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Numerical Contact Model of a 
Smooth Ball on an Anisotropic 
Rough Surface 

A numerical elastic-plastic contact model of a smooth ball on a directionally struc­
tured anisotropic rough surface is presented. The contact model is tested on three 
types of surface contact of a smooth ball on (i) a smooth surface, {ii) a sinusoidal 
surface, and (Hi) a real rough surface. The validity of the model is proven by good 
agreement of the numerical result for the smooth surface with the Hertz analytical 
result. The contact of the sinusoidal surface shows that by the introduction of surface 
undulation in a regular pattern, the real pressure distribution follows the expected 
behavior where the contact pressure at the peak is maximum and the contact pressure 
at the valley is zero and the peak pressure decreases away from the ball center. The 
contact of the real rough surface shows the ability of the model to cope with the 
more practically realistic situation where the asperity heights are distributed ran­
domly. The results of the rough surface contact analysis for different surface rough­
ness are presented in a separate paper. 

1 Introduction 
It is understood that when two surfaces are brought together 

surface roughness causes contact to occur at discrete contact 
spots. The actual area of contact of microscopically rough 
surfaces and the changes that occur under load and relative 
motion are the important parameters in understanding many 
tribological phenomena, such as stiffness of joints, wear, adhe­
sion, friction force, frictional heating, thermal and electrical 
contact resistance and fluid leakage. The real contact area can 
be obtained by (i) experimental techniques, (ii) stochastic ap­
proach, and (iii) numerical contact model. 

In the experimental approach, the methods reported are 
thermal and electrical conduction (Bowden and Tabor, 1950; 
Holm, 1958), optical direct observation (Holm, 1958; Dyson 
and Hirst, 1954; Kragelskii, 1965), internal reflection (Kra-
gelskii and Demkin, 1960), Nomarski interferometry (Uppal 
et al., 1972); Neutrographical method (Johannet, 1972), com­
puter simulation (Williamson, 1967/68; Sayles, 1978b), relo­
cation profilometry (Williamson and Hunt, 1968; Uppal and 
Probert, 1973). 

The realization that surface asperity heights can often be 
regarded as possessing a Gaussian distribution has drawn at­
tention to the use of random process theory as a means of 
deriving of the load-area relationship. Greenwood and Wil­
liamson (1966) were among the first to take into account the 
statistical nature of the asperity distribution on surfaces. Other 
workers, e.g., Tsukizoe and Hisakado (1965, 1968), Onions 
and Archard (1973), Mikic and Roca (1974), Bush and Gibson 
(1975), used the similar approach to derive the interfacial force 
and contact area as a function of separation from the mean 
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line. Other workers (Bush et al., 1975, 1978; Suratkar et al., 
1976) have approached the problem with more mathematically 
complex random process models following the work of Lon-
guet-Higgins (1957a, 1957b) and Nayak (1971), for plastic and 
elastic contact. 

Over the last few years, numerical techniques (Francis, 1982, 
1983; Chiu and Liu, 1970; Webster and Sayles, 1986a; West 
et al., 1987a; West and Sayles, 1987b) have been developed 
and used on rough surface contact problems. This approach 
provides a deterministic solution to rough surface contact 
stresses and areas for the approach does not require an asperity 
model and makes no probabilistic assumptions such as the 
distribution of asperity heights, slopes, curvatures. The tech­
nique takes full account of the interaction of deformation from 
all the contact points and highlights the deformable contact 
geometry of rough surfaces under loading. It provides useful 
information on the number of contacts, their sizes and dis­
tributions, and the spacing between contacts. 

In this paper, a numerical elastic-plastic contact model of a 
smooth ball on a directionally structured anisotropic rough 
surface is presented. This type of contact geometry is found 
commonly in many engineering applications such as the contact 
of a ball on the countersurface of ball bearings, ball screws, 
spherical bearings, ball joints etc, in which the surfaces are 
produced by grinding. The contact model is directly relevant 
to the work reported by Hirst and Hollander (1974) and Poon 
(1989). In their experimental work, a smooth ball was slid on 
a directionally structured anisotropic and normally flat rough 
surface. The surface damage was found to be related to the 
surface parameters a and @*, where a is the root-mean-square 
(rms) of the height distribution and (3* is the correlation length 
describing the spatial variation of surface height. It is impor­
tant to understand the surface contact mechanics in an attempt 
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Fig. 1 Diagram showing the geometric overlap and deformed shape of 
an ideal smooth contact 

to reveal the mechanistic processes influencing the sliding fric­
tion and surface damage. The model has been used to obtain 
the contact information such as the extent of plastic defor­
mation and the states of contact over a range of rough surfaces 
and results from the analysis have been used to correlate results 
from friction tests (Poon, 1989). Furthermore, the model has 
also been applied to study the effects of surface roughness and 
waviness upon the real contact area, spacings and asperity 
contact pressures. The results are presented in a separate paper. 

2 Constraints of the Numerical Contact Model 
Referring to Fig. 1 and in addition to the usual linear elastic 

theory assumptions, the assumptions of the model are: 
(1) Strains are sufficiently small for the linear elastic theory 

equations to be applicable. 
(2) The contact area is contained within the geometric over­

lap region. 
(3) Inside the elastic contact region, the total displacement, 

5, is equal to the sum of the displacements of each body, ux 

and «2, i.e., u^x) +u2(x)=8(x) for H>p(x) > 0 where His 
the Hardness of the softer material. 

(4) Inside the plastic contact region, the pressure is equal to 
H. 

(5) Outside the contact region, 

ul(x)+u2(x)>5(x) a n d , p ( x ) = 0 

(6) Relative horizontal strains and displacements are ig­
nored, i.e., contact is frictionless. 

(7) The surface slopes are reasonably small so that forces 
can be assumed to act normally to the surfaces. 

3 The Plasticity Model 
The plasticity model used is based on the experimental ob­

servations of Samuels and Mulhearn (1956) and Mulhearn 
(1959) that the subsurface displacements produced by any blunt 
indenter are approximately radial from the point of first con­
tact, with roughly hemispherical contours of equal strain. The 
plastic zone is contained within the interior of the body and 
the material displaced by plastic flow can be considered to be 
accommodated by the elastic expansion of the subsurface core 
(see Johnson's "cavity" model of mixed elastic-plastic defor­
mation (Johnson, 1985)). In the contact model, the contact 
pressure is allowed to increase until it is equal to the hardness 
of the softer material. 

4 Contact Equations 
The classical approach to finding the stresses and displace­

ments in an elastic half-space due to surface forces is due to 

Boussinesq (1885), and Cerruti (1882) who made use of the 
theory of potential. The approach is presented by Love (1952). 
The Boussinesq theory gives the normal surface deflection uz 

of a surface point due to a concentrated point force PL acting 
at a distance r normally to the surface, i.e., 

1-V2PL 

TTE r 
(1) 

The surface displacement produced by a normal pressure 
distributed over an area S of the surface can be obtained by 
superposition. A distributed pressure p(r, <f>) in polar coor­
dinates acting on the surface area S is equivalent to a force of 
magnitude prdrd<t>. From Eq. (1), writing PL=prdrdfy, the 
surface displacement due to p(r, 4>) over an area S can be 
written as, 

u, = - wE JcJ 
p(r, 4>)drd<j> (2) 

The surface data is obtained by sampling on a rectangular 
grid over a finite interval. It is thus convenient to use a rec­
tangular area of sides 2a x 2b over which the normal pressure 
could be assumed uniform. 

The effect of uniform pressure acting on a rectangular area 
of 2ax2b has been analyzed by Love (1929) using Eq. (2). 
The deflection of a general point (x, y) on the surface due to 
a uniform pressure p over a rectangle centered at the origin 
is: 

•wE uz 

\-v2~p 
(x + a)ln 

+ (y + b) In 

+ (x-a) In 

+ (y-b)\n 

(y + b)+[(y + b)2+{x+a)2)U2~ 

{y-b)+l(y-b)2+(x+af}[/2 

(x + a) + {(y + b)2+(x+a)2}' 

(x-a) + {(y + b)2+(x-a)2}in 

(y-b)+l(y-b)2+(x-a)2}l/2~ 

{y + b) + \(y + bY+(x-aYY 

(x-a)+l(y-b)2+(x-a)2}l/i 

{x + a) + {(y~b)2+{x + a)2}'/2 (3) 

Equation (3) gives the exact solution of a surface deflection 
due to the uniform pressure acting on a rectangular area. If 
the distance between the surface deflection and the elemental 
pressure is large, Eq. (1) can be used as a good approximation 
to relate the surface deflection and the pressure. In this case, 
the concentrated load is simply equal to the pressure times the 
area. It is advantageous to use Eq. (1) in order to speed up 
the computing process. It has been shown (Poon, 1990) that 
if the surface deflection is outside the pressure acting on the 
rectangular area 2ax2b, Eq. (1) can be used to relate the 
surface deflection and the pressure with accuracy up to 95 
percent. 

The total deflection at any point is calculating by summing 
the influence of each pressure element acting on area 2a X 2b. 
Therefore, we have a set of linear equations 

[«d = [Cy][pj] (4) 

The values of the M,-'S are obtained by giving the bodies a 
known bulk overlap. The sum of the strains in the two bodies 
at any contacting point is equal to the geometric overlap 5. 
Thus, the strain in each body can be expressed in terms of the 
geometric overlap using the relationship: 

uzlEj ^ uz2E2 

which gives 

1 + 
£ , ( ! • •vh 

(5) 

(6) 

E2(l- vh 
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Fig. 2 Schematic representation of surface and pressure elements 

Fig. 3 Diagram showing the surface displacement /' and pressure ele­
ment py subdivided by Hertzian pressure at j. 

By assuming some of the points to be in contact, the strains 
at these points of contact can be obtained. The influence coef­
ficients can be calculated by using Eq. (1) or (3) depending on 
the distance between the pressure element and the surface point. 
The solution of the set of simultaneous equations is obtained 
by the Gaussian Back Elimination method. 

Once the solution for the elemental pressures has been found 
by elemental pressures which are negative are removed from 
the contact (Assumption 5). Also, any asperity with a calcu­
lated pressure greater than the flow pressure would collapse 
and the pressure should be reduced to the flow pressure. There 
are two methods to reduce the pressure. The first method is 
to allow the asperity to collapse by modifying the shape of the 
original undeformed surfaces until the pressures are equal to 
the flow pressure of the material. The second method is to put 
the presures equal to the flow pressure and re-calculate the 
pressure distribution until all pressures satisfy the contact con­
ditions. In the numerical solution employed here, the second 
method is used, as it gives a direct method of obtaining the 
plastic area and no assumption of the asperity shape is needed. 

The deformations are then found everywhere to check that 
no contact occurs outside the assumed contact regions. If con­
tact does occur outside these regions, the extra points are added 
to the assumed contact region and the system of linear equa­
tions is then solved again for the new assumed contact points. 

This process is repeated until convergence on a particular 
set of contact points is achieved. The total contact area, the 
plastic area and the normal load can then be calculated by 
integrating the contact elements and their pressures. 

5 Numerical Solution 
The methods described in Section 4 can be applied to cal­

culate the contact pressures of any two contacting bodies with 

different geometries for general three dimensional contact 
problems. In some particular cases, the contact solution can 
be reduced to two dimensional by appropriate modifications 
and assumptions. In the following, the numerical solution of 
a smooth ball on an ansiotropic rough surface in two dimen­
sional contact is described. 

In the contact model, referring to Fig. 2, the surface height 
is assumed to vary only in the x-direction and have the same 
height value in the /-direction. The contact pressure of each 
element is further assumed Hertzian in the /-direction. In the 
numerical solution, the surface deflections and the contact 
pressures at y = 0 are determined. In Fig. 2, the pressure py 

along the /-direction for an element j is, 

where wj is the contact length from the center. 
Referring to Fig. 3, showing a uniform pressure e lement^ 

acting on an elemental area 2ax2b, the vertical surface dis­
placements at point / due to an applied pressure py is given by 
Eq. (1) or (3), thus we have 

Ui=py-
0- v2) 

where 

•KE 

2a'2b 

or 

1 xy 

1 Xy r 

-- (*+a)ln 
~ (y + b) + {(y + b)2+(x + a)2}wr 

(y~b) + {(y-b)2+(x + a)2}W2 

+ (y + b) In 

+ (x-a)ln 

+ (y-b)\n 

\x + a)+\(y + b)2+{x + a)2 

(x-a) + {(y + b)2 + {x-a)2 

~(y-b) + {(y-b)2+(x-a)2 

(y + b)+{(y + b)2+(x-a)2 

'(x-a) + [{y^b)2+{x-a)2 

(x + a)+{(y~b)2+(x + a)2 

1/2 

H 
!1 / 21 n 

1/2" 

j 1/2 

(8) 

(9) 

(10) 

For each element j , the pressure is subdivided into 2Ny +1 
elements. The elemental width lb is given by, 

2b = -
2wj 

2Ny+l (11) 

The distance between elements / andy is given by, 

x=\i-j\-2a (12) 

Writing y = k'2b, the surface displacement at point ; due to 
Hertzian pressure at j becomes, 

u, = -
l-v 

•KE k \ 

4k2 

(2Ny+iy 
(13) 

where £ = 0, ± 1 , ±2 , . . . , ±Ny 
If the number of contacts is Nc, then a set of simultaneous 

equations can be set up by superposition. Thus, 

lu,] = [Cu][pj\ (14) 

where ;' and j = 1, 2, 3, . . . A^ or 

1-v' 
irE E2> 

j k. 

4k2 

(2Ny+\y 
(15) 

The set of simultaneous Eqs. (14) are solved by a Matrix 
Inversion method. An initial guess of the contacting points 
can be obtained by considering the regions of geometrical 
overlap between the two bodies. For each point in contact, the 
strain in each body is calculated using Eq. (6). 

If the contact length of each element, in the y direction, is 
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Pressure 

Fig. 4 Diagram showing the elastic pressure being truncated to give 
the plastic pressure profile 

Fig. 5 Diagram showing two possible forms of Hertzian pressure having 
the same asperity load 

known, then the influence coefficient can be calculated and 
the contact pressure found. The determination can be obtained 
by the information given at the boundary of contact at which 
the surface deflection u,- given by Eq. (6) is equal to the surface 
deflection uz induced by the contact pressures. If uz>uit then 
the contact length is overestimated and the contact length should 
be reduced. Similarly, if uz<uh the contact length should be 
increased. However, there is no direct method relating contact 
lengths to surface deflections or pressures, and therefore no 
direct method of defining an appropriate change to the contact 
lengths. An effective way to determine the contact lengths will 
be discussed later. 

The initial contact lengths are obtained by the geometrical 
overlap which allows a calculation of the first set of p/s. If 
there are negative elemental pressures, these points are ex­
cluded and the problem solved again to obtain a new set of 
Cy's and p/s. This process is repeated until the values of the 
p/s are everywhere positive. 

The next step is to compare the values of elastic pressure pj 
to the material hardness H. If any elemental pressure is greater 
than H, the point of displacement is shifted from the center 
of the contact element where plastic flow will begin to a point 
where the contact pressure begins to decrease. An index array 
is used to store the plastic contact width pcw. The plastic contact 
width is incremented according to the difference of the current 
p/s and H. In the case of plastic deformation, the pressure 
profile is no longer Hertzian and Eq. (13) has to be modified 
to include the effect of plastic deformation. Consider the 
Hertzian pressure profile being truncated to give the pressure 
profile under plastic deformation shown in Fig. 4. W h e n y <yh, 
the pressure will be equal to the indentation hardness H. On 
the other hand , when y>yh the pressure will be, 

P=Po[ 1 

2\ 1/2 

W, 
(16) 

At y=yh,p = H thus eliminating p0 from Eq. (16). Therefore, 

p = H> 
i~$)ld~$ wherw* 

Writing y and yh in terms of discrete points , i.e., 

y = k'2b where k = 0, ± 1 , ± 2 , . . . ±Nk 

and 
yh = kh>2b 

(17) 

(18) 

(19) 

where kh is the index of the point at which y=y/,. Substitute 
Eqs. (11), (18), and (19) into Eq . (17), 

p = H-ak (20) 

where 

a-k-=V(w2*vav*») (21) 

and 

/* = 2Ny+\ 
(22) 

Thus, the elastic-plastic contact equations can be generalized 
as follows, 

1- "2 

Uj = -
irE 

^^PfXkFx, (23) 

For elastic deformation, ak is calculated by putting yh equal 
to zero, which is Eq. (13). For plastic deformation, pj-H. If 
k<kh, <xk is equal to 1 and if k>kh, ak is given by Eq. (21). 
A set of C/& are again obtained using Eq. (23). The solution 
for the p/s is continued until the plasticity model is satisfied. 

In what follows, the method of determining contact lengths 
is described. The contact lengths are always less than their 
geometrical overlap because of the pressure acting at the neigh­
boring points. The amount of deformation depends upon the 
magnitude and the spatial distance of elemental pressures. At 
some stages of the iterative process, a change in contact length 
of a particular contact will redistribute the contact pressures 
which in turn will affect the displacements. In order to obtain 
an effective way to make changes to the previously assumed 
contact lengths, it is essential to know how the w,'s and p/s 
vary with respect to the contact length Wj. A way of doing this 
is to differentiate Eq . (1) or (3) with respect to Wj. As far as 
the contact length at the boundary is concerned, Eq . (1) can 
be used as a good approximation. By differentiating Eq. (1) 
with respect to wj, see Appendix, 

dUi 2a{\-v2) 

dw. •KE 
j k 

fix 

(x2+y2)"2 

2a(\-v2) ^dpj 

wE . dw,^ 
J J k 

Oik , 2 , "2,1/2 ( 2 4 ) 

(x +y ) 

At equilibrium, the load capacity on each asperity is con­
stant. Therefore, the change in contact length and pressure 
with respect to Wj will be in such a way that the load remains 
unchanged. The load L on each asperity with pressure pj is 
given by, 

L = 2'd' PJV 
y\ 

dy 

writing 

= sm 
\yh 

(25) 

(26) 

and solving Eq . (26) 

L — A'a-pj-

•K „ s in 26 

' * , . U - " - — 

cos 6 
-+yh 

--4-a-Pj>(Wjf+yh) (27) 
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Fig. 6 Flow chart for the numerical elastic-plastic contact programs 

where 

/ = 
Tr/2-0-sin 20/2 

cos 6 
(28) 

Differentiating Eq. (28) with respect to w,- and putting dL = 0, 
we get 

-Pi dpj__ 

dWj Wjf+yh 

y>, 2 -
/ s in0 

+f (29) 

Substituting Eq. (29) into Eq. (24) 

dUj 2 a ( l - t r ) 

d\V: •KE YIPJTI 
ajtpx 

(x2+y2),n 

+ 2aOL-j/)_y -Pi 

•KE ^Wjf+yh 
yh(^ / s ing 

~cos20 

M 

,. (x2 + 

+f 

llWj (30) 

Thus, for small increments of surface displacement, we have 
a set of simultaneous equations 

[Al/,] = [^y][AW/] (31) 

where 

AU = 
2a(l-v2) 

•KE 

2a(\-v2) 

irE 

^Pj^(x2
+y2)3/2) 

y ~Pj 
y1Wjf+yh 

*[1 
/sin(9 

cos 2 0 , + / 4J(x2 + m (x' + y2)W2 

(32) 

At the boundary of contact the displacement w, should be 
equal to the total surface deflection uz induced by the contact 
pressure. If uz>uh then the contact length is overestimated 
initially and the contact length should be reduced. Similarly, 
if uz<Uj, the contact length should be increased. Thus, 

Allj = U; - Uz (33) 

The terms Atj can be obtained by the current values of p/s 
and ve/s. A set of Aw/s are obtained by solving the set of 
simultaneous Eqs. (31). A new set of contact lengths are es­
tablished by adding the current values of contact lengths to 
the Aw/s. The process of getting the w/s and Aw/s are repeated 
until all the values of AWJ are smaller than an acceptable value, 
say 2 percent of the contact length in the /-direction. 

Finally, the surface points out of contact are checked every­
where such that the surface displacements are greater than the 
geometrical overlap. Otherwise, the iterative process is re­
peated to obtain p/s and w/s with the points included in the 
contacts. 

It may be noted that numerical contact solution involves 
many unknowns such as the number of contacts, the contact 
lengths and the plastic lengths, each affecting the other. Ini­
tially, the geometrical overlap length wg is used to obtain the 
pressure distribution. The actual contact length w„ is always 
less than the geometrical overlap resulting in the underesti­
mation of pressure. Figure 5 shows two possible forms of 
Hertzian pressure having the same asperity load but with dif­
ferent contact lengths. If both the maximum Hertzian pressures 
are higher than the indentation hardness, the asperity at the 
center will undergo plastic deformation. If the boundary be­
tween the plastic and elastic deformation is taken as though 
the top pressure has been truncated at a level corresponding 
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Fig. 7 Smooth case results from the numerical contact model. A 
Hertzian pressure distribution has been superimposed and is seen to 
correspond almost exactly to the numerical results. p„ = 0.56 Gpa, H = 160 
H„ £, = E2 = 207 Gpa, i>, = i>2 = 0.3. 

to the hardness of the softer material, the plastic contact width 
based upon the geometrical overlap is likely to be overesti­
mated. Should this happen, the numerical program may crash 
or have problems with convergence. 

The problem can be avoided by decreasing the maximum 
pressure in stages. The intermediate hardness can be taken as 
two or three times the actual hardness such that the pressures 
higher than the intermediate hardness are reduced until all 
contact assumptions are satisfied. 

The complete solution for a given load and geometry is 
obtained as follows and a flow chart showing the major fea­
tures of the solution is shown in Fig. 6. 

Step 1 Setup constants 
Values <5, E\, E2, V\, V2, ball diameter, contact position and 

total load are input by the operator through the VDU. 

Step 2 Setup geometry 
Read data from files of either previously recorded surface 

profiles, or generated from appropriate body shapes stored in 
variable arrays. Then calculate sphere coordinates in relation 
to the profile. 

Step 3 Rigid body movement 
The upper body is given a rigid body displacement 5 toward 

the lower body until contact is detected. 

Step 4 Setup Matrices for first iteration 
Values of ut and C,y- are calculated for all overlapped points 

using Eqs. (6) and (15), respectively, w/s are calculated from 
the geometrical overlap. An index array is used to store the 
positions of the contacting elements, which is then used to 
calculate the values of x by Eq. (12) and check for recontact. 
The surface displacement points are set at the center of contact. 

Step 5 Solve for pressures 
Solve for values of p/s for the current displacement, using 

Gaussian Elimination. 

Step 6 Check for negative pressures 
The solution for pj can give some negative (tensile) pressures 

which therefore violates assumption 3. This is due to the fact 
that the initial guess at 5,-, based upon the geometric overlaps, 

Fig. 8 (a) Three-dimensional view 

Fig. 8 (b) At a section through the center 
Fig. 8 Pressure distribution and deformed geometry of a ball on a 
sinusoidal surface using the numerical contact model. p„ = 0.56 Gpa, 
H=160 H„, £, = £;, = 207 Gpa, v, = n2 = 0.3, A = 0.08 11m, A = 24 jim, Ball 
diameter = 12.7 mm. 

contains points which will not be part of the true solution and 
hence underestimates the true surface strains. A new set of 
w,'s are then calculated, but excluding points corresponding to 
Pj<0.A second array is used to store the position of the current 
contacting elements and is used to calculate the new C,y- values. 
Steps 4, 5, and 6 are repeated until allp/s>0. 
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Fig. 9 (a) Three-dimensional view 
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Fig. 9 (£>) At a section through the center 

Fig. 9 Pressure distribution and deformed geometry of a ball on a rough 
surface using the numerical contact model. p„ = 0.56 Gpa, H=160 H„ 
E, = E2 = 207 Gpa,», = p, = 0.3, a = 0.07 pm, 0 = 7.4 ^m, ball diameter = 12.7 
mm. 

Step 7 Setup intermediate hardness 
It is necessary to reduce the plastic pressure in stages in avoid 

problems with convergence. The intermediate stages are set at 
ps= 1.5H, 2.0H, 2.5H, 3.OH, and so on. Therefore, the number 
of stages depends on the maximum pressure calculated. Any 

asperity contact with Pj>ps is subjected to an increase in its 
plastic contact width until all p/s<ps. 

Step 8 Calculate plastic contact width, checking recontact 
or calculate contact length 

The calculation of plastic contact width, number of contacts 
and contact length are obtained individually while keeping the 
others as constants. A sequence is set up to reduce first the 
plastic pressure to the immediate hardness. Then anyp/s<0 
or contact previously occurs in step 4 are checked for recontact 
outside geometrical overlapped contact boundary. Finally, the 
contact lengths are calculated using Eq. (31) until all the 
Aw/s<2 /xm. An index NSEQ is set for the next operation 
after each set of calculations is finished. 

Step 9 Reduce intermediate hardness 
If the intermediate hardness ps is greater than the indentation 

hardness Hs, the intermediate hardness is reduced according 
to step 7 for the next operation. Steps from 4 are repeated 
again until the intermediate pressure is reduced to the required 
hardness. 

Step 10 Output data 
Numerical integration of the elemental pressure, contact 

width and plastic contact width are performed to calculate the 
load, total contact area and plastic area, respectively. If the 
resulting pressure integral is less than the required total load, 
the process is repeated from step 4. Output data files are created 
to store load versus area results, pressures, and initial and final 
geometries. 

Figure 7 shows a test case of the contact on a smooth surface. 
The theoretical pressure distribution and normal displacement 
are plotted on the same axis. The numerical result corresponds 
almost exact with the Hertz analytical result. Figure 8(a) shows 
a three-dimensional view of the pressure distribution and the 
deformed geometry of a ball on a sinusoidal profile. Figure 
8(b) shows the pressure distribution and normal displacement 
at a section through the center. The results show the expected 
behavior, i.e., a number of contact regions in which the peak 
pressure is flattened by plastic deformation and decreases away 
from the ball center. Figure 9(a) shows a three-dimensional 
view of the pressure distribution and the deformed geometry 
of a smooth ball on a rough surface. Figure 9(b) shows the 
pressure distribution and the deformed profile at a section 
through the center. Such results indicate that the numerical 
contact model described represents a very useful tool for in­
vestigating the problems of rough surface contact. 

Due to the assumptions that the surface height varies only 
in the x-direction, the present approach is restrictive to the 
contact of a ball on a directionally rough surface. However, 
there are many engineering surfaces such as produced by grind­
ing, turning, milling in which the surface roughness are strongly 
directionally structured and the surface height variation in one 
direction is much larger than the other direction. The two-
dimensional contact model can be applied to study the contact 
problems of these surfaces. There are certain advantages of 
using the present approach. First, in the contact model, only 
one single roughness profile is used and thus eliminating the 
effort to perform three dimensional rough surface measure­
ment. Second, due to the contact is two dimensional, the com­
puting cost can be greatly reduced. 
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A P P E N D I X 

The total surface displacement w, due to the pressure acting 
at j is given by Eq. (23). 

ut = —~J]YjPjakFx> 
•KE 

(Al) 
j k 

Differentiate Eq. (Al) with respect to wJt 

dUj 1 - v2 

dwj -KE 
J]pjJ]akFx. + -

1-v* 
•KE YJPJ TiakFx> (A2) 

J K J K 

At the boundary of contact, Eq. (9) can be used as a good 
approximation, i.e., 

2a-2b 

V x2+y2 
(A3) 

b and y are function of Wj and are given by, 

b = ixWj/2 (A4) 

and 

y = lik\Vj where n = 2/(2Ny+l) (A5) 

Differentiate Eq. (A3) with respect to Wj, and using Eqs. (A4) 
and (A5), 

, 2aix(x2 + y2-fikwjy) 

2a/xx 

{x2+y2)V2 (A6) 

Substitute Eqs. (A3) and (A6) into Eq. (A2), 

dUj 2a(\-v2) 

dWj •KE &s a* 
\OC 

(x'+y1 

•KE 

JXWJ 2a(l-v)^pdpJsr ..,..., 

Journal of Tribology APRIL 1994, Vol. 116/201 
Downloaded From: https://tribology.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




