022 0.010 -.013

( 0.059) ( 0.059) ( 0.012) ( 0.030) ( 0.016) ( 0.016)
γ2 0.033 -.014 0.024

( 0.027) ( 0.033) ( 0.019)
δ1 0.058 0.063 0.012 0.010 0.018 0.030

( 0.089) ( 0.088) ( 0.014) ( 0.014) ( 0.026) ( 0.022)

Panel B: Diagnostics
Log Likelihood -2440.45 -2438.75 -2309.62 -2309.14 -2308.83 -2307.49
BIC 4918.802 4922.974 4664.720 4671.332 4670.722 4675.621
LM ARCH 0.000 0.000 0.994 0.998 0.998 0.989
Wald AR 0.055 0.015 0.156 0.152 0.163 0.208
Sign Test 0.605 0.619 0.412 0.386 0.428 0.564
Negative Sign Test 0.001 0.006 0.609 0.380 0.720 0.689
Positive Sign Test 0.000 0.000 0.061 0.044 0.064 0.366
Joint Sign Test 0.000 0.000 0.299 0.283 0.353 0.686

* Significant at the 10% level, two-sided test.

** Significant at the 5% level, two-sided test.

*** Significant at the 1% level, two-sided test.
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Table A1.3

Daily Data, In-Sample 1988:1-1995:9

Estimation Results and Diagnostics for

Volatility Models based on Equations (11)-(13)

Panel A: Parameter Estimates
(Robust Standard Error)

Parameter MLE MLE MLE MLE MLE MLE
GJR GJR GJR GJR GJR GJR

(1,0,2) (2,0,2) (1,1,2) (2,1,2) (1,2,2) (2,2,2)
µ 0.037∗∗ 0.037∗ 0.043∗∗ 0.043∗∗ 0.044∗∗∗ 0.041∗∗

( 0.019) ( 0.019) ( 0.017) ( 0.017) ( 0.000) ( 0.017)
α 0.599∗∗∗ 0.604∗∗∗ 0.001 0.001 0.000 0.003

( 0.051) ( 0.055) ( 0.001) ( 0.001) ( 0.000) ( 0.002)
β1 0.985∗∗∗ 0.984∗∗∗ 1.966∗∗∗ 0.212

( 0.007) ( 0.007) ( 0.000) ( 0.145)
β2 -.965∗∗∗ 0.760∗∗∗

( 0.000) ( 0.143)
γ1 0.077 0.075 0.008 -.038∗ 0.000 -.037∗∗

( 0.053) ( 0.052) ( 0.012) ( 0.022) ( 0.000) ( 0.017)
γ2 -.011 0.046∗ 0.049∗

( 0.020) ( 0.026) ( 0.027)
δ1 0.079 0.081 0.087 0.125∗∗ 0.034∗∗∗ 0.063∗∗

( 0.083) ( 0.082) ( 0.055) ( 0.054) ( 0.000) ( 0.025)
δ2 0.141∗∗∗ 0.149∗∗∗ -.080 -.116∗∗ -.034∗∗∗ -.042

( 0.055) ( 0.054) ( 0.053) ( 0.055) ( 0.000) ( 0.030)

Panel B: Diagnostics
Log Likelihood -2431.77 -2431.50 -2305.13 -2302.01 -2289.17 -2305.36
BIC 4909.016 4916.068 4663.321 4664.670 4638.985 4678.933
LM ARCH 0.000 0.000 0.999 0.999 0.969 0.995
Wald AR 0.010 0.011 0.145 0.166 0.000 0.133
Sign Test 0.542 0.577 0.423 0.487 0.328 0.620
Negative Sign Test 0.006 0.006 0.658 0.537 0.627 0.823
Positive Sign Test 0.000 0.000 0.042 0.069 0.033 0.633
Joint Sign Test 0.000 0.000 0.309 0.488 0.284 0.869

* Significant at the 10% level, two-sided test.

** Significant at the 5% level, two-sided test.

*** Significant at the 1% level, two-sided test.
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Table A1.4

Daily Data, In-Sample 1988:1-1995:9

Estimation Results and Diagnostics for

Volatility Models based on Equations (11)-(13)

Panel A: Parameter Estimates
(Robust Standard Error)

Parameter MLE MLE MLE MLE MLE MLE
GJR GJR GJR GJR GJR GJR

(0,0,1) (0,1,1) (0,2,1) (0,0,2) (0,1,2) (0,2,2)
µ 0.042∗∗ 0.042∗∗ 0.042∗∗ 0.039∗∗ 0.042∗∗ 0.043∗∗

( 0.019) ( 0.017) ( 0.017) ( 0.019) ( 0.017) ( 0.017)
α 0.673∗∗∗ 0.001 0.002 0.628∗∗∗ 0.001 0.003∗

( 0.052) ( 0.001) ( 0.001) ( 0.056) ( 0.001) ( 0.002)
β1 0.988∗∗∗ 0.448 0.990∗∗∗ -.004

( 0.004) ( 0.780) ( 0.004) ( 0.015)
β2 0.535 0.977∗∗∗

( 0.772) ( 0.012)
δ1 0.138∗∗ 0.018∗∗ 0.027 0.134∗∗ 0.088∗ 0.016

( 0.063) ( 0.007) ( 0.017) ( 0.058) ( 0.049) ( 0.011)
δ2 0.146∗∗∗ -.073 0.025∗∗∗

( 0.056) ( 0.050) ( 0.009)

Panel B: Diagnostics
Log Likelihood -2445.54 -2311.06 -2310.00 -2434.96 -2306.74 -2308.75
BIC 4921.409 4660.028 4665.489 4907.815 4658.966 4670.569
LM ARCH 0.000 0.991 0.997 0.000 0.998 0.977
Wald AR 0.174 0.283 0.284 0.127 0.250 0.343
Sign Test 0.532 0.355 0.359 0.496 0.345 0.350
Negative Sign Test 0.001 0.731 0.759 0.006 0.710 0.568
Positive Sign Test 0.000 0.037 0.034 0.000 0.017 0.026
Joint Sign Test 0.000 0.243 0.286 0.000 0.214 0.175
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Appendix 2

Additional Daily and Monthly Estimation Results

Parameter estimates and summary statistics for models based on Equations (5), and (7)-

(9) are found in Panel A for Tables A2.1 to A2.3 below. Presented in Panel B of the tables

are the model Log Likelihood, Schwarz information criteria (BIC), and tests for residual

autocorrelation (Wald AR), ARCH and Sign-ARCH. The test for autocorrelation is a χ2

Wald test on 5 (3) lags of the daily (monthly) data residuals in the mean equation. The

test for ARCH is a standard LM test, having us regress the current squared standardized

residual on 24 (3) lags of the daily (monthly) data squared standardized residual, collecting

the regression R2 and forming z = nR2, where n is the number of observations, and z is

distributed χ2 with 24 (3) degrees of freedom. The Sign-ARCH tests were proposed by Engle

and Ng [1993] and test for stronger (asymmetric) volatility increases from negative shocks

to the returns process. Our Sign-ARCH tests on daily data used 5 lags, 3 lags for monthly

data.

The R2 for all the models below are 0 as the mean regression equation in each model

contains only a constant, and so this statistic is not included.
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TABLE A2.1

Monthly Data, In-Sample 1988:1-1995:9

Estimation Results and Diagnostics for

Volatility Models based on Equations (5), (7)-(9)

Panel A: Parameter Estimates
(Robust Standard Error)

Column → 1 2 3 4 5
Parameter Naive Options ARCH Combining Full MLE
Name ↓ Only Model Model
µ 0.992∗∗∗ 0.849∗∗∗ 0.921∗∗∗ 0.918∗∗∗ 1.137∗∗∗

( 0.364) ( 0.316) ( 0.328) ( 0.312) ( 0.290)
α0 12.35∗∗∗ -.090 0.137 -1.16 -1.11

( 2.155) ( 2.196) ( 0.372) ( 3.005) ( 1.339)
β0 0.947∗∗∗ 0.408∗

( 0.047) ( 0.222)
β1 -1.18∗∗∗

( 0.381)
γ 0.025 -.111∗

( 0.016) ( 0.060)
φOption,0 0.423∗∗∗ 0.123 0.260∗∗

( 0.136) ( 0.163) ( 0.108)
φOption,1 0.356 0.635∗∗∗

( 0.354) ( 0.219)
φARCH,0 0.630

( 0.584)
φARCH,1 -.534

( 0.774)
Panel B: Diagnostics

Log Likelihood -248.856 -242.903 -244.158 -242.080 -239.223
BIC 511.310 503.936 510.980 515.888 514.707
Wald AR Test 0.066 0.275 0.428 0.039 1.000
LM ARCH Test 0.114 0.129 0.186 0.090 0.185
Sign Test 0.257 0.888 0.796 0.800 0.619
Neg. Sign Test 0.145 0.754 0.951 0.778 0.587
Pos. Sign Test 0.190 0.511 0.478 0.544 0.401
Joint Sign Test 0.167 0.863 0.877 0.913 0.902

* Significant at the 10% level, two-sided test.

** Significant at the 5% level, two-sided test.

*** Significant at the 1% level, two-sided test.
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TABLE A2.2

Monthly Data, Full Sample 1988:1-2003:8

Estimation Results and Diagnostics for

Volatility Models based on Equations (5), (7)-(9)

Panel A: Parameter Estimates
(Robust Standard Error)

Column → 1 2 3 4 5
Parameter Naive Options ARCH Combining Full MLE
Name ↓ Only Model Model
µ 0.884∗∗∗ 0.842∗∗∗ 1.001∗∗∗ 0.848∗∗∗ 0.936∗∗∗

( 0.319) ( 0.264) ( 0.259) ( 0.263) ( 0.251)
α0 19.13∗∗∗ -1.20 0.648 -1.03 -1.17

( 2.018) ( 1.561) ( 0.528) ( 1.736) ( 0.877)
β0 0.831∗∗∗ 0.430∗∗

( 0.075) ( 0.189)
β1 -1.12∗∗∗

( 0.286)
γ 0.129∗∗ -.084

( 0.056) ( 0.053)
φOption,0 0.525∗∗∗ 0.105 0.273∗∗∗

( 0.079) ( 0.132) ( 0.096)
φOption,1 0.416∗ 0.655∗∗∗

( 0.246) ( 0.175)
φARCH,0 0.700∗∗

( 0.330)
φARCH,1 -.659

( 0.465)
Panel B: Diagnostics

Log Likelihood -544.186 -529.191 -533.230 -528.104 -524.272
BIC 1104.081 1079.328 1092.643 1092.863 1090.435
Wald AR Test 0.692 0.380 0.941 0.429 0.712
LM ARCH Test 0.000 0.972 0.450 0.943 0.734
Sign Test 0.001 0.342 0.259 0.342 0.111
Neg. Sign Test 0.000 0.779 0.798 0.700 0.376
Pos. Sign Test 0.619 0.567 0.907 0.426 0.424
Joint Sign Test 0.000 0.844 0.554 0.805 0.432

* Significant at the 10% level, two-sided test.

** Significant at the 5% level, two-sided test.

*** Significant at the 1% level, two-sided test.
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TABLE A2.3

Daily Data, Full Sample 1988:1-2003:8

Estimation Results and Diagnostics for

Volatility Models based on Equations (5), (7)-(9)

Panel A: Parameter Estimates
(Robust Standard Error)

Column → 1 2 3 4 5
Parameter Naive Options ARCH Combining Full MLE
Name ↓ Only Model Model
µ 0.042∗∗ 0.036∗∗∗ 0.056∗∗∗ 0.038∗∗∗ 0.037∗∗∗

( 0.018) ( 0.014) ( 0.014) ( 0.014) ( 0.014)
α0 1.232∗∗∗ -.109∗∗∗ 0.006∗∗∗ -.102∗∗ -.087∗∗

( 0.048) ( 0.040) ( 0.002) ( 0.042) ( 0.038)
β0 0.951∗∗∗ 0.232

( 0.008) ( 0.283)
β1 -.202

( 0.367)
γ 0.045∗∗∗ 0.010

( 0.009) ( 0.024)
φOption,0 0.704∗∗∗ 0.436∗∗∗ 0.526∗∗∗

( 0.038) ( 0.076) ( 0.187)
φOption,1 0.290∗∗ 0.148

( 0.135) ( 0.234)
φARCH,0 0.375∗∗∗

( 0.101)
φARCH,1 -.404∗∗

( 0.176)
Panel B: Diagnostics

Log Likelihood -5997.58 -5447.72 -5526.98 -5440.02 -5447.05
BIC 12019.99 10928.56 11095.34 10937.98 10960.32
Wald AR Test 0.143 0.109 0.016 0.072 0.104
LM ARCH Test 0.000 0.495 0.927 0.739 0.551
Sign Test 0.000 0.003 0.013 0.001 0.008
Neg. Sign Test 0.000 0.000 0.000 0.000 0.000
Pos. Sign Test 0.000 0.003 0.003 0.000 0.006
Joint Sign Test 0.000 0.000 0.000 0.000 0.000

* Significant at the 10% level, two-sided test.

** Significant at the 5% level, two-sided test.

*** Significant at the 1% level, two-sided test.
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