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Enhanced Fluctuations of the Tunneling Density of States near the Bottom of a Landau Band
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We have found that the local density of state fluctuations (LDOSF) in a disordered metal, detected
using an impurity in the barrier as a spectrometer, undergo enhanced (with respect to Shubnikov–de Haas
and de Haas–van Alphen effects) oscillations in strong magnetic fields, vct $ 1. We attribute this to the
dominant role of the states near the bottom of Landau bands which give the major contribution to
the LDOSF and are most strongly affected by disorder. We also demonstrate that in intermediate fields
the LDOSF increase with field B in accordance with the results obtained in the diffusion approximation.

PACS numbers: 73.23.Hk, 72.15.Gd, 73.20.Fz, 73.40.Ty
Resonant tunneling through individual impurities has
been identified and studied in vertical [1–4] and lateral
[5–7] mesoscopic structures. When an impurity level in
a potential barrier passes through the Fermi level in the
emitter, it manifests itself as a step in the current-voltage
�IV � characteristic, with the magnitude determined by
the impurity coupling to the reservoirs and the onset
smeared due to the coupling or the thermal distribution
of carriers in the contact. With increasing bias, the
current onset is followed by a plateau where temperature-
independent and magnetic-field-sensitive reproducible
features have been observed in several experiments
on small-area vertical structures [1,3] which were at-
tributed in [8,9] to the fluctuations in the local density of
single-particle states in a disordered emitter [10]. It was
suggested [4,8,11] that the impurity carrying the current
(spectrometer) can act as a probe of the local density of
state fluctuations (LDOSF) in the bulk of metallic con-
tacts. When shifted with a bias, the spectrometer detects a
“fingerprint” of the LDOSF as a function of energy.

In this paper, we study the evolution with magnetic
field of the LDOSF in a 3D disordered metal, a heav-
ily doped semiconductor, and discuss the results from the
point of view of the fluctuation and correlation properties
of single-particle wave functions in disordered media. We
have measured the fingerprint of the LDOSF, dn�´�, in the
differential conductance G�V � �

dI
dV �V � in a broad range

of magnetic fields, B, and analyzed its variance, �dG2�, and
correlation parameters. In intermediate fields, vct � 1,
we have detected an increase of the fluctuation magni-
tude, in agreement with the theoretically predicted behav-
ior [11]: ��dG�2�B���dG�2�B�0 � 1 1 �vct�2. At higher
fields, vct $ 1, we have observed large 1�B periodic os-
cillations in �dG2�. We conclude that LDOSF in strong
fields are dominated by the states near the minimum of the
Landau bands which play a distinguished role relative to
the rest of the spectrum. Notably, the observed oscillations
0031-9007�00�84(7)�1563(4)$15.00
are significantly stronger than those in other oscillatory ef-
fects in metals, such as de Haas–van Alphen effect.

The investigated structure consists of a 50 Å GaAs well
imbedded between two 81 Å Al0.33Ga0.67As barriers. Each
Si-doped GaAs contact consists of three layers: 4800 Å
with nominal doping 1018 cm23 is followed by 4800 Å
with 2 3 1017 cm23, and the latter is separated from the
barrier by an undoped spacer of 300 Å and 200 Å, for
top and bottom contact, respectively. The lateral area
of the nominally undoped quantum well is reduced to a
700 Å diameter disk using the ion bombardment technique
[12]. This decreases the number of active impurities in the
barrier, thus avoiding overlapping spectra of the LDOSF
produced by individual spectrometers. A schematic band
diagram of the resonant tunneling device with an impurity
level S in the quantum well is shown in the inset of Fig. 1.
By testing several samples, we have selected one with a
distinct impurity level, which is also well separated from
the states of the quantum well which lie about 10 meV
above. This energy range determines the interval where
the LDOS in the contact can be studied.

At zero bias, the spectrometer level S is above the Fermi
level m of the emitter with 3D metallic conduction. The
alignment of S and m with increasing bias is registered
as a step in IV . In the differential conductance G�V �
shown in Fig. 1, this current threshold corresponds to a
peak at 0.05 V. At low temperatures, its height is GG �
4e2

h
GmaxGmin

G2
max1G

2
min

� 4e2

h
Gmin

Gmax
and its width is related to the en-

ergetic width of the spectrometer G � Gmax � 120 meV
determined by the tunneling coupling between the impu-
rity and the contacts. The values of Gmin,max depend on the
transparencies of the two barriers, so that Gmax corresponds
to the lower (collector) barrier and Gmin corresponds to
the higher (emitter) barrier, Gmin � 5 3 1023Gmax, as es-
timated from the value of GG . The relation between bias V
and the energy scale of the spectrometer is established by
the coefficientf b �

dE
d�eV � � 0.24, found for the selected
© 2000 The American Physical Society 1563
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FIG. 1. Differential conductance as a function of bias with
the threshold peak and the fingerprint of the LDOS below the
Fermi level in the emitter. Inset: band diagram of the resonant
tunneling structure with a spectrometer.

structure from the analysis of the temperature smearing of
the threshold peak.

Above the threshold, the current is determined by the
emitter barrier transparency Gmin and the emitter density
of states n at the energy ES below the Fermi level. As the
barrier height does not change significantly over a small
V range, the current becomes a measure of the LDOS
in the emitter: I�V � ~ n�ES�. Fluctuations with energy
of the LDOS give rise to the reproducible, temperature-
independent fine-structure in IV . This is seen on top of a
smooth decrease in the current reflecting the averaged 3D
density of states.

Figure 2 shows the dependence G�V � measured in mag-
netic fields 0 , B , 10.5 T applied parallel to the current
and changed with a step of 20 mT. Fluctuations dG�V�
have a correlation voltage of DVc � 0.5 mV, which is
comparable to the width G�eb of the threshold conduc-
tance peak. With increasing magnetic field up to B �
4 T the fingerprint in G�V , B� changes randomly, with a
correlation field DBc � 0.05 T. At high fields, the fluc-
tuations transform into a more regular pattern, where in-
dividual features, assigned to Landau bands, tend to move
with increasing field towards the threshold peak, similar to
the observation by Schmidt et al. [9].

To interpret fluctuations in G�V � as an image of LDOSF,
we employ a picture based on the properties of single-
1564
FIG. 2. Conductance fluctuations G�V , B� normalized to the
threshold peak. Curves for different B are offset upwards and
multiplied by an increasing factor to compensate for the decrease
of the threshold peak with field.

electron wave functions ci�r� in a disordered metal
[13–15]. In a phase-coherent 3D metal, the local density
of states at a point r detected by a spectrometer with
width G can be considered as a sum of local densities,
jci�r�j2, of all eigenstates within energy interval G:

I�V � ~ n�E� � G21
X

jES2Ei j,G

jci�r�j2. (1)

The sum in Eq. (1) includes a large number of eigen-
states, N�G, L� � n0GLd , each of which typically con-
tributing as little as jc�r�j2 � L2d , with the mean value
of the LDOS, n0, independent of the sample size L. As
far as fluctuations dn are concerned, one might expect
that these fluctuations should vanish upon enlarging the
sample, since, for the sum of N�G, L� independently fluc-
tuating values djc�r�j2 � L2d , the variance �dn2� can
be estimated as N�G, L� ��dLjc�r�j2�2�, which is equiva-
lent to G22n0GLdL22d � n0G21L2d ! 0 when L ! `.
However, the correlations between wave functions at close
energies make the LDOSF in a large sample finite and in-
dependent of its size.

This statement can be explained using Thouless’s scal-
ing picture of quantum diffusion [16]. We construct the
electron states in a large sample by representing them
as linear combinations of wave functions defined in its
smaller parts, one of which contains the observation point
r, and by gradually combining the smaller parts up to the
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actual size L of the sample. For an intermediate length
scale j of the constituent part, its states are spaced by
D�j� � �n0jd�21. Diffusive spreading of these states into
a larger part, when it is combined with several blocks, leads
to their random mixing with the states from the neighbor-
ing j-size blocks within the Thouless energy g � hD�j2

[16]; D is the classical diffusion coefficient.
Since at each stage only a finite basis is involved in the

construction of the new states, some correlations exist be-
tween the new eigenstates, although at small j the spread
g is larger than G and these correlations are small. How-
ever, the Thouless energy g decreases with increasing j,
and, for j . LG �

p
hD�G, the states will not leave the

interval G. Thus, LG and N�G, LG� represent the largest
length scale and number of states for which correlations
between individual eigenfunctions could be neglected and
the above estimate of �dn2� from independent fluctuators
used. Then, for the random difference between two values
of n in the neighboring G intervals, one should take
�dn2� � N�G, LG� ��dLG

jc�r�j2�2� � n0G21L2d
G .

The differential conductance is a measure of the deriva-
tive, with respect to energy, of the LDOS in Eq. (1), and
�dG2� can be taken as �dG2� ~ �dn2��V2

G . We can nor-
malize the variance �dG2� by the height of the thresh-
old conductance peak determined by the average LDOS
and the spectrometer width VG � G�be, so that GG ~

N�G, LG� �jc�r�j2��VG . Then

�dG2��G2
G � N�G, LG�21 � �G�hD��d22��2��nhD� .

(2)
We also estimate the correlation voltage of fluctuations as
VG and the correlation magnetic field as DBc � F0�L2

G ,
where F0 is the flux quantum.

In a 3D system with an anisotropic diffusion ten-
sor �Dx , Dy , Dz�, Eq. (2) transforms into �dG2��G2

G ~

�DxDyDz�21�2. This relation also determines the classical
effect on the variance �dG2� of a magnetic field B � Blz .
Assuming that the cyclotron motion suppresses transverse
diffusion as Dx,y � D�	1 1 �vct�2
 [17–19] gives [11]

�dG2�B��dG2�B�0 � 1 1 �vct�2, vct & 1 . (3)

Figure 3 represents the result of our statistical analy-
sis of conductance fluctuations in small magnetic fields.
The amplitude of fluctuations is found from an individual
G�V � curve at a fixed B in Fig. 2 as �dG2� � k	G�B, V � 2

kG�B, V �k
2k (k · · · k represents the averaging over range
DV � 6 mV after the threshold peak.) To decrease the
scatter, a further averaging over a B range of 0.25 T has
been performed. The result is compared to that in Eq. (3).
The increase in �dG2�B agrees with the expected quadratic
dependence. From Fig. 3, we find the momentum relax-
ation time, t � 0.9 3 10213 s, and use it to estimate the
mobility, m � 0.22 m2�V s, in the emitter. The obtained
values agree with those expected for the emitter with the
same nominal doping [20], and justify our use of the dif-
fusion approximation since tG�h̄ � 1022. We also use
these values to estimate the zero-field diffusion coefficient,
D � 40 cm2�V s, and DBc � G�eD � 0.03 T, which is
close to the experimental value.

In this experiment we probe the states below the Fermi
level, where the concept of quasiparticles may not be appli-
cable, because of the decreased lifetime of the quasiparticle
due to electron-electron interactions. However, an estima-
tion of the electron lifetime tee [21] shows that the re-
laxation-induced level broadening, h̄�tee, is much smaller
than the energy of the quasiparticles ´, which means that
the quasiparticles are well defined. In the energy range
where the statistical analysis has been performed, the en-
ergy uncertainty is also smaller than G. With a further
increase of ´ (for the range V $ 0.058 in Fig. 2) we have
observed an increase of the correlation voltage, which is
an indication that the energy spread due to interactions ap-
proaches G.

Interactions could also induce a singularity in the current
near its threshold, as has been observed earlier in experi-
ments with 2D emitters [3]. No sign of the Fermi-edge
singularity has been detected in our measurements, which
is consistent with the 3D character of the emitter. The
3D nature of the emitter has been directly proved in the
experiment with rotating magnetic field, where no signifi-
cant difference in the fluctuation picture has been detected.

The value of t confirms that the crossover from weak
to strong fields, vct � 1, takes place at B � 4 T, where
the Landau band (LB) formation is seen in Fig. 2. In
the vct $ 1 regime, the field dependence of the variance
�dG2� has a strong oscillatory character similar to the de
Haas–van Alphen (dHvA) effect, with a sequence of peaks
periodic in 1�B (Fig. 4a). However, the oscillations in
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FIG. 3. (a) Diagram of the emitter volume where the tunneling
LDOS is formed, at B � 0 and B . 0. LG is the diffusion length
corresponding to electron lifetime h�G at the impurity level.
(b) Increase of the conductance fluctuations in intermediate
fields due to the suppression of transverse diffusion.
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FIG. 4. (a) Oscillations of the conductance variance in strong
fields. Inset: SdH oscillations in the bulk conductivity. (b) For
comparison, magneto-oscillations of the threshold conductance
peak.

�dG2� are much more pronounced than the oscillations in
the threshold peak GG , which are due to the modulation
of the average density of states at the Fermi level in the
emitter caused by depopulation of LB’s (Fig. 4b). Also,
the observed oscillations look significantly enhanced when
compared to the Shubnikov–de Haas (SdH) oscillations of
conductance in a lateral GaAs metal semiconductor field
effect transistor (MESFET) structure with the same nomi-
nal doping as the emitter (Fig. 4a, inset).

These enhanced dHvA-type oscillations in the fluctua-
tion amplitude suggest that the above estimation of �dG2�
using statistical properties of typical wave functions should
be modified. This can be done by considering a special
role of the states with anomalously large fluctuations of a
local density, by analogy with [13] where these states were
“prelocalized” states. In the case of a smooth random po-
tential with suppressed inter-LB scattering, these anoma-
lous states are the states near the bottoms of LB’s. When
in strong fields electron motion becomes quasi one dimen-
sional [22], the contribution to the LDOSF from the bottom
of the highest filled LB becomes distinguished from typi-
cal LDOSF and dominates in the magnitude of the variance
1566
�dG2�. For energies ES close to the bottom of the nth LB,
En � �n 1 1�2�h̄vc, not only the transverse but also the
longitudinal diffusion coefficient related to the highest LB,
D�n�

z � u2
zt ~ 	ES 2 En
, are suppressed due to the de-

crease in the kinetic energy along the magnetic field. When
the characteristic length scale Lz

G �
p

hD�n�
z �G becomes

smaller than the inter-LB scattering length, the states from
the upper LB start providing a contribution �d�n�G2� to the
LDOSF that is enhanced compared to the typical variance
�d�typ�G2�:

�d�n�G2���d�typ�G2� � �n�n��n� �D0�D�n�
z �1�2. (4)

The structure of Eq. (4) explains the enhancement of os-
cillations in the fluctuation amplitude in Fig. 4 relative to
oscillations of GG�B� and SdH oscillations. The latter are
a measure of the ratio of the LDOS in the highest LB and
the total LDOS, i.e., they are represented by the first fac-
tor in Eq. (4). The unusual factor �D0�D�n�

z �1�2, which is
responsible for the enhancement of the oscillations of the
fluctuation amplitude, is a specific feature of the LDOSF
effect.
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