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Abstract 

 

The object of this study is to show certain specific effects caused by 

rheological and elastic parameters in a pulsating flow of non Newtonian two-fluid 

models through elastic tube. A numerical finite difference method using Crank 

Nicholson scheme is employed to determine pressure and velocity profiles.  This 

study is considered as a step in two-phase flow of blood in small vessels. 

 

Keywords: two-phase pulsed flow, non Newtonian fluid, pipe with elastic wall 

 

 

1. Introduction 
 

    Fluid flows in pipes of small diameter, modeling the flow of blood, in the 

arteries were studied so far with assumptions of various types: 

   Some authors use two-phase models in rigid pipes, with a constant viscosity for 

the core [1], others consider also two-phase models in rigid pipes but assume a 

variable viscosity for the core [2, 3]. Finally some authors examine blood flow in 

the microcirculation as a pulsed two-phase flow of non-Newtonian fluid [5]. 

    It is proposed in this work, to study a pulsed non-Newtonian fluid flow in a 

two-phase medium in an axisymmetric elastic pipe with diameter equal to 100 

microns. 

   The rheological behavior of the wall is described by a relationship between 

radius and internal pressure. The expression of this relationship varies depending 

on the model used to describe the behavior of the vessel wall [6]. 

    We have considered here the wall is a homogeneous isotropic and elastic 

medium. This study aims at modeling flow of blood in the arterioles or venues. 

 

2. Theoretical part 
 

   The flow in question comprises a central core of radius a(z,t) rich in globules, 

surrounded by a Newtonian plasma layer, dynamic viscosity contrast denoted 

respectively µC  and µp . We suppose that µp is constant and that µC follows the 

rheological Ostwald law: 

𝜇𝑐 = 𝑘𝑆
𝑛−1

2                                                                                                             (1) 

 

With: S=2 .tr (D2)  

 

n: is behavior index 

K: the consistency of the fluid 

D: the deformation rate tensor 
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   The conduct concerned is an axisymmetric tube with radius R (z,t),  length L 

and axis 𝑧 ( 𝑧  is the longitudinal axis). 

 

 

The study is performed with respect to a cylindrical coordinate system (r, 𝜃, z). 

The 𝑧 axis coincides with the axis of the pipe. 

The velocity field �⃗⃗�  is defined by its components: 

 

𝑉𝑟 = 𝑢(𝑟, 𝑧, 𝑡) 
𝑉𝜃 = 0 

𝑉𝑍 = 𝑤(𝑟, 𝑧, 𝑡) 
 

We assume that the core- layer interface plasma has the same profile as the wall 

of the pipe [7]. Its radius is given by: 

 

                   𝑎(𝑧, 𝑡) = 𝛾𝑅(𝑧, 𝑡)                                                                               (2) 

    

Or γ is a constant that takes 0, 9. In fact the plasma layer has a width equal to the 

eighth or tenth of the diameter of the vessel (8). 

  The rheological behavior of the tube is introduced in the form of a pressure-

radius relationship. 

  The establishment of such relationship is very complex. It has been the subject of 

many studies. A review of the main work related was published by Taylor and 

Gerrard [6]. It shows the diversity proposed in the literature based on the 

assumptions that lead to these relations. 

   This relationship can be simple if we suppose a thin isotropic and elastic wall. It 

can become complex and involve many parameters which are difficult to 

determine accurately, if considering a viscoelastic wall, and large deformations. 

We shall content ourselves use a pressure-radius relation, deduced from the theory 

of linear elasticity in small deformation for an isotropic, homogeneous, 

incompressible wall, and whose longitudinal displacement is negligible compared 

to the radial displacement, this relationship is: 

 

𝑃 − 𝑃𝑒𝑥𝑡 =
2𝐸ℎ

3𝑅0
[1 −

𝑅0
2

𝑅2
]                                                                                       (3) 

 

with: 

P: is the internal pressure 

Pext : the external pressure 

𝛽: Coefficient of elasticity 

E: Young's modulus 

h: the thickness of the wall 

R: the radius of the pipe pressure 

R0: the radius of the pipe break 
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This relation is frequently used in the field of cardiovascular biomechanics  

[9, 11]. 

   The experimental determination of the coefficient β of the wall for arterioles or 

venues is very delicate (small diameter vessels react strongly at the slightest 

mechanical stimulation). 

   Considerably different results depending on the other for the in vitro carotid 

Hayashi [11] gives the value EL=1 ,48.107 dynes /cm2  whereas Hudetz [12] 

obtained EL= 3 ,1.107  dynes /cm2. 

  These are mainly due deference to the measurement methods as well as 

experimental conditions. 

 The equations resulting from the conversation of momentum and continuity of 

writing fluid in the absence of gravitational forces volume are: 

 

𝜌
𝑑�⃗⃗⃗�

𝑑𝑡
= 𝑑𝑖𝑉⃗⃗ ⃗⃗ ⃗⃗ ⃗Σ                                                                                                           (4) 

 

𝑑𝑖𝑉⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 0                                                                                                                 (5) 

 

With:                                 Σ = −PI + 2ηD 

Or: Σ is the stress tensor, I the identity tensor and ρ the density as assumed the 

same for each phase due to the effects of sedimentation. 

Projected on the radial axes 𝑟 and axial 𝑧 , equations (4) and (5) are written for the 

two phases: 

 

 

−
𝜕𝑃

𝜕𝑟
+ 𝜂 (

𝜕2𝑢

𝜕𝑧2
+

𝜕2𝑤

𝜕𝑧𝜕𝑟
) +

𝜕𝜂

𝜕𝑧
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑟
) +

2𝜂

𝑟

𝜕𝑢

𝜕𝑟
+ 2

𝜕

𝜕𝑟
(𝜂
𝜕𝑢

𝜕𝑟
)

= 𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
) 

−
𝜕𝑃

𝜕𝑧
+ 𝜂 (

𝜕2𝑤

𝜕𝑟2
+

𝜕2𝑢

𝜕𝑟𝜕𝑧
) +

𝜕𝜂

𝜕𝑟
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑟
) +

𝜂

𝑟
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑟
)

+ 2
𝜕

𝜕𝑧
(𝜂
𝜕𝑤

𝜕𝑧
)               = 𝜌 (

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
) 

 
 1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢) +

𝜕𝑤

𝜕𝑧
= 0                                                                                                (6)              

                                                             

 

In which 𝜂 = 𝜂𝑃 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 in the plasma layer. 

And                                             𝜂 = 𝜇𝑐 = 𝑘𝑆
𝑛−1

2    in the core 

 

With:                

𝑆 = 2 [(
𝜕𝑢

𝜕𝑟
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

+ (
𝑢

𝑟
)
2

] + [
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑟
]
2
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2 .1 Dimensionless variables and simplifying equations   
To highlight the simplifications given various orders of magnitudes involved the 

problem is transcribed into dimensionless form and we set: 

𝑢∗ = 
𝑢𝐿

𝑅0𝑤0
   ;          𝑤∗ = 

𝑤

𝑤0
       ; 𝑟∗ = 

𝑟

𝑅0
    ;   𝑧∗ = 

𝑧

𝐿
 ; 𝑃∗ = 

𝑃𝑅0
2

𝜂0𝑤0𝐿
 ;   

𝑡∗ =  𝑡𝜔 ;     ℜ𝑒 =  
𝜌𝑤0𝑅0

𝜂𝑝
  ; 𝛼2 = 

𝜌𝜔𝑅0
2

𝜂𝑝
 ;  𝜀 =  

𝑅0

𝐿
=

𝑢0

𝑤0
≪ 1  

Or: 

ℜ𝑒 : is Reynolds number, which characterizes the inertia effects comparing to 

viscosity effects 

α2 Womersley parameter which is proportional to the ratio of diffusion time in the 

radial direction of flow   
𝜌𝑅0

2

𝜂𝑝
 , the characteristic period of pulsation   

2𝜋

𝑤
, 

consequently it characterizes the relative importance of unsteadiness and the 

effects of viscosity effects, and 𝜔 pulsation of the phenomenon. 

The system (6) is written in dimensionless form: 

 

 

−
𝜕𝑃∗

𝜕𝑟∗
+ 𝜀2 [

2 

𝑟∗
𝜕

𝜕𝑟∗
(𝑟∗𝜂∗

𝜕𝑢∗

𝜕𝑟∗
) +

𝜕

𝜕𝑧∗
(𝜂∗

𝜕𝑤∗

𝜕𝑟∗
)] + 𝜀4

𝜕

𝜕𝑧∗
(𝜂∗

𝜕𝑢∗

𝜕𝑧∗
) 

= 𝜀2𝛼2
𝜕𝑢∗

𝜕𝑡∗
+ 𝜀3ℜ𝑒 [𝑢

∗
𝜕𝑢∗

𝜕𝑟∗
+ 𝑤∗

𝜕𝑢∗

𝜕𝑧∗
] 

−
𝜕𝑃∗

𝜕𝑧∗
+ 𝜀2 [

1 

𝑟∗
𝜕

𝜕𝑟∗
(𝑟∗𝜂∗

𝜕𝑢∗

𝜕𝑧∗
) + 2

𝜕

𝜕𝑧∗
(𝜂∗

𝜕𝑤∗

𝜕𝑧∗
)] +

1 

𝑟∗
𝜕

𝜕𝑟∗
(𝑟∗𝜂∗

𝜕𝑤∗

𝜕𝑟∗
) 

 

= 𝛼2
𝜕𝑤∗

𝜕𝑡∗
+ 𝜀 ℜ𝑒 [𝑢

∗ 𝜕𝑤
∗

𝜕𝑟∗
+ 𝑤∗ 𝜕𝑤

∗

𝜕𝑧∗
]                                                                     (7)         

                                                                         
 1

𝑟∗
𝜕

𝜕𝑟∗
(𝑟∗𝑢∗) +

𝜕𝑤∗

𝜕𝑧∗
= 0   

 

In which: 𝜂∗ = 1  in the plasma layer and 𝜂∗ = 𝑘∗(𝑆∗)
𝑛−1

2  in the core. 

 

Where: 

(𝑆∗)
𝑛−1
2 = {𝜀4 (

𝜕𝑢∗

𝜕𝑧∗
)
2

+ 2𝜀2 [(
𝜕𝑢∗

𝜕𝑟∗
)
2

+ (
𝜕𝑤∗

𝜕𝑧∗
)
2

+ (
𝑢∗

𝑟∗
)
2

+
𝜕𝑢∗

𝜕𝑧∗
𝜕𝑤∗

𝜕𝑟∗
]

+ (
𝜕𝑤∗

𝜕𝑟∗
)
2

}

𝑛−1
2

 

                And              𝑘∗ =
𝑘

𝜂𝑝
(
𝑤0

𝑅0
)
𝑛−1

  

 

By neglecting terms on  2  or more,   the equations of motion and continuity 

within the nucleus and plasma become: 
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{
 
 

 
 

−

𝜕𝑃∗

𝜕𝑟∗
= 0

𝜕𝑃∗

𝜕𝑧∗
+

1 

𝑟∗
𝜕

𝜕𝑟∗
(𝑟∗𝜂∗

𝜕𝑤∗

𝜕𝑟∗
) = 𝛼2

𝜕𝑤∗

𝜕𝑡∗

 1

𝑟∗
𝜕

𝜕𝑟∗
(𝑟∗𝑢∗) +

𝜕𝑤∗

𝜕𝑧∗
= 0

                                                                     (8) 

 

 

In which 𝜂∗ = 1  in the plasma layer 

And 

 𝜂∗ =
𝜂𝐶

𝜂𝑃
= 𝑘∗ |

𝜕𝑤∗

𝜕𝑟∗
|
𝑛−1

   in the core. 

  As in microcirculation the radii of the ducts are small, and convective 

acceleration terms are negligible. 

After simplification, the equations are rewritten in dimensional forms: 

 

{
 
 

 
 

𝜕𝑃

𝜕𝑟
= 0

−
𝜕𝑃

𝜕𝑧
+

1 

𝑟

𝜕

𝜕𝑟
(𝑟 𝜂

𝜕𝑤

𝜕𝑟
)  = 𝜌

𝜕𝑤

𝜕𝑡

 1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢) +

𝜕𝑤

𝜕𝑧
= 0

                                                                 (9) 

 

In which 𝜂 = 𝜂𝑝 in the plasma layer 

𝜂 = 𝜂𝑐 = 𝑘 |
𝜕𝑤

𝜕𝑟
|
𝑛−1

 in the core 

  The first equation of the system (9) indicates that the pressure is uniform in each 

section of conduit. 

  In the following expressions, index c will be allocated to amounts for the central 

region and the index p to those related to plasma. 

The conditions associated with this problem limits are: 

𝑈𝑐(0, 𝑧, 𝑡) = 0  Symmetrical flow about the axis 𝑧 

𝜕𝑤𝑐

𝜕𝑟
(0, 𝑧, 𝑡) = 0 

 

𝑈𝑐(𝑎(𝑧, 𝑡), 𝑧, 𝑡) = 𝑈𝑝(𝑎(𝑧, 𝑡), 𝑧, 𝑡)    Equal speeds at the interface core-plasma 

𝑊𝑐(𝑎(𝑧, 𝑡), 𝑧, 𝑡) = 𝑊𝑝(𝑎(𝑧, 𝑡), 𝑧, 𝑡)  

𝜂𝑐
𝜕𝑤𝑐

𝜕𝑟
(𝑎(𝑧, 𝑡), 𝑧, 𝑡) = 𝜂𝑝

𝜕𝑤𝑝

𝜕𝑟
(𝑎(𝑧, 𝑡), 𝑧, 𝑡)   

Of interracial equality constraints 

𝑈𝑝(𝑅(𝑧, 𝑡), 𝑧, 𝑡) =
𝜕𝑅

𝜕𝑡
 

𝑊𝑝(𝑅(𝑧, 𝑡), 𝑧, 𝑡) = 0          Adhesion to the wall 

The data of the problem are the pressures at the inlet and outlet of the tube: 

𝑃(0, 𝑡) = 𝑃1 − 𝑃2𝑐𝑜𝑠𝜔𝑡 
𝑃(𝐿, 𝑡) = 𝑃3 − 𝑃4𝑐𝑜𝑠𝜔𝑡 
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In microcirculation, in the short length pipe allows to neglect the phase difference 

between the pressures at the ends 

 

2.2 Solving the problem 

The application of the method « Integral Equation » system (9) provides a 

partial differential equation of second order pressure P(z,t), parabolic type which 

is given by: 

 

−
𝑅

2

𝜕²𝑃

𝜕𝑧²
−
𝜕𝑅

𝜕𝑧

𝜕𝑃

𝜕𝑧
+ 𝜂𝑝 [

1

𝑅

𝜕𝑅

𝜕𝑧

𝜕𝑤𝑝

𝜕𝑟
(𝑅)] +

𝜕

𝜕𝑧
(
𝜕𝑤𝑝

𝜕𝑟
(𝑅)) +

𝜌

𝑅

𝜕

𝜕𝑡
(𝑅

𝜕𝑅

𝜕𝑟
)

= 0 
This equation is solved using a numerical finite difference method using 

an implicit scheme type Crank-Nicholson. We obtain a linear system of equation, 

defined by a matrix tridiagonal which is solved using the method of dual scanning 

Choleski [15]. 

 The field of study is two-dimensional (z,t). If j and k are respectively the index of 

space in the axial direction of the tube and the time index, convergence tests and 

frequency are applied to the pressure. 

At each point of the mesh, the pressure P (j,k) must check: 

𝑠𝑢𝑝 |
𝑃𝑗,𝑘
𝑚+𝑃𝑗,𝑘

𝑚+1

𝑃𝑗,𝑘
𝑚 | < 𝜀1 whatever the point considered 

The calculation must be repeated several times to establish the periodicity 

of the solution. This periodicity is tested by imposing: 

 

𝑠𝑢𝑝 |
𝑃𝑗,𝑘
𝑚 + 𝑃𝑗,𝑘+𝑇

𝑚

𝑃𝑗,𝑘+𝑇
𝑚 | < 𝜀2 

𝜀1𝑎𝑛𝑑𝜀2 being amounts that are fixed in advance and which must be chosen small 

and the number m of cycle calculations. 

 

2.3- Initial profile and program data 

  The initial profile can be of any problem provided it satisfies the boundary 

conditions. However, to reduce the calculation cycle, we chose a profile that is 

close enough to the real profile. We adopted as the initial velocity profile on a 

two-phase permanent flow of Newtonian fluid in a cylindrical pipe of radius 𝑅0 

and with the core radius 𝑎0 = 𝛾𝑅0 

  Program data taken from the literature, [5], are data on hydrodynamic conditions 

and parameters characterizing the rheological behavior of the fluid and the pipe: 

 - The density of the fluid concerned, 𝜌, is equal to 1.06g/cm3=1060Kg/m3 

-  Plasma viscosity,𝜂𝑝, assumed constant, is equal to 1.2cp. 

- The conduct in question is of length L=0.1cm radius at rest 𝑅0 = 50𝜇𝑚 and the 

wall thickness    is h=10-3m . 

- The value of the geometric parameter𝜀, is therefore equal to 0.05. 

- The average speed is 𝑊0 = 1𝑐𝑚/𝑠 and the Reynolds number is then 0.44. 
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- The number of Womersley 𝛼2 Its value is equal to 0.014 and a frequency of 1 

Hz. 

-The external pressure, considered constant, is equal to 1330dynes/cm². 

- The pressure at the inlet of the pipe is the result of a continuous component 𝑃1 =
35000 𝑑𝑦𝑛𝑒𝑠/𝑐𝑚²  and a sinusoidal component𝑃2 = 350 𝑑𝑦𝑛𝑒𝑠/𝑐𝑚². 

-The pressure at the outlet of the conduit has the continuous component 𝑃1 =
34500 𝑑𝑦𝑛𝑒𝑠/𝑐𝑚² and amplitude of the sinusoidal component𝑃4 = 345 𝑑𝑦𝑛𝑒𝑠/
𝑐𝑚². 

 

3. Numerical results 
 

a- influence of the behavior index n 

  Figure 1 shows the variations of the axial velocity profile in function of the 

behavior index. Increased pseudoplasticity resulting in an increase in n leads to 

increased amplitudes speeds. This increase in velocity is due to a decrease in the 

apparent viscosity decreases when K and geometric conditions keep the same 

values. We can translate this result a reduction in resistance to flow when the 

pseudo plasticity increases. 

  The same phenomenon is observed for the radial velocities, recent increase when 

n decreases figure 2. 

  These results are qualitatively similar to those of Theodorou [16], Gueraoui and 

al [19] who has studied the unsteady flow of non-Newtonian fluids in a sectional 

narrowing and those of Zeggwagh [2] which studied the unsteady flow of non-

Newtonian fluids in a rigid tapered pipe. 
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Figure 1: axial velocity profile as function of dimensionless radial variable            Figure 2: radial velocity profile as function of dimensionless radial variable 

                 for two different index n                                                                                                              for two different index n 

 

b- Influence of consistency K 

  Figures 3 and 4 illustrate the influence of consistent, K, on the flow. The 

influence of this second rheological parameter is similar to that of the viscosity in 

the Newtonian case. There is a decrease in axial values and a more or less 

pronounced flattening of profiles. This is due to the increase in the internal 

friction between the various layers of the coaxial fluid when K increases. 

  The variation of these two rheological parameters, n and K has no influence on 

the values of the axial velocity in the plasma layer, as can be expected. 
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Figure 3: axial velocity profile as function of dimensionless radial variable         Figure 4: radial velocity profile as function of dimensionless radial variable 

                          for two different consistency k                                                                                  for two different consistency k 

 

 

c- Influence of phase 

  Figure 5 shows the profiles of axial velocities at the instants t=0, T/4, T/2. There 

is gradual decrease of the axial velocity at any point and can provide a minimum 

at T/2 then primer a progressively increased to t=T. 

  We find, as some authors have already done [2], [17], that the velocity profiles 

are in phase with the pressure gradient, which indicates that the viscous forces are 

dominant compared to inertial forces. 

  The low variation of velocity profiles is due to the fact that the amplitudes of the 

oscillatory components 𝑃2 𝑎𝑛𝑑 𝑃4  low before components continuous𝑃1𝑎𝑛𝑑 𝑃3. 
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Figure 5: axial velocity profile as function of dimensionless radial variable 

                                    for three different times  
 

 

d- Influence of the coefficient of elasticity 

  In Figure 6, was brought changes the pressure distribution a function of time in a 

given section (z=L/2) for two values of elasticity coefficient β. 

   It is observed, the influence of the latter on the pressure distribution is 

negligible. This is due to the low value of the oscillatory component of the 

pressure. 
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Figure 6: pressure profile as function of dimensionless time variable for two different coefficient of elasticity 

 

 

4. Conclusion 
 

   The objective we have set for ourselves consisted in proposing a model of two-

phase flow of non-Newtonian fluid in conduct with elastic wall. This study 

focuses on applications that can be made in hemodynamic more particularly in the 

microcirculatory system. 

  Theoretical and numerical studies using finite difference method implicit scheme 

were used to determine the velocity field, the radius profile of the pipe, and the 

pressure distribution in a pipe with elastic wall. 

   We studied the influence of rheological parameters of the fluid (K consistency 

and behavior index n), from hydrodynamic, the flow parameters and the 

coefficient of elasticity of the wall β. One can able to discern the importance of 

these parameters on the flow in a part of the microcirculatory system. 

   But, we must note that many more research is needed to deal satisfactorily a 

subject of such importance. Indeed, we limited ourselves to the consideration of 

an elastic and impermeable pipe wall. 
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