
A Fast Symbolic Computation Approach to Statistical Analysis of Mesh Networks
with Multiple Sources ∗

Zhigang Hao and Guoyong Shi
School of Microelectronics

Shanghai Jiao Tong University, Shanghai, 200240, China

e-mail: {haozhigang,shiguoyong}@ic.sjtu.edu.cn

Abstract— Mesh circuits typically consist of many resistive
links and many sources. Accurate analysis of massive mesh net-
works is demanding in the current integrated circuit design prac-
tice, yet their computation confronts numerous challenges. When
variation is considered, mesh analysis becomes a much harder
task. This paper proposes a symbolic computation technique that
can be applied to the moment-based analysis of mesh networks
with multiple sources. The variation issues are easily taken care
of by a structured computation mechanism, which can naturally
facilitate sensitivity based analysis. Applications are addressed by
applying the computation technique to a set of mesh circuits with
varying sizes.

I. INTRODUCTION

Interconnect has become the current design focus in the inte-
grated circuit design practice. Tremendous research effort has
been observed in the past twenty years; addressing the inter-
connect problems from the perspectives of modeling, analysis,
physical design, manufacturing, and yield, etc. More recently,
new research activities have been directed toward the process
variation issues and the related problems such as statistical tim-
ing and signal integrity.

The moment-based analysis approaches initiated by Pillage
et al. [1, 2] and the ensuing model order reduction techniques
have been the dominating analysis techniques for interconnect
related computation tasks. Along this line, recently we have
observed that quite a number of researches have attempted to
extend the model order reduction techniques to considering the
variation issues. Typical approaches, among others, are 1) In-
corporating interval analysis to matrix computation, resulting
interval algebra for reduced-order modeling [3]; 2) Symbolic
model order reduction techniques [4] which are far from ma-
ture; and 3) Other approximate or parametric approaches for-
mulated under the name of statistical timing analysis, such as
[5, 6].

Obviously, the model order reduction based approaches are
confronting lots of difficulties as long as mesh networks are
concerned. The major difficulties are: 1) massive links make
those efficient methods such as RICE [2] not applicable (the
efficiency of the interval methods of [3] also is limited without
a tree structure.) 2) multiple sources create the hardest obsta-
cle to reduced-order modeling, as the input-output multiplicity
makes it hard to create compact macromodels.

Since the key computation load in model order reduction

∗This research was supported in part by Shanghai Pu Jiang Research Foun-
dation (Grant No. 07pj14053) and the Initiative Research Fund for overseas
returnees from the Ministry of Education of China (2008), and by the National
Natural Science Foundation of China, Grant No. 60876089.

arises from matrix computations, such as solving direct current
(DC) solutions repeatedly, extending such computation strate-
gies directly to variational matrices in the form of symbolic
model order reduction [4] or interval model order reduction
[3] are not expected to be sustainable. However, many recent
research works have suggested that low-order moments com-
puted from the interconnect circuits can be very accurate and
useful for physical design automation tasks, such as [7, 8, 9].
The usefulness of moments has motivated us to investigate the
feasibility of symbolic computation of moments and its appli-
cations.

This line of research has gone through the following phases.
It was discovered in [10] that the moment computation for tree-
structured circuits takes an elegant recursive form [11], thus it
can be programmed structurally or symbolically. Meanwhile
the moment sensitivity can be computed symbolically. The
work of [12] extends [10] to dealing with links, so that the sym-
bolic computation of circuit moment can be applied to mesh
networks as well, but at that time the mesh circuits were lim-
ited to having one single source. The key technique used in
[12] is a successive link decomposition procedure initially pro-
posed in [13, 14].

This work is a significant continuation of the previous work
[10, 12] by lifting the single source assumption to consider
multiple sources. The computation complexity remains poly-
nomial. Multiple-source mesh networks arise frequently in the
IC design practice, such as in the clock mesh design [15].

The rest of the paper starts from a background review pre-
sented in section II, where to help understanding we de-
scribe the symbolic moment computation procedure by walk-
ing through a simple mesh circuit with one single source. Then
in section III the multiple-source problem is solved by slightly
adapting the computation diagram developed for the single-
source mesh circuits, without changing the underlying branch
tearing based computation principle. An outline for the mo-
ment sensitivity computation is presented in section IV, which
basically follows the same computation procedure and imple-
mentation strategy developed earlier in [10, 12]. The per-
formance of the proposed computation methodology is eval-
uated in section V via applications to statistical timing analy-
sis where several approximation strategies are investigated and
compared. This paper concludes in section VI.

II. ANALYZING A SIMPLE MESH WITH ONE SINGLE

SOURCE – A REVIEW

Shown in Fig. 1(a) is a small mesh circuit with one source
Vs. By viewing this circuit as a spanning tree rooted at Vs

added with two link resistors G1 and R4, one can devise a

978-1-4244-5767-0/10/$26.00 2010 IEEE

5A-1

383

structural computation procedure for computing the moments
at all circuit nodes.

Resistor Link:
G1 R4

R1 C1 R4G1

R2 C2

R3 C3

Vs R1

R2

R3

-1A

1A
(a) (b)

+

-

Vth

p

q

G1

Fig. 1. (a) A circuit with two resistor links. (b) The Thevenin equivalent
circuit for computing Rth for the link R4.

First, the tree circuit with the resistive links G1 and R4 re-
moved (only the capacitive loads remain at the non-root nodes)
can be solved by an iterative tree traversal algorithm [2, 11].
Let mi,k be the kth order moment at node i, it holds that

mi,k =
∑

R�∈Pi

R�

∑

j∈T�

Cj · mj,k−1−
∑

L�∈Pi

L�

∑

j∈T�

Cj · mj,k−2, (1)

where Pi represents the path from the full-tree root to node i,
the summation index R� ∈ Pi means summing over all the re-
sistors R� on the path Pi, T� denotes the subtree rooted at node
�, and the summation index j ∈ T� indicates the summation
over all nodes belonging to the subtree T� (including the root
of T�).

Let p(j) be the parent node of the node j in a tree circuit.
The recursion formula (1) can be rewritten as

mi,k = mp(i),k + Ri

∑

j∈Ti

Cj · mj,k−1, (2)

which implies that the kth order moments can be computed
recursively along the path from the tree-root toward the tar-
get node where a moment is requested. We observe that only
addition and multiplication are involved in the expression (2).
Therefore, it is very easy to program the computation of (2) in
a binary decision diagram (BDD) as it is used for logical ex-
pressions. The summation in (2) is over a tree, which also can
be structurally programmed with a BDD [10].

The main data structures used in the implementation resem-
ble the circuit tree structure (see Fig. 2(a)), where all the R
nodes and the associated arrows (solid and dashed) form a BDD
while the C nodes and the (solid) arrows form a tree. The BDD
nodes and the tree nodes are linked as shown in Fig. 2(a) which
implements the computation of (2); each R node has a solid ar-
row pointing at a respective C node, where the solid (‘then’)
arrows of R’s stand for the multiplication in the expression (2)
and the dashed (‘else’) arrows of R’s stand for the addition in
the expression (2). The tree consisting of the C nodes in Fig.
2(a) is for calculating the summation in (2). We call the compu-
tation diagram shown in Fig. 2(a) a tree-BDD, to differentiate
it from the other BDD to be discussed next.

The difficulty arises from the resistive links existing between
nodes of a tree circuit (or between a node to the ground), which
must be handled differently from a capacitive coupling [10].
A good approach that maintains the merit of structural com-
putation is by apply successive branch tearing to all resistive

,O O

4R

1G

,O A ,A O

1G

open

open

1A

1A 1A

1,G O

1 4,G R

1,G A

open

1R

2R 3R

1C

2C 3C

(a) (b)

0

add add

then

then

then

elseelse

else

Fig. 2. (a) A tree-BDD. (b) A link-BDD.

links. It turns out that by integrating the previous tree-BDD
computation structure with the branch tearing process to be de-
scribed next, the moment analysis of a whole mesh with mul-
tiple links and multiple sources can be done symbolically with
only a polynomial complexity.

The Kron’s branch tearing method [16] works as follows.
For each selected resistive branch R, a circuit is decomposed
into two: one (denoted circuit-O) with the branch R removed
(open), the other (denoted circuit-A) with the branch R re-
placed by a current source IR,

IR =
Voc

Rlink + Rth
, (3)

where Rlink is the impedance of the removed branch, Rth is the
Thevenin equivalent impedance seen by Rlink, and Voc is the
open circuit voltage across the removed R. By a basic circuit
analysis [16], the nodal voltages (or moments) of the original
circuit are obtained by superposition of the nodal voltages (or
moments) of circuit-O and circuit-A. For mesh circuits, replac-
ing a resistive link by a current source is equivalent to remov-
ing the link while placing two opposite but equal valued current
sources at the two branch ends (see Fig. 1(b)).

A good consequence of the above decomposition is that we
have removed one resistive link and just solve two new circuits,
one added with current sources at the certain nodes. By apply-
ing a repeated branch tearing process to all resistive links in a
mesh, we end up with a set of tree circuits, all driven by (possi-
bly different) pure current sources at the tree nodes, which can
be solved by a tree-BDD discussed earlier.

The link-tearing process can be represented by a binary de-
cision diagram (BDD) again (called a link-BDD) as shown in
Fig. 2(b) for the working example. By Kron’s tearing and the
superposition principle, each node in the link-BDD performs
the following computation for all nodal moments

mi,k = m
(O)
i,k − IR · m(A)

i,k , (4)

where mi,k is the kth order moment of node i, the superscript
‘O’ stands for the circuit-O while the superscript ‘A’ stands for
the circuit-A mentioned above. One should notice the sharing
of one node in Fig. 2(b) which is a natural consequence of the
link-decomposition process.

The link-decomposition method for mesh analysis was first
proposed by Lee et al. [13, 14] where the Kron’s tearing was
applied. Lee et al. also introduced a BDD based computation
scheme for managing the sharing during decomposition. But
they did not propose a solution to meshes with multiple-source.

5A-1

384

Also they did not treat the moment computation in a symbolic
formulation; hence, they did not address the sensitivity compu-
tation issue.

III. MESH WITH MULTIPLE SOURCES

It would be nontrivial to extend the single-source compu-
tation introduced above to multiple-source cases if the source
superposition principle is used directly. In that way one would
have to construct a set of computation diagrams for comput-
ing tree circuits with the roots at the different sources. This
approach is in principle feasible, but would end up with an in-
efficient implementation. An alternative approach is to keep
the single spanning tree formulation, while taking care of the
multiple sources once again by adopting a decomposition pro-
cess as we have developed for the resistive links. Our earlier
implementation for single-source mesh circuits can be reused
to the maximum extent by taking the latter approach.

C1

1 2 3

4 5 6

987

R12 R23

R45 R56

R14 R25 R36

R47 R58 R69

C2
C3

C6

C9

C4 C5

C7 C8

Is3

Rs3

Rs2
Is2

Rs1
Is1

Fig. 3. A mesh driven by multiple sources.

We assume without loss of generality that all driving sources
(either voltage or current) have inherent driving resistances.
For the example shown in Fig. 3, three driving sources are
placed in the mesh, all in the current form. For a consistent
development of a structured computation process, we select an
arbitrary one source (say, source Is1) for the tree root and iden-
tify an arbitrary spanning tree as the underlying tree circuit to
start the analysis.

The next step is to introduce another link decomposition pro-
cess but this time to the (non-root) source resistors. The differ-
ences from the resistive links are that the links now are con-
nected to the ground and meanwhile there exist current sources
in parallel to the grounding resistor links. As the grounding re-
sistive links are progressively decomposed, the remaining pure
current sources are easily taken care of by a tree-BDD that sym-
bolically solves the spanning tree circuit only driven by pure
current sources at the tree nodes (as discussed in section II.)

An illustration of this computation process is given in Fig. 4,
where the links R45 and R56 are decomposed together with the
source resistors Rs2 and Rs3 in the same link-BDD. The current
sources Is2 and Is3 that carry through the diagram top-down is
due to superposition. Reading from the root node downward,
the tuple (R45, R56, Rs2 +Is2, Rs3 +Is3) refers to the original
circuit with two non-root sources; the tuple (R45, R56, Rs2, A)
refers to the circuit with the link Rs3 replaced by a unity cur-
rent source with all other independent sources switched off; the
tuple (O, O, Is2, Is3) refers to the circuit with the all the (intra

2 3, , ,s sO O I I

2sR

56R

45R45R

56R

open

open

open

1A

1A 1A

1A 1A1A

open

open

45 56 2 3, , ,s sR R I I45 56, , ,R R A O

45 56 2 2 3, , ,s s sR R R I I

open

45R

2sR

56R

45R

3sR

, , ,A O O O, , ,O A O O, , ,O O A O, , ,O O O A

45 2 3, , ,s sR O I I45, , ,R A O O45, , ,R O A O45, , ,R O O A

45 56, , ,R R O A

45 56 2, , ,sR R R A

45 56 2 2 3 3, , ,s s s sR R R I R I

open

open

open

open1A

1A

1A

1A

Fig. 4. Multi-source-link-BDD for the example circuit.

and grounding) link resistors removed except for the two pure
current sources Is2 and Is3; and all other notations in Fig. 4
are supposed self-evident. We stress that, whenever comput-
ing the Thevenin equivalent impedance for one specific link
(whether grounding or not), only the unity current source(s)
corresponding to the chosen link is applied while all other (in-
dependent and equivalent) sources must be turned off. There-
fore, only one ‘A’ symbol is allowed to appear in all tuples
involving an ‘A’ at the leaf nodes in Fig. 4. Since the under-
lying branch-tearing principle remains unchanged, the moment
computation performed by each BDD vertex in the link-BDD
for the multiple-source circuits remains the same as given by
(4).

The symbolic moment computation procedure for multiple-
source meshes is summarized below.

Moment Computation Algorithm for Multiple-Source
Mesh Circuits

Step 1. Select one source as the primary source. Find a span-
ning tree of the original circuit rooted at the primary
source. Construct a tree-BDD for the spanning tree and
construct a link-BDD by decomposing all the inter-node
links and grounding source links.

Step 2. Evaluate the tree circuits at the leaf vertices of the link-
BDD using the tree-BDD by substituting the C-values in
the tree-BDD by the appropriate current values resulting
from branch tearing.

Step 3. Evaluate the moments of the link-BDD from bottom-
up.

Step 4. Repeat Steps 2 and 3 to get the nodal moments of the
succeeding order.

Note that the independent sources are used only in the com-
putation for the 0th order moments and are set to zero for com-
puting the higher-order moments.

The computation complexity for the nodal moments is es-
timated similarly to [12]. Suppose a mesh has N nodes, S
sources, and L links. Then we have (L + S − 1) links to de-
compose. According to the triangular computation diagram of
the link-BDD shown in Fig. 4, there are O((L+S)2) link-BDD
vertices in total. Since at each vertex all (N) nodal moments
are computed once, the computation complexity of the link-
BDD is proportional to O(N(L+S)2). On the other hand, one

5A-1

385

round of the tree-BDD computation is linear in the number of
the tree nodes, i.e., O(N). Since we have (L + S) leaf vertices
in the link-BDD, the computation cost for all leaf vertices of a
link-BDD is O(N(L + S)).

Clearly, if the number of links L and the number of
sources S are much smaller than the number of nodes N , i.e.,
max{L, S} � N , then the computation complexity is almost
linear in the number of mesh nodes N . However, the compu-
tation cost increases with the numbers of links and sources. In
the worst case, the number of mesh links could reach the or-
der of O(N) and each mesh intersection could be driven by a
current source, it could result in the worst computation com-
plexity of O(N 3), but still polynomial. It is worth stressing
that a symbolic computation algorithm of polynomial complex-
ity for moment computation is considered acceptable; as we
know, a symbolic matrix inversion algorithm would of the ex-
ponential complexity if not implemented properly. The link-
decomposition process developed so far fully takes the advan-
tage of the circuit structure and its inherent superposition prop-
erties; while a mathematical symbolic matrix inversion proce-
dure pays no attention to the underlying circuit structure and
properties.

IV. SENSITIVITY COMPUTATION

The gradient of moment with respect to the resistors and the
capacitors are defined by:

∇�Rmi,k := [∂mi,k/∂R1, · · · , ∂mi,k/∂Rq]T ,

∇�Cmi,k := [∂mi,k/∂C1, · · · , ∂mi,k/∂Cq]T ,

where �R and �C are the vectors containing the selected Ri’s and
Ci’s from the spanning tree circuit, q is the total number of Ri’s
or Ci’s selected for sensitivity analysis. Taking the gradient
with respect to �R or �C in the equation (2) gives rise to

∇�Rmi,k = ∇�Rmp(i),k + �ei

X

j∈Ti

Cjmj,k−1 + Ri

X

j∈Ti

Cj∇�Rmj,k−1,

(5)

∇�Cmi,k = ∇�Cmp(i),k + Ri

X

j∈Ti

�ejmj,k−1 + Ri

X

j∈Ti

Cj∇�Cmj,k−1,

(6)

where �ei is the ith basis vector in the q-dimensional space.
Equations (5) and (6) are the basic equations for the resistive
sensitivity and the capacitive sensitivity, respectively. There
is no difficulty in defining the higher order derivatives. Induc-
tors in serious with the tree resistors and the respective inductor
sensitivity also can be considered; but are omitted for the sake
of brevity.

The moment gradient expressions given in (5) and (6) indi-
cate clearly that the gradient computation can easily be embed-
ded in the structured moment computation process developed
in the previous section. What we need to do in implementa-
tion is to add an extra moment gradient vector to each BDD
vertex participating in the moment computation. The gradient
vector propagates through the BDD data structure bottom-up
and the arithmetic derivative operations given in (5) and (6) are
performed successively by the BDD vertices.

If links are present as in mesh circuits, the moment sensi-
tivity (or gradient vector) would have to propagate through the

link-BDD vertexes as well (see Fig. 4). Knowing that the BDD
vertices and arrows basically implement the functional com-
position, we can implement the sensitivity propagation by fol-
lowing the differentiation chain rules for composite functions.
Since the link-BDD vertexes perform the moment calculation
in the form of (4), taking the gradient operation w.r.t. any single
parameter p leads to

∇pmi,k = ∇pm
(O)
i,k −∇pIR · m(A)

i,k − IR · ∇pm
(A)
i,k . (7)

Since

IR =
m

(O)
p,k − m

(O)
q,k

Rlink + m
(A)
p,k − m

(A)
q,k

, (8)

∇pIR is computed in terms of ∇pm
(O)
i,k and ∇pm

(A)
i,k . Equation

(7) shows the computation being performed by each vertex in
the link-BDD during the gradient computation.

From the above discussion we know that there is no change
of the computation data structure and data flow during the
sensitivity computation except that additional memory has to
be allocated for the storage of the intermediate gradient vec-
tors. Therefore, the sensitivity computation complexity re-
mains polynomial. The detailed complexity analysis is omit-
ted to save space. But we point out that the moment sensitivity
computation can be carried out together with the moment com-
putation during the bottom-up traversal of the tree-BDD and
the link-BDD.

Remark 1 We are aware of the existence of the automatic dif-
ferentiation technique that can compile a C language program
to generate routines that perform the differentiation of a pro-
grammed function. We are not taking this approach because
our moment computation diagram already has a very regular
data structure that can easily incorporate the differentiation
computation. Be aware that the main operations involved in the
moment computation are the very basic arithmetic operations
(additions, multiplications, and divisions), the corresponding
differentiations can easily be programmed.

V. PERFORMANCE EVALUATION AND APPLICATIONS

We have implemented the proposed symbolic moment and
sensitivity computation method in the form of a circuit simu-
lator using C++. This simulator is designed for statistical in-
terconnect analysis, thus code named Statistical Interconnect
Simulator (SIS). The interconnect simulator was tested on an
Intel 2.83G CPU with 4GB memory running a Redhat Enter-
prise Linux 4 operating system. Its performance was compared
to HSPICE (version 2005.03) and Matlab 2007a running on the
same machine.

A. Performance of the Interconnect Simulator

The per-unit-length (PUL) resistor and capacitor values were
set to 0.1Ω and 4.11E−16F , respectively, according to a
0.18μm process technology. Shown in Table I are five indus-
trial level clock mesh designs used for testing. The first four
columns list the circuit details. For a comprehensive compari-
son, we have evaluated a number of running times. the columns

5A-1

386

TABLE I
STATISTICAL INTERCONNECT SIMULATOR PERFORMANCE

Nodes Mesh Sources R-Links BDD Building 4th Order Moment 4th Order Moment Obtain Reduced Order Speedup over

Type Time(s) Evaluation Time(s) Sensitivity Time(s) Model Time(s) Superposition

576 5x5 30 54 0.11 0.03 0.23 0.01 29.8

1296 7x7 56 104 0.89 0.09 1.53 0.02 55.5

1720 9x9 63 143 2.28 0.16 3.63 0.02 63.2

3838 13x13 130 298 20.97 0.75 32.88 0.04 130.2

6976 15x15 180 404 70.31 1.83 106.61 0.07 179.8

5-8 list the time splits of the SIS simulation. As expected, the
construction times for two BDDs dominate the whole simula-
tion. As soon as the BDDs are constructed, the times spent on
evaluation are less prominent for moment evaluations (up to the
4th order) and reduced-order model evaluations. We also com-
pared the SIS to another simulation method by taking the mul-
tiple sources one after another by superposition. The speedup
of SIS over superposition is remarkable as listed in the last col-
umn.

To have a feeling of how slow a symbolic matrix inversion
package would be, we tested a case by using Matlab for invert-
ing the matrix arising from the smallest mesh with 576 nodes.
Matlab took over eight hours to compute the symbolic ma-
trix inversion. Because the symbolic expressions derived are
so complicated, the numerical evaluation phase would also be
time-consuming. Therefore, it is in general not recommended
to use a general purpose symbolic matrix inversion package to
do symbolic moment computation.

The performance merit of SIS is more appealing than
HSPICE as far as the sensitivity computation is concerned. SIS
computes the sensitivity analytically, thus each round of nu-
merical evaluation is extremely fast, while HSPICE has to run
for multiple times to calculate the numerical sensitivities by fi-
nite differences.

B. Applications of Moment Sensitivity

The symbolically computed moment sensitivity has many
applications. One application of the moment sensitivity is to
derive approximate moments by Taylor expansion, with which
repeated moment computation can be avoided.

The Taylor expansion of moment w.r.t. parameters up to the
second order can be written as

mk (δ1, δ2, . . . , δp) = mk (0) +
p∑

r=1

δr
∂mk (0)

∂δr

+
1
2

p∑

u=1

p∑

v=1

δuδv
∂2mk (0)
∂δu∂δv

+ · · · (9)

Thus, if the first and second order sensitivities are computed at
a set of nominal parameters, then the new moments for the per-
turbed parameter values can be approximately computed using
(9) without running the moment computation engine again.

We tested this idea for two interconnect trees, one involv-
ing RCL elements, the other with RC elements. We assume
that all the R, C and L values are subject Gaussian statistical

variation with 3σ at the level of 30% variation. Table II shows
that the relative errors for the different orders of moments are
mild while the computation speedups over the exact computa-
tions are remarkable. Therefore, for some large-scale applica-
tions, taking the Taylor approximation approach is a favorable
choice.

Another application of the sensitivity is to derive rapidly the
statistical timing distribution at some or all mesh nodes for
timing related mesh design tasks. For efficiency reasons, us-
ing certain empirical timing metrics is more competitive than
using dynamical models. Among the moment-based metrics
proposed recently, we find that the D2M metric [7] is of high
fidelity for 50% delay calculation for mesh networks. Other
metrics such as the S2M [8] can be used for statistical skew
analysis.

The sensitivity function can be used for mapping between
the probability density functions (PDFs), the so-called direct
mapping method proposed in [10, 12].

Let X be a real random variable with the probability density
function (PDF) fX(x). Let y = g(x) be a first-order differ-
entiable function of x. In Probability Theory, the PDF of the
random variable Y satisfies

fY (y) =
∑

k

fX (xk)
|dg (xk)/dx| , (10)

where xk, k = 1, 2, · · · , are all points satisfying g(xk) = y.
The D2M delay metric [7] is calculated using the first and

second-order moments

D2M(i) = ln2
m2

i,1√
mi,2

. (11)

Once the moment vector and moment sensitivity vectors have
been calculated, the timing PDFs can easily be evaluated using
equation (10). The direct mapping method has the advantage
of directly obtaining the mapped PDF function without running
the time-consuming Monte Carlo simulation.

For example, we can use the stated method for examining
the timing distribution at any mesh nodes when the mesh ge-
ometry is subject to statistical global variation (such as in yield
analysis.) We assume that all the mesh R and C values are sub-
ject Gaussian statistical variation with 3σ at the level of 30%
perturbation. The direct mapping method generates a timing
PDF plot by sampling the parameter space. Shown in Fig. 5 is
the PDF generated for the 7x7 mesh listed in Table I. A simi-
lar PDF was also generated by running HSPICE Monte Carlo
(5000 times) and the marvelous speedups are observed in Table
III.

5A-1

387

TABLE II
RELATIVE ERROR AND TIME SPEEDUP USING TAYLOR APPROXIMATION OVER EXACT MOMENT CALCULATION

1st order moment 2nd order moment 3rd order moment

speedup mean std mean std mean std

RCL 1st order Taylor 96 3.04% 1.56% 8.29% 2.99% 16.23% 2.90%

2nd order Taylor 77 0.92% 0.08% 3.22% 0.36% 7.76% 1.53%

RC 1st order Taylor 99 3.71% 1.47% 9.73% 2.42% 18.56% 1.45%

2nd order Taylor 80 0.88% 0.26% 3.27% 0.31% 8.12% 0.93%

TABLE III
SPEEDUP OF DIRECT MAPPING OVER HSPICE FOR PDF PROFILING.

Mesh Type All Nodes Average Error Speedup to

mean std Monte Carlo

5x5 0.21% 1.27% 1121

7x7 0.09% 1.12% 843

9x9 0.23% 0.09% 658

13x13 0.17% 0.75% 356

15x15 0.13% 0.62% 340

4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

x 10
−12

0

0.02

0.04

0.06

0.08

0.1

Delay (s)

P
ro

ba
bi

lit
y

50% Delay

Sensitivity
Matching

HSPICE
Monte Carlo

Fig. 5. 50% delay distribution of one node of mesh 7x7.

VI. CONCLUSION

Symbolically analyzing a mesh network driven by multiple
sources has never been addressed in the literature. It is tra-
ditionally believed that symbolic reduced-order modeling re-
quires the symbolic computation of matrix inversions. By this
work, we have demonstrated a fundamental fact that circuits in
the form of mesh with multiple driving sources can be symboli-
cally analyzed by a successive link decomposition process with
polynomial memory and time complexity, not the exponential
complexity as commonly believed. To some degree, this work
also solves the model order reduction problem with multiple
sources.

The applications of the proposed approach are not limited to
statistical timing analysis and variational reduced-order model-
ing. Other potential applications lie in the physical synthesis of
clock meshes. Clock mesh analysis and synthesis have been the
subject of many research efforts recently. Some techniques de-
veloped in the literature [17, 18] have obvious limitations. An
efficient mesh analysis scheme is crucial for clock mesh syn-
thesis. As a continuing research topic, we are going to apply
the symbolic mesh analysis methodology to clock mesh syn-
thesis including mesh placement and sizing.

REFERENCES

[1] L. Pillage and R. Rohrer, “Asymptotic waveform evaluation for timing
analysis,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 9,
pp. 352–366, April 1990.

[2] C. Ratzlaff and L. Pillage, “RICE: Rapid interconnect circuit evaluation
using AWE,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 13, no. 6, pp. 763–776, June 1994.

[3] J. D. Ma and R. A. Rutenbar, “Fast interval-valued statistical modeling
of interconnect and effective capacitance,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 25, no. 4, pp. 710–724, April 2006.

[4] G. Shi, B. Hu, and C. J. R. Shi, “On symbolic model order reduction,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 25, no. 7,
pp. 1257–1272, July, 2006.

[5] K. Agarwal, M. Agarwal, D. Sylvester and D. Blaauw, “Statistical
interconnect metrics for physical-design optimization,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 25, no. 7, pp. 1273–1288,
July 2006.

[6] J. K. Zeng and C. P. Chen, “Deep submicron interconnect timing model
with quadratic random variable analysis,” Proc. Design, Automation and
Test in Europe, pp.1091-1094, March 2008

[7] C. J. Alpert, A. Devgan, and C. Kashyap, “A two moment RC delay
metric for performance optimization,” in Proc. International Symposium
on Physical Design (ISPD), pp. 73–78, San Diego, CA, 2000.

[8] K. Agarwal, D. Sylvester, and D. Blaauw, “A simple metric for slew rate
of RC circuits based on two circuit moments,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 23, no. 9, pp. 1346–1354, Sept.
2004.

[9] C. Kashyap, C. Alpert, F. Liu, and A. Devgan, “Closed-form expres-
sions for extending step delay and slew metrics to ramp inputs for RC
trees,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 23,
no. 4, pp. 509–516, April 2004.

[10] Z. Hao and G. Shi, “Sensitivity approach to statistical signal integrity
analysis of coupled interconnect trees,” in Proc. IEEE Midwest Symp.
Circuits Syst., vol. 1, pp. 212–215, Aug. 2009.

[11] Q. Yu and E. S. Kuh, “Exact moment matching model of transmission
lines and application to interconnect delay estimation,” IEEE Trans. on
Very Large Scale Integration Systems, vol. 3, no. 2, pp. 195–206, April
2002.

[12] Z. Hao and G. Shi, “Symbolic techniuqes for statistical timing analysis
of RCL mesh networks with resistor loops,” to appear in IEEE Interna-
tional Symposium on Integrated Circuits, Singapore, Dec. 2009.

[13] H. J. Lee, M. H. Lai, C. C. Chu, and W. S. Feng, “Moment com-
putations for R(L)C interconnects with multiple resistor loops using
ROBDD techniques,” in Proc. Asia Pacific Circuits Syst. Conf., vol. 1,
pp. 525–528, Dec. 2004.

[14] H. J. Lee, M. H. Lai, C. C. Chu, and W. S. Feng, “Applications of
tree/link partitioning for moment computations of general lumped RLC
networks with resistor loops,” in Proc. IEEE Int. Symp. Circuits Syst.,
vol. 1, pp. 713–716, May. 2004.

[15] P. Restle et al, “A clock distribution network for microprocessors,” IEEE
J. Solid-State Circuits, vol. 36, no. 5, pp. 792–799, May 2001.

[16] R. Rohrer, “Circuit partitioning simplified,” IEEE Trans. Circuits Syst.,
vol. 35, no. 1, pp. 2–5, Jan 1988.

[17] H. Chen et al, “A sliding window scheme for accurate clock mesh anal-
ysis,” in Proc. Int. Conf. Computer-Aided Design, pp. 939–946, Nov.
2005.

[18] X. Ye, P. Li, M. Zhao, R. Panda, and J. Hu, “Analysis of large clock
meshes via harmonic-weighted model order reduction and port sliding,”
in Proc. Int. Conf. Computer-Aided Design, pp. 627–631, Nov. 2007.

5A-1

388

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d0061007400630068002000740068006500200022005200650071007500690072006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

