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ABSTRACT 

We applied time series predicting tools for the simulation 
of the temporal behavior of large pipeline networks submitted 
to timely changing inputs. The inputs may consist of a set of 
specified flow rates at client or supply nodes, while the outputs 
are another set of nodal pressures and internal flow rates. 
According to the topology, size, age and history of the network, 
the continuous generation of phenomenological dynamic 
simulations may be impossible, imprecise or numerically 
expensive, demanding thus alternative approaches. Our 
methodology is particularly oriented to this kind of demand. 
From recorded network past data covering relevant history of 
inputs and selected outputs, ARX-MIMO predictors are built 
with identification methods and launched for continuous 
estimation of the network outputs one time step ahead. Results 
are precise enough for engineering, training and monitoring 
applications.   
                                                                                                        
Keywords: Simulation, Pipeline Network, Time Series, ARX 

 
INTRODUCTION 

This paper presents the use of process identification 
techniques for developing models able to capture the dynamic 
behavior of pipe networks. The availability of a model is 
important to applications such as dynamic process simulations, 
process monitoring, control and staff training in the operation of 
a pipe network. According to the topology, size, age and history 
of the network, the continuous generation of phenomenological 
dynamic simulations may be impossible, imprecise or 
numerically expensive, demanding thus alternative and adaptive 
approaches. We applied time series predicting tools for the 
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simulation of the temporal behavior of large pipeline networks 
submitted to timely changing inputs. The inputs may consist of 
a set of specified flow rates at client or supply nodes, while the 
outputs are another set of nodal pressures and internal flow 
rates. Our approach is only supported by time series data of the 
main process variables with no need for phenomenological 
knowledge of the system structure or its parameters (e.g. pipe 
connection diagram, pipe roughness, pipe diameters, etc.). In 
this work we considered the simulation of a hypothetical pipe 
network composed of several supply and demand sites 
interconnected, including the presence of loops in the structure, 
and adopting typical large pipeline diameters and lengths. A 
pseudo-stationary simulation algorithm was employed to 
generate the network response under the influence of time series 
of input data, which follow a temporal pattern corrupted by 
typical noise, thus emulating the dynamic behavior of the real 
process. The predictor is built based on an ARX model (auto-
regressive with extra inputs) in a MIMO structure (multiple-
input, multiple-output). We investigated two polices of 
mounting and using the predictor, which are defined by the 
specification of the lengths of the training and predicting 
phases. Results indicate that the simulator allows a good 
representation of the network behavior, predicting output values 
close to those generated by the rigorous model employed to 
represent the real system, and corroborated by an uncertainty 
analysis based on confidence limits. 

NOMENCLATURE 
)(qA :   AutoRegressive filter with order n 

 Ak:    constant matrix (ny x ny)  
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10 A,A : vectors of pump parameters 

32 A,A : vectors of pump parameters  
)(qB :   eXogenous input filter with order m 

Bk :        constant matrix (ny x nu)  
D : vector of tube diameters 
E, EP : numbers of tube edges and pump edges  
F  selection matrix for assignment of specifications 

f :        vector of Darcy friction factors 

g :      acceleration of gravity 
H :      vector of pump heads  
K :     vector of tube hydraulic parameters 
L : vector of tube lengths 
M :    network incidence matrix 
N : number of network nodes  
NT : number of time instants in the training phase 
NI : number of time instants in the predictive phase 
n,m : orders of AR and X filters in ARX model 
nu,ny: lengths of input and output vectors in ARX model 
P :      vector of nodal pressures   
Q :  vector of tube flow rates  

UQ : vector of upper bounds for pump flow rates  

q :         forward shift operator 
Re : vector of Reynolds numbers 
S :       selection matrix 
t: time instant 

)t(U :   process inputs at time instant t 
)(tV :  process specifications at time instant t 

W : vector of node external flow rates 
)(tX :   process variables at time instant t 
)t(Y :  vector of outputs or measured process variables  

)1(� +tY : predicted vector of outputs for instant t+1 
Z :         node heights 

α : vector of slacks for pump flow rates  
β : vector of slacks for pump flow rates 

ε : pipe roughness 
µρ , :  fluid density and viscosity  

 
 

1. GENERAL ASPECTS ON PIPELINE NETWORK 
SIMULATION 

Large pipeline networks are becoming very important 
systems in modern human society, responding by the transport 
and distribution of potable and irrigation water, fuels, industrial 
raw materials like crude oil and natural gas, and several 
petrochemical and industrial fluids. Due to worldwide 
continuous expansion of pipeline network applications, they 
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also exhibit trends related to gradually larger sizes; higher 
degree of topologic complexity in designs and increasing levels 
of service pressures and flow rates. In this context, management 
and logistics of large-scale fluid transportation companies 
depend crucially on routine tasks related to precise dynamic 
monitoring and forecasting of pipeline networks. These 
activities demand, on the other hand, computing resource to 
predict the network dynamic or stationary behavior. The 
dynamic simulator is a broader concept, as one stationary state 
of a system is merely a point in one of its admissible dynamic 
trajectories. Using a discrete time approach, a dynamic 
simulator is conceived as a black- or white-box specialized in 
reproducing the network state at time instant t provided enough 
information on its previous state t-1 and the corresponding 
inputs at t-1. The white-box approach, a phenomenological 
network simulator, is characterized by strict physical modeling 
based on nodal balance equations, tube momentum balances, 
pump operation curves etc. The white-box may also exhibit 
uncertainties in parameters or in some of its theoretical 
components. This is especially true as the system departs from 
its original condition by aging and/or by stressing action of 
exogenous agents. In this case, the model gradually loses its 
�whiteness� evolving towards what is called a gray-box, i.e. a 
phenomenological model containing non-negligible 
uncertainties in its constitution. Senile phenomenological 
models thus have to be �rejuvenated� by training sessions where 
its unknown components or parameters are re-estimated from 
records of the trajectory of the real system. The black-box, on 
the other side, does not contain any physical principle in its 
definition. It is, nevertheless, built with specialized resources 
for high adherence to past history of the system, such that its 
near future can be predicted if the set of inputs that will reach 
the system could be known. The black-box thus depends on 
training phases where its internal parameters are updated in 
order to capture the essential patterns of the system dynamics. If 
continuous training is not allowed, the black-box also suffers 
from gradual �aging effects� rapidly losing adherence to the 
system response. The state of the network can be invariably 
associated with a set of outputs (e.g. pressures at client nodes, 
flow rates at supply nodes, pump heads and internal or edge 
flow rates), which dynamically evolves responding to a set of 
inputs (e.g. pressures at supply nodes, flow rates at client 
nodes). The dynamic simulator � either white, gray or black box 
� is thus useful to predict: (i) new scenarios associated to 
changes in the characteristics of served (clients) or supply sites; 
(ii) dynamic effects resulting from the interaction of combined 
dynamic patterns of different inputs, in order to prevent 
dangerous situations on certain network sites; (iii) operational 
limits of the network; (iv) dynamic response of the network 
under the action of stochastic behavior of inputs, also for testing 
operational limits and safety levels; and (v) training of 
personnel. In this work, we consider the development of two 
strategies for simulation of pipeline networks: a white-box 
simulator and a black-box simulator. The white-box model is a 
simplified description based on: (i) incompressible newtonian 
2 Copyright © 2002 by ASME 
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fluid flow; (ii) pump modeling via cubic operational curves; 
(iii) no delays in the system response, meaning that the model is 
in fact a stationary description of the network, responding in 
pseudo-stationary mode to the time series of inputs. This model 
is able to emulate the real behavior of networks and was used 
for training the black-box model, which is a predicting tool with 
ARX-MIMO structure adopting n=3, m=3, ny=8, nu=8, where 
n and m are respectively the orders of the auto-regressive and 
input filters, ny and nu are respectively the sizes of the vectors 
Y of network outputs or measurements (pressures at client 
nodes) and U of network inputs (flow rates at client nodes). 
 
 
2. PSEUDO-STATIONARY MODELING OF PIPELINE 
NETWORK WITH INCOMPRESSIBLE FLOW 

A model is required to simulate a network plant in a simple 
way while retaining basic complexities as non-linear 
input/output relationships, multi-tube configuration and 
incidence of noises. Thus, a simple dynamic pipeline network is 
proposed, which generates no-delayed, pseudo-stationary 
responses to a selected group of inputs distributed in time 
according to certain stochastic patterns. The plant is represented 
by a direct graph whose E pre-oriented edges are pipelines 
connecting N nodes. There are Ep edges (Ep ≤ E) with pumps, 
one pump per edge. The nodes have streams to/from the 
external environment (W). Process connectivity is described by 
an incidence matrix ( M ), such that M(i,j) = (+/-) 1 implies that 
edge j arrives at/leaves node i; otherwise M(i,j) = 0. The vector 

)(tX  of process variables at time instant t is composed by N 
nodal pressures ( P ), E edge (signed) flow rates ( Q ), N external  

(signed) flow rates (W ), Ep pump heads ( H ), Ep slack 

variables α  for lower bounding the flow rates in pump edges, 
and Ep slack variables β for upper bounding the flow rates in 
pump edges. The vector of Ep pumps is characterized by 
vectors 10 A,A , 32 A,A  containing each Ep parameters for the 
respective operational curves, and by vector 

UQ  containing Ep 

upper bounds of pump flow rates. There is also a selection 
matrix S  (size Ep by E) assigning edges to pump edges. Model 
pseudo-stationary relationships (Eq. (1)) are N nodal mass 
balances, E edge momentum balances (Eq. (2)), 2.Ep equations 
for bounding flow rates in pump edges (Eq. (3), (4)), and Ep 
operational equations for pumps (Eq. (5)). All rates are 
expressed in mass basis and SI units are used. The remaining N 
degrees of freedom are assigned to a vector )(tV  of 
specifications � one specification per node � formed with 
selected nodal pressures and nodal flow rates. For instance, 
nodes that are merely junction points may be specified with 
W=0, while supply nodes with fixed operational patterns may 
be specified with a high pressure value. Vector )t(U of inputs is 
a sub-set of )(tV containing nu components. The inputs are 
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typically flow rates at client nodes. Input signals are generated 
as time series by superposition of pseudo-random and gaussian 
noises over nominal values of the respective specifications as 
shown in Section 5. Specification values are assigned to vector 

)(tX by means of another selection matrix F  (size N by 
N+E+N+3*Ep) according to Eq. (6).Vector )t(Y , containing 
ny outputs, can be any measured sub-set of )(tX . In this work, 
the outputs were assigned to pressures at client nodes. Other 
entities are N node heights (Z), E edge Darcy friction factors 
( f ), lengths ( L ), diameters ( D ), tube hydraulic parameters 

( 52 D/L)/8(K ρπ= ), Reynolds numbers (Re), where 
µρ , and g are density and viscosity of the fluid and the 

gravitational constant. Friction factors ( f ) are predicted by 

Churchill equation [1] from ( Re ). For each time instant t, with 
input and specification vectors )t(U and )(tV , the set of states 
(and responses) )(tX  (and )t(Y ) is obtained by numerical 
resolution of the network equations by a Newton-Raphson 
algorithm [1]. 

 
0WQM =+⋅    (1) 

 
0H.S.g.ZMgQ.Q.K.fPM ttt =−⋅⋅⋅++⋅ ρρ  (2) 

 
0.Q.S =− αα    (3) 

 
0Q.Q.S U =−+ ββ   (4) 

 
0)Q.S).(Q.S).(Q.S.(A)Q.S).(Q.S.(A)Q.S.(AAH 3210 =−−−−     (5) 

 
0)t(V)t(X.F =−   (6) 

 
 

3. PIPELINE NETWORK SIMULATION BY ARX-MIMO 
PREDICTORS 

In a real application, recorded measured data covering 
network inputs and selected outputs are used for training ARX-
MIMO predictors [2]. In the present case, the network time 
series, generated as shown in Section 2, will be used for training 
the predictors. The ARX-MIMO predictor has the following 
form: 
 

[ ] )t(Y)q(A1q)1t(U)q(B)1t(Y� −++=+   (7) 

with ∑
=

−+=
n

k

k
k
qAqA

1
(.)1)(  and ∑

=

−=
m

k

k
k
qBqB

1
(.))(  

where )1(� +tY  is the predicted vector of outputs for instant t+1; 
q represents the forward shift operator; )(qA  and )(qB   are 
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matrix filters � respectively the AutoRegressive filter with order 
n and the eXogenous input filter with order m,  Ak and Bk are 
constant matrices with sizes (ny x ny) and (ny x nu), 
respectively. The predictor identification consists in estimating 
matrices Ak and Bk from recorded values of Y and U during a 
training window with NT time instants (the training phase). This 
is a linear estimation problem that can be conducted via 
standard techniques. The predictor is used subsequently for the 
next NI instants estimating process outputs (the predictive 
phase). Training and predictive phases are then repeated. In 
routine applications, NI can be three to five times larger than 
NT. The quality of the training and the degree of deterioration 
of the predictor, as it departs from the training window, can be 
measured through the semi-width of 99% confidence intervals 
for correct responses in the training and predictive phases: 
narrow confidence intervals mean high adherence to the process 
outputs; and, vice-versa, large confidence intervals are 
symptoms of bad reproduction of the process. In general, the 
predictor is more adherent to the process in the training 
window. This adherence deteriorates as it departs from the 
training window and experiences input signals very different 
from the corresponding training set. The global performance of 
the predictor depends on: (i) the set of measurements or 
monitored responses (Y); (ii) the orders and sizes 
(n,m,ny,nu,NT,NI) that characterize the predictor; (iii) the 
intensity of noises acting on the input vector in the training 
window and outside it; (iv) the intensity of noise acting on the 
measurements. The use of n=3, m=3, ny=8 and nu=8, imply 
that there are n*ny+m*nu=48 parameters for each response to 
be predicted, with 24 parameters of type A and other 24 of type 
B (Eq. (7)). 
 
 
4. NUMERICAL RESULTS 

The capability of the proposed approach to reproduce the 
dynamic behavior of a pipe network is presented by a numerical 
example. Initially, the dynamic simulation of a network is 
conducted through the mentioned pseudo-stationary scheme. 
The purpose of this simulation is to generate the time series data 
equivalent to the measured data, which would be available from 
the process instrumentation in a real application. The structure 
of the simulated network is shown in Fig. 1, where node 1 is the 
supply site and the others nodes are demand sites. All pipes are 
45000m long having different diameters according to Table 1. 
Pumps are not present in the interior of the network. The 
absolute roughness of pipes is 61046 −⋅=ε  m. Diameters (m) 
adopted for each pipe are respectively {.61; .25; .25; .46; .15; 
.15; .41; .20; .25; .25; .15}. Nodes, numbered 1 through 9, have 
elevations (in meters) given by  {200; 200; 190; 195; 190; 190; 
195; 205; 210}. 
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Figure1. Network Structure 
 

The fluid in the network is a diesel like oil with the 
following values of density and viscosity : 833=ρ kg/m3 and 

31025.7 −⋅=µ Ns/m2 = 8.7cSt. The input variables of the 
example are the set of demand flow rates (U T=[W2� W9])  
expressed in volumetric hourly basis (m3/h) and with no sign. 
The output (measurements) variables are the pressures at the 
respective nodes (Y T =[P2 � P9]). The vector of nine network 
specifications ( )(tV ) is completed with the pressure at the 
supply node, which is kept constant (P1=70 bar). Measurement 
errors are not included in the analysis. The independent 
dynamic behavior of the input variables are defined by the 
following algorithm, applied to all time instants: 
 
For 9,...,2K = : 
Let ]1,0[1 ∈δ  and ]1,0[2 ∈δ  be two independent uniform 
random variables. 
If a1 ≤δ  then 1KKK uspuspuspusp η∆ ⋅⋅+← ; 
If b2 ≤δ  then 2KKK uuspuspu η∆ ⋅⋅+← ; 
 Otherwise  KK uspu ← . 
 
where 02.0a = , 50.0b = , 05.0usp =∆ , 01.0u =∆  , 

}1,1{1 −∈η  is an uniform random variable and ℜ∈2η  is a 
random variable with standard normal distribution. Symbol usp 
represents the value of an input variable in the previous time 
instant. The initial values of usp are 200usp2 = m3/h, 

100usp3 = m3/h, 100usp4 = m3/h, 150usp5 = m3/h, 
150usp6 = m3/h, 100usp7 = m3/h, 90usp8 = m3/h and 
110usp9 = m3/h. This algorithm may represent two 

phenomena: a frequent and small fluctuation of input variables 
along the time (noise) and a larger modification of the variable 
value indicating changes in the operating conditions. The time 
span of the simulation is 240 h. Input/output data are sampled 
with an interval of 2 min, leading to 7200 sampling instants. 
Figures 2-A and 2-B show the time series of the eight input 
variables acting on the process. Figures 2-C and 2-D depict the 
time series of the eight process responses generated as 
explained in Section 2. In order to provide some measure about 
the durability of the predictor, it was identified and used, 
according to two polices: (i) Police 1 with NT=1000 and  
4 Copyright © 2002 by ASME 
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(A) 

(B) 

(C) 

(D) 
Figure 2: Process Inputs (Node Flow Rates) and Process 

Outputs (Node Pressures) 
 

 

ded From: https://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use
NI=6200 (predictor is adjusted using the first recorded 33.3 
hours of the run and launched for the remaining 206.7 hours); 
(ii) Police 2 with NT=1000 and NI=2600 (predictor is adjusted 
using a record of 33.3 hours, launched for the next 86.7 hours; 
these steps are repeated until completion of the entire run). 

Figures 3-A and 3-B depict the predictor performance 
according to Police 1, while Fig. 4 exhibits the histogram of 
predicting errors associated with Police 1. The time series of 
Police 2 are displayed in Figs. 5-A and 5-B. In Figs. 3 and 5, 
the 99% confidence intervals are colored with magenta and 
green, respectively, in the training and predicting phases. 
 

(A) 

(B) 
Figure 3: Process Outputs, Predictions and 99% 
Confidence Limits for Correct Values Using One 
Training Phase (Tr : Training Window) [Police 1] 
5 Copyright © 2002 by ASME 
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Figures 6-A and 6-B present, respectively, the magnitude of 
the 48 ARX parameters and the corresponding standard 
deviations for each predicted response in the second training 
phase of Police 2. It can be seen that the first 24 parameters (i.e. 
belonging to the AR filter) exhibit larger magnitudes when 
compared with the last 24 parameters (i.e. belonging to the X 
filter). A partial reason for this may be attributed to the larger 
magnitudes of the input signals relatively to the outputs. 
Another reason may be located in a certain preference of the 
ARX structure for using the auto-regressive processor. Another 
visible fact is that the relative importance of a parameter in the 
ARX structure decays with the order of the matrix term where it 
is situated. Figure 7 is another representation of the degree of 
uncertainty of each estimated ARX parameter by means of 
paired projections of the 99% global parameter confidence 
domain: the lower the uncertainty associated to a given pair of 
parameters, the shrunken its ellipsoidal domain.  

Finally, it is evident by comparing the results of Polices 1 
and 2, that the predictor is a more dependable tool when it is 
refreshed more frequently, i.e. it obviously suffers aging effects 
since the process may be subject to very different class of inputs 
as time passes. 

 
 

Figure 4: Histogram of Absolute Errors of Predictions 
(Node Pressures) Using One Training Phase 

(See Figure 2) [Police 1] 
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(A) 

(B) 
Figure 5: Process Outputs, Predictions and 99% 
Confidence Limits for Correct Values Using Two 
Training Phases (Tr: Training Window) [Police 2] 
Copyright © 2002 by ASME 
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A 

B 
Figure 6: (A) Magnitude of ARX Parameters  
           (B) Standard Deviations (%) of ARX Parameters 

(Using Two Training Phases [Police 2]) 
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Figure 7: 99% Confidence Domains for Some Pairs of 
ARX Parameters for Predicting P7 Using Two Training 

Phases (Values for the 2nd Training [Police 2]) 
 
 
5. CONCLUDING REMARKS 

This work proposes a black box approach for the 
reproduction of the dynamic behavior of large pipeline 
networks, based on system identification techniques. 
Particularly we used an ARX-MIMO [3,3,8x8] predictor to 
simulate the temporal behavior of a network subjected to 
stochastic patterns of flow rates at client nodes. The process 
response was emulated by a pseudo-stationary network 
simulation model, for incompressible, single-fluid flow, 
responding instantaneously to time series of inputs. The 
methodology was able to predict the system behavior within 
reasonable accuracy levels. The adherence of the method could 
be improved adopting more frequent predictor training sessions. 
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