View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by CiteSeerX

Implementing Social Norms using Policies

Rob Kremer
Department of Computer Science
University of Calgary
2500 University Dr.
Calgary, Alberta, Canada, T2N 1N4
Email: kremer@cpsc.ucalgary.ca

Abstract—Maulti-agent systems are difficult to develop. One
reason for this is that agents are embedded in a society where
all agents must agree to obey certain social norms in order for
the society to function. Thus, different programmers, writing
different agents, must carefully obey certain agreed-upon proto-
cols. This problem is difficult enough due to the complexity of the
interactions, but it is exacerbated by the asynchronous and event-
based nature of agent-based systems: agents must asynchronously
respond to incoming conversational messages, and may carry on
several simultaneous conversations.

Several large projects address these issues. Examples are Jade
(Telecom Italia) and Cougaar (DARPA). Jade is strictly compliant
with the well-known FIPA standard, which makes it useful for
commercial agent development and research not directed at
certain fundamental aspects of multi-agent systems. Cougaar was
developed as a defense agent infrastructure, and while it is not
tied to FIPA standards, it is quite prescriptive in both its inter-
agent architecture, and its intra-agent architecture.

The contribution of CASA (Collaborative Agent System Ar-
chitecture) is an agent infrastructure that seeks to support agent
development, but as much as possible, avoids restricting the inter-
or intra-agent architecture or the agent interaction paradigm.
This paper describes aspects of the CASA tool that mitigate
the aforementioned problems for the research-oriented developer
who wants to investigate deviations from standards or alternative
architectures. CASA provides a policy descriptor language that
abstracts the complexities of conversational interactions away
from the programming level, and allows sharing of policies among
different agents, even at run time. Thus, an agent programmer
is free to concentrate on the properties of the agent, and not on
the intricate mechanics of conversational protocols. In addition,
policies may be easily modified and distributed as the need
arises. Thus, a protocol researcher can concentrate on protocols
without having to re-write agent behaviour each time the protocol
changes. The policy approach is very flexible, and we have
developed policies to support the social commitment paradigm,
the BDI paradigm, as well as simpler ad-hoc protocols.

I. INTRODUCTION

CASA (Collaborative Agent System Architecture) [1] is
an agent development platform who’s main contribution is
its support of the flexible development of societies of agents
such that researchers and others can experiment with various
agent communication protocols and social organization. The
flexibility described here is multi-facited: At the intra-agent
level, developers must be able to implement the inner workings
of their agents in a variety of ways to implement specific
behaviours. At the social (inter-agent) level, developers must
be able to describe social norms among agents at a global
scale, independent of individual agents. In addition, CASA

endeavors to offer basic communication services, messaging
services, command-line services, and plug-in logics and on-
tologies. All this flexibility can lead to an unwieldy system that
could be difficult to use, so the flexibility must be carefully
balanced against ease-of-use, both for the developer and the
end-user of the agent system. CASA is available for download
at http://pages.cpsc.ucalgary.ca/"kremer/CASA/.

This paper concentrates on the CASA’s policies, which are
the prime tools a developer uses to specify social norms.
Policies are described in detail in section III, but suffice here
to say that policies (just in like in human societies) are rules
that all the members of a organization or society know and
follow'.

In CASA, these social norms are implemented using policy
rules. For example, a social norm would be “if someone makes
a requested of you, you should respond in some way.”?> This
sort of approach to the social norm problem is called social
commitment theory [2], [3] and the obligations agents incur
due to social norms are called shared social commitments.

For an agent to function in a society of agents, she must
both pursue her own goals and respond to the other agents
in a socially responsible manner (as defined by the society’s
social norms). How she goes about pursuing her goals is her
private concern. However, her interactions with other agents
in her environment are constrained by the social norms of
the society, and, for artificial agents, these social norms must
be specifically encoded in a way that can be shared among
all of the agents participating in a society. This encoding is
implemented in CASA as policies (see section III).

An agent spends its time checking for messages on the event
queue and, if there are no messages, executing its doIdle ()
method. Since it’s not really the topic of this paper, suffice
to say that the doIdle () method is where the agent does
whatever proactive things the creator of the agent deems it
should be doing, i.e.: this is where the agent pursues its own
goals.

On the other hand, if a message is available on the event
queue, the the agent will instead apply its policies to the
message. In the case of a Social Commitment agent, the
agent’s applyPolicies () method will merely invoke the
appropriate policies to either instantiate new social commit-

Lor should follow
2The formal policy is specified in figure 2.

https://core.ac.uk/display/357307925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(request

ract register_instance

:sender Alice

:receiver LAC

:reply-by "2008.09.30 15:54:34.004 MDT"

:reply-with /casa/ChatAgent/Alice--0

:conversation-id /casa/ChatAgent/Alice—--0

:language casa.x

:content "[\" (casa.URLDescriptor\\)\\\"Alice\\\"\",
\" (Java.lang.Boolean\\) \\\"true\\\"\"]"

tpriority 10)

Fig. 1. A typical request message. URLs have been simplified to save space.

ments (such as the commitment to reply to a request mentioned
earlier), or delete existing social commitments. The agent’s
doIdle () method will include looking at its list of currently
outstanding social commitments for which it is the debtor, and
will try to dispose of these by fulfilling them. Other kinds of
agents may do things differently. For example, ad-hoc or FIPA
BDI agents [4] may actually respond directly to incoming
messages when their applyPolicies () methods invoke
the relevant policies.

A policy contains two components: a description of the
event® it matches (if a policy matches an event, it is said to be
ready to fire), and an action to be taken if the policy is fired.

All this seems rather simple, but it is a rather powerful
and flexible mechanism. Unfortunately, power and flexibility
usually imply complexity. In particular, the system needs to
define what to do under the following circumstances:

1) We may want a single policy to apply to many different
specific kinds of messages without having to enumerate
every single possibility.

2) More than one policy may match a particular message,
and we need to either choose a particular policy out of
the set, or allow multiple policies to be fired, but in an
orderly fashion.

The first situation can be handled by using a hierarchical type
system, and CASA does this in a straight forward manner
[5]. The second situation, choosing what policies to execute,
and in what order, is not so straight forward. The next
sections describe CASA’s choices for these and other related
design decisions: the event and message descriptions (section
II), policy descriptions, and policy application (section III).
Section IV provides a simple example, and section V describes
related work.

II. EVENTS AND MESSAGES

CASA messages are implemented as an abstract class which
can be treated as a simple dictionary (Map in Java) mapping
the attributes (fields) of a message to values. Figure 1 shows
a typical request message that the agent Alice might use to
register itself with an agent registry agent.

The message in figure 1 is a KQML-syntax message which
has a performative field (unlabeled — it’s always the first

3In CASA, most things that happen are modeled as events and are queued
up in the event queue. Events include environmental changes and incoming
and outgoing messages.

field in KQML syntax) with value request. The performative
describes the conversational act of the message, that is, the
conversational move the message is attempting to perform.
Other examples of performatives are inform, agree, and sub-
scribe. The act field has value register_instance of type
action and describes the conversational act in more detail —
in this case, it describes that the sender is requesting to the
receiver (a Local Agent Controller) that the receiver register
the sender’s instantiation. The act field may also be a list
of actions, for example a reply to figure 1’s message might
have performative agree and act request|register_instance,
indicating that the LAC is agreeing to “the request to register
the instance”, not to “register the instance” — a small semantic
difference, but significant. The sender and receiver fields
are intuitively obvious, but one should note that these fields
normally contain complete URLs, but these have been abbre-
viated in the examples here due to column width restrictions.
The reply-by, reply-with, conversation—-id, and
priority fields are all book-keeping fields, that are of no
particular significance to the topic of this paper. The content
field describes the real data associated with the message, and
the notation used in the content field is described by the
language field (here, the language is “casa.*”).

Receiving, sending, or merely observing the exchange of
messages between other agents are events, just like any other
event that an agent might need to deal with. The events are
matched against policies and if any policies are applicable to
the event (sending, receiving, or observing a message) then
those policies are fired and actions are taken according to the
policies’ specifications. Policies are described next.

III. POLICIES

Policies are really just rules or if-then clauses. When an
event, such as the receipt of a message, is handled, it is
matched against the agent’s set of policies, and if one or more
of them matches the antecedent part, then the corresponding
consequent part is executed. However, it’s not quite that
simple. The process of matching is somewhat complex as it
takes into account (1) type subsumption on the event types
(which includes the message performatives and acts in the
case of message events), and (2) an event matching multiple
policies, where the policies must be ordered and linked to
allow interaction among the policies (in a similar manner
to method overriding in some object-oriented programming
languages).

An example petition policy is given in figure 2. The petition
perforative type is a supertype of a the more familiar request
type. Policies are specified in lisp-like syntax. At the top
level, the petition policy in figure 2 may be read as an lisp
expression with operator policy that takes two arguments:
an antecedent and a consequent. The antecedent is a descriptor
describing the applicability of this policy. The consequent part
is a list of operations to execute if this policy is fired.

The use of the anecedent part is described in section III-A
and the use of the consequent part is described in III-B.

(policy (MsgEvent petition x)
(quote (
(Add
:DependsOn
(SCStateEvent
(SCdescriptor
:Performative consider
:Act msg.act)
fulfilled)
:Debtor msg.receiver
:Creditor msg.sender
:Performative reply

:Act (cons msg.performative msg.act)
:ActionClass "casa.policy...ReplyAction"
:Shared

))))

Fig. 2. The petition policy (petition is the supertype of request).

A. Matching Policies to Events

A policy matches an event if its event type matches and
the policy object’s isApplicable () method returns true.
Thus, the details of a match are flexible and delegated to
the class that implements any particular policy type. While
policies can match any type of event, the most common event
type is MsgEvent; other event types can be SensorEvent,
for reacting to sensor input, DeferredEvent for executing
code at a later time, etc.

A MsgEvent policy matches using the performative and
act fields in the event’s message. It first matches by determin-
ing if the performative of the event’s message is subsumed by
the performative given by the policy’s event type (as specified
in the first argument of the antecedent of policy — in the case
of figure 2, this is petition). If this matches, it determines if
the act of the event’s message is subsumed by the act given
by the policy’s event type (in the case of figure 2, this is “*”,
which is equivalent to T, top, Object, or “any”’, matching any
act at all).

Sometimes more than one policy is applicable to a particular
event. For example, in the protocol given by Kremer, Florez
& LaFornie [5], a request message instantiates a social com-
mitment to reply, and an inform message instantiates a social
commitment to ack (acknowledge). But request is subsumed
by the type inform, so a request message instantiates both a
social commitment to reply and another to ack. These two
requirements are best implemented by two distinct policies
(antecedents (MsgEvent request =*) and (MsgEvent
inform *)), both of which would fire on receiving a
MsgEvent with performative type request*.

In the case of multiple policies firing on the same event,
there are cases where the code of these policies must interact.
For example, in the example in the preceding paragraph, the
ack message required by the inform policy can be avoided
altogether if it can determine that the request policy has
already sent (or is going to send) a reply message (ack
subsumes reply). It is therefore important to specify at least a
partial order in which policies are going to fire (the order

4In fact, both the ack and reply social commitments can be fulfilled by a
single message with performative type reply because ack subsumes reply.

is only necessary in cases where the policies’ types have
a subsumption relation between them). This is quite easily
accomplished by sorting in the least-specific-first order for
event type. In the case of MsgEvents, the order is by least-
specific-first order for performative type, and then filtering out
all but the most specific acts for each performative.

B. Policy Execution

The consequent part of a policy is a list of lisp expressions®

that indicate the actions to take when the policy is fired. The
simplest of these actions merely specifies a method invocation
on an agent. However, we generally choose to provide much
more specific action descriptors here. In particular, social
commitment-based agents deal with messages exclusively
be interpreting them in terms of instantiating new social
commitments (operator Add), and marking existing social
commitments as no longer applicable (operators Fulfil or
Cancel). In the example in figure 2, the consequent is a list
of only a single operation, an Add operation. There are several
other operators important for social commitment-based agents:

(Add scArmr ...)
Add the social commitment specified by the scAttr
arguments to the agent’s list of known social com-
mitments

(AddIf bool-exp scAttr ...)
Add the social commitment specified by the scArtr
arguments to the agent’s list of known social commit-
ments iff the boolean expression bool-exp evaluates
to true at run time.

(Fulfil scArtr ...)
Mark any social commitments specified by the scAztr
arguments as fulfilled (and if they are related by being
in the same conversation).

(Cancel scAttr ...)
Mark any social commitments specified by the scAttr
arguments as cancelled (and if they are related by
being in the same conversation).

All of these operators take any or all of several named
arguments (the scAttr terms above) that, taken together,
describe a social commitment. These named arguments are
the following:

:Debtor agent-descriptor

The agent who is expected to fulfill the commitment.
:Creditor agent-descriptor

The agent who the commitment is for.
:Performative performative-subtype-name

The type describing the commitment. Must be a sub-

type of performative (roughly equivalent to Seale’s

speech acts [6] and Austin’s illocutionary acts [7]).
:Act act-subtype-name

Either a type or a list of types detailing the com-

5The reader might be wondering about the quote term in figure 2. Lisp
expressions normally pass evaluated arguments to functions, but the list of
actions in the consequent part of the policy is meant to be executed at policy
evaluation time, not at policy declaration time, so the quote term is the lisp
way of suppressing this premature evaluation.

mitment (may be empty). All elements must be a
subtype of action.

:ActionClass
A quoted string describing the fully qualified java
class from which to instantiate an action for
for this class. This class must be a subclass of
casa.socialcommitments.Action.

:ActionData
Optional supplementary information which will be
passed to the constructor of the action class.

:DependsOn event
A description of an event that must occur before the
social commitment can be executed. In figure 2 the
event refers to an existing social commitment that
this social commitment “depends on”, ie: this social
commitment cannot execute until the one specified
here has been fulfilled. :DependsOn differs from
:JdIf in that the debtor is held to the commitment
regardless of the status of the event specified by the
:DependsOn clause.

:Af event
A description of an event that must occur before
the social commitment can be considered has hold-
ing. Until the described event happens, this social
commitment is not executable. :If differs from :De-
pendsOn in that the debtor is never held to the
commitment unless the event specified by the :If
clause actually occurs.

:Shared
This social commitment is considered a shared social
commitment. A non-shared commitment is typically
only recorded by the debtor, and ignored by all other
agents.

Thus, policies specify when they match against a message
and what the agent should do in response the the message if
they match. The reader may be wondering why the explanation
has glossed over the seemingly important issue of whether the
message as been received, sent, or merely observed between
two other agents. Note, however, that this is not necessary
as the semantics of the policies includes marking the social
commitments debtor and creditor fields in terms of the sender
and receiver of the message, so it doesn’t matter how the
message is observed. To give a concrete example, if Alice is
the sender of a request message and Bob is the receiver, then
any observer (including Alice and Bob) would record exactly
the same thing: that Bob is the debror of the ensuing reply
commitment, and Alice is the creditor.

1V. EXAMPLE

One of the simplest examples of agent conversations is the
request-reply protocol. To simplify slightly, this conversation
involves agent Alice making a request to agent Bob, who
chooses among several possible replies (he could choose agree,
refuse, or notunderstood — all subtypes of reply). Only if
he agrees, the conversation will go on with Bob proposing
to Alice that the job is done, and Alice either rejecting or

accepting Bob’s proposal. To keep the example short, we
will deal only with he first two message exchanges in the
conversation: Alice’s request, and Bob’s reply.

The conversation starts off with Alice sending a message to
Bob requesting he send her a list of the files in Bob’s current
directory:

(request

ract execute

:sender Alice

:receiver Bob

:reply-with Alice--0
:language "bash shell script"
:content "1ls")

All observers (including Alice and Bob) look in their
policies and find a match with three policies with antecedents
(MsgEvent * (*)), (MsgEvent inform *), and (MsgEvent peti-
tion *). In all the following policy listings, values of run-time
expressions are inserted after the comment delimiter “/ /.

(policy (MsgEvent * (x)
(quote (
(Fulfil
:Debtor msg.sender // = Alice
:Creditor msg.receiver // = Bob

:Performative msg.performative //
:Act msg.act // = execute

))))

= request

The first, (MsgEvent = (=*)), policy matches any mes-
sage event no matter what the message. This doesn’t seem
useful, and indeed it isn’t in this case. This policy fulfills any
commitment to send a message like the one just sent. (If Alice
has a commitment to reply to Bob, then if she replies to Bob
that commitment is fulfilled.) However, in this case, the debtor,
Alice, has no commitments so nothing happens (silently).

(policy (MsgEvent inform x)
(quote (
(Add
:Debtor msg.receiver // = Bob
:Creditor msg.sender // = Alice
:Performative (considerer) // = consider
:Act msg.act // = execute
:ActionClass "casa...DefaultConsiderObject"))))

The (MsgEvent inform =) policy responds to all inform
messages (because type inform subsumes type request), and
has the effect of adding a social commitment for the receiver,
Bob, to consider Alice’s request to execute a bash command
script. Note that this Add commitment operator is not tagged
with the :Shared marker, so is not a shared social com-
mitment, but merely taken up by Bob. In a sense, this is
nothing more than a way to call Bob’s internal code (the
DefaultConsiderObject class) so Bob can “decide”
whether or not to act on Alice’s request.

The (MsgEvent petition =) policy (see figure 2)
responds to all petition messages since petition subsumes
request, and has the effect of adding a social commitment
for the receiver, Bob, to reply to Alice’s request. Note that the
:Act has the message’s performative pushed onto it because
Bob is not replying to an execute, but a request to execute. In
addition, this new social commitment is dependent on the one
that was just instantiated by the (MsgEvent inform =x)

policy because Bob can’t reply until Bob has considered how
to reply.

There now exist two social commitments instantiated by the
above policies:

1. :Debtor Bob
:Creditor Alice
:Performative consider
:Act execute
:ActionClass
:State ready

"casa...DefaultConsiderObject"

2. :Debtor Bob
:Creditor Alice
:Performative reply

:Act (request execute)
:ActionClass "casa.policy...ReplyAction"
:Shared

:DependsOn 1
:State ready

Since Bob is the debtor of both of them, he must choose
which to act on. However, he can’t act on the second one be-
cause it is dependent on another social commitment that is not
fulfilled. So Bob executes his code of class DefaultCon—
siderObject and here is where Bob decides if he will
actually do as Alice requested (and dispenses with his private
commitment 1 in the process). If he does decide to do it,
he will choose agree as the appropriate subtype of reply to
use. Otherwise, if he didn’t understand the message, he would
choose notunderstood; if he isn’t inclined to do it, he will
choose refuse®.

If Bob decides to agree, he will dispatch the following
message to Alice:

(agree

tact request|execute

:sender Bob

:receiver Alice

:reply-with Bob—--7
:in-reply-to Alice--0
:language "bash shell script"
content "1ls")

When any observer matches applicable policies, they will
match the same first two policies as for Alice’s original
request ((MsgEvent * (%)), and (MsgEvent inform
x)), plus a (MsgEvent agree (request =x)) policy:

(policy (*))
(quote (
(Fulfil
:Debtor msg.sender // = Bob
:Creditor msg.receiver // = Alice
:Performative msg.performative // =
:Act msg.act // = (request execute)

))))

(MsgEvent =

agree

When this policy fires, it will mark social commitment 2 as

6Bob could also counter-propose to Alices request, but this paper won’t go
into that detail. Not responding at all is also a possibility, and CASA handles
that by generating a timeout pseudo-message.

fullfilled.

(policy (MsgEvent inform x)
(quote (
(Add
:Debtor msg.receiver // = Alice
:Creditor msg.sender // = Bob
:Performative (considerer) // = verify
:Act msg.act // = (request execute)
:ActionClass "casa...DefaultConsiderObject"))))

When this policy fires, it will instantiate a private policy for
Alice to verify Bob’s reply (ie: it this is the policy that will
cause Alice’s code to run for Alice to consider the information
about Bob’s response and decide what action, if any, to take).
(policy (MsgEvent agree

(quote (

(Add
:Debtor msg.sender // =

(request «))

Bob

:Creditor msg.receiver // = Alice
:Performative perform
:Act (cdr msg.act) // = execute
:ActionClass "casa.policy...PerformAction"
:Shared)
(Add
:DependsOn
(SCStateEvent
(SCdescriptor

:Performative perform
:Act (cdr msg.act))
fullfilled)
:Debtor msg.sender // = Bob
:Creditor msg.receiver // =
:Performative propose
:Act (cons discharge
(cdr msg.act)))
// = (discharge perform execute)
:ActionClass "casa...ProposeDischargeAction”
:Shared))))

Alice

(cons perform

The policy will add two shared social commitments: one
for Bob to actually perform the act (he has agreed to it), and
one for Bob to propose the discharge of Alices request. Thus,
there are now 3 unfilfilled commitments:

3. :Debtor Alice
:Creditor Bob
:Performative verify
:Act (request execute)
:ActionClass "casa...DefaultConsiderObject"
:State ready

4. :Debtor Bob
:Creditor Alice
:Performative perform
:Act execute
:ActionClass
:Shared
:State ready

"casa.policy...PerformAction"

5. :Debtor Bob
:Creditor Alice
:Performative proose

:Act (perform execute)
:ActionClass "casa...ProposeDischargeAction"
:Shared

:DependsOn 4
:State ready

Thus, at this point, Alice can consider Bob’s answer,
and (because he had agreed to Alice’s proposal) Bob has
social commitments both to actually perform Alice’s request

and to propose the discharge of performing Alice’s request.
The conversation continues, but the example so far should
suffice to illustrate the concept. On the other hand, if Bob
had sent a refuse message instead of an agree message, the
(MsgEvent agree (request *)) policy would not have matched,
and commitments 4 and 5 would not have been instantiated.
Commitment 3 would have still been instantiated from the
(MsgEvent inform *) policy, but this is a private commitment
for Alice to examine Bob’s reply and serves only to inform
Alice that Bob had refused.

V. RELATED WORK

Jade [8] is an open source agent ‘middleware’ project run
by Telecom Italia. Jade is FIPA complient and is aimed
at solid support for commercial deployment of agent based
systems [9]. CASA and Jade share many of of the same
objectives and philosophies, however they differ in several
respects. Jade is aimed at a wide range user community that
supports a single standard, while CASA is aimed at providing
a tool for researchers and others who want to experiment
with and work with a variety of communication protocols and
paradigms. While Jade is strickly FIPA complient, CASA can
be FIPA-complient, but allows the policy writers and agent
programmers to differ from FIPA in whatever way they see
fit. The policies largely dictate agent communication protocols
and can be freely modified by the application developers. Jade
provides several services, as dictated by the FIPA standard,
such as white- and yellow-pages services, while CASA is
currently not attempting to provide all FIPA services.

COUGAAR [10] is an interesting agent infrastructure
designed for DARPA, primarily by BBN Technologies. It
is another Java based platform that is heavily bound to
Java, using RMI, Java persistence, etc. COUGAAR deals
with sophisticated inter-agent services [11], such as nam-
ing, message transport, QoS, and alarm services that CASA
doesn’t provide. COUGAR also provides a detailed intra-agent
blackboard-based architecture [12] whereas CASA specifi-
cally aims to avoid prescribing an intra-agent architechture.
While COUGAAR has a very sophisticated message transport
system, message envelopes are quiet primitive and consist
primarily of a sender and receiver label and a Java-defined
persistent object as the the content. Therefore, COUGAAR
lacks CASA’s support for non-specialized agents accessing
sufficient information about messages to deal with the message
and conversational semantics described here.

VI. DISCUSSION

In this paper, we use CASA to illustrate the power and
flexibility of using policies to support social norms by guiding
agents in their conversational interactions as well as their
response to external events. Specifically, conversational moves
and events are treated uniformly as messages (receiving, send-
ing, and observing) are merely treated as specialized events
(speech acts are a subtype of events). One of CASAs main,
unique contributions is showing that policies can be usefully
specified, not by being hard-coded, but by being specified in

a distributable lisp-like policy specification language. While
the policies encode “social norms”, they do not direct the
decision-making power of the agent: agents are “consulted” at
conversational decision points by calls into their code specified
in the policies.

External policies, such as described here, significantly sim-
plify agent development by allowing the system developers
separation of concerns: to consider social norms (policies)
separately from the application layer (the actual task of coding
the behaviour of the the agents)’.

External policies as described here also have the advantage
of being pure text, and easily exchanged between agents at
runtime if necessary. In an advanced system, cooperating
agents could exchange, “learn”, and analyse other agents’
policies at run time.

CASA is available for download at http://pages.cpsc.-
ucalgary.ca/"kremer/CASA/.

ACKNOWLEDGMENTS

The author wishes to acknowledge the Candian Nationial
Science and Engineering Research Council (NSERC) for fi-
nancial support of the research. The author also thanks Dr.
Roberto Flores of Christopher Newport University for ideas
and editorial advice.

REFERENCES

[1] Knowledge Science Group. (2009) Casa web pages. [Online]. Available:
http://pages.cpsc.ucalgary.ca/ kremer/CASA/index.html

[2] P. Yolum and M. Singh, “Flexible protocol specification and execution:
Applying event calculus planning using commitments,” in Proceedings
of the 1t International Joint Conference on Autonomous Agents and
Multiagent Systems, C. Castelfranchi and W. Johnson, Eds., Bologna,
Italy, July 2002, pp. 527-534.

[3] R.Flores, “Modelling agent conversations for action,” Ph.D. dissertation,
Department of Computer Science, University of Calgary, Jun. 2002.

[4] Foundation for Intelligent Physical Agents (FIPA), “FIPA communica-
tive act library specification. document number SC00037J, FIPA TC
communication. http://www.fipa.org/specs/fipa00037/SC00037J.html,”
Dec. 2003.

[51 R. Kremer, R. Flores, and C. LaFournie, “A performative
type hierarchy and other interesting considerations in the
design of the CASA agent architecture,” in Advances in
Agent Communication, ser. LNAI, F. Dignum, Ed. Springer
Verlag, 2003, available: http://sern.ucalgary.ca/ kremer/papers/-
AdvancesInAgentCommunication_KremerFloresLaFournie.pdf.

[6] J. Searle, Speech Acts. Cambridge University Press, 1969.

[71 J. Austin, How to Do Things with Words. Harvard University Press,
1962.

[8] Telecom Italia Lab, “Jade (java agent development environment),”
http://jade.cselt.it/, May 2008.

[9] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, “Jade: A white
paper,” Telecom Italia Lab, Italy, Tech. Rep. Volume 3, n. 3, Sep 2003,
available: http:/jade.cselt.it/.

[10] DARPA (Defence Advanced Research Projects Agency), “Cougaar (cog-
nitive agent architecture),” http://cougaar.org/, Sep. 2007.

[11] BBN Technologies, “Cougaar architechure document,” DARPA (Defense
Advanced Research Projects Agency), USA, Tech. Rep., December
2004, available: http://cougaar.org/.

[12] BBN Technologies, “Cougaar developer’s guide,” DARPA (Defense
Advanced Research Projects Agency), USA, Tech. Rep., December
2004, available: http://cougaar.org/.

TThis is not to say that policies can’t also be used to specify certain aspects
of an agent’s specific behaviour — policies can be used for this purpose.

