
Hyperparameter optimization with approximate gradient

Fabian Pedregosa F@BIANP.NET

Chaire Havas-Dauphine “Économie des Nouvelles Données”
CEREMADE, CNRS UMR 7534, Université Paris-Dauphine, PSL Research University
Département Informatique de l’École Normale Supérieure, Paris

Abstract
Most models in machine learning contain at least
one hyperparameter to control for model com-
plexity. Choosing an appropriate set of hyper-
parameters is both crucial in terms of model ac-
curacy and computationally challenging. In this
work we propose an algorithm for the optimiza-
tion of continuous hyperparameters using inex-
act gradient information. An advantage of this
method is that hyperparameters can be updated
before model parameters have fully converged.
We also give sufficient conditions for the global
convergence of this method, based on regularity
conditions of the involved functions and summa-
bility of errors. Finally, we validate the empirical
performance of this method on the estimation of
regularization constants of �2-regularized logis-
tic regression and kernel Ridge regression. Em-
pirical benchmarks indicate that our approach is
highly competitive with respect to state of the art
methods.

1. Introduction

Most models in machine learning feature at least one hy-
perparameter to control for model complexity. Regular-
ized models, for example, control the trade-off between
a data fidelity term and a regularization term through one
or several hyperparameters. Among its most well-known
instances are the LASSO (Tibshirani, 1996), in which �1
regularization is added to a squared loss to encourage spar-
sity in the solutions, or �2-regularized logistic regression, in
which squared �2 regularization (known as weight decay in
the context of neural networks) is added to obtain solutions
with small euclidean norm. Another class of hyperparam-

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

10−2 10−1 100 101 102 103 104 105

regularization parameter

cr
os

s-
va

lid
at

io
n

lo
ss

Figure 1. Hyperparameter Optimization with approximate gradi-
ent. The gradient of the cross-validation loss function with re-
spect to hyperparameters is computed approximately. This noisy
gradient is then used to estimate the optimal hyperparameters by
gradient descent. A decreasing bound between the true gradient
and the approximate gradient ensures that the method converges
towards a stationary point.

eters are the kernel parameters in support vector machines.
For example, the popular radial basis function (RBF) ker-
nel depends on a “width” parameter, while polynomial ker-
nels depend on a discrete hyperparameter specifying the
degree. Hyperparameters can be broadly categorized into
two groups: continuous hyperparameters, such as regular-
ization parameters or the width of an RBF kernel and dis-
crete hyperparameters, such as the degree of a polynomial.
In this work we focus on continuous hyperparameters.

The problem of identifying the optimal set of hyperparam-
eters is known as hyperparameter optimization. Hyperpa-
rameters cannot be estimated to minimize the same cost
function as model parameters, since this would favor mod-
els with excessive complexity. For example, if regulariza-
tion parameters were chosen to minimize the same loss
as model parameters, then models with no regularization
would always yield the smallest loss. For this reason, hy-
perparameter optimization algorithms seek to optimize a
criterion of model quality which is different from the cost



Hyperparameter optimization with approximate gradient

function used to fit model parameters. This criterion can be
a goodness of fit on unseen data, such as a cross-validation
loss, or some criteria of model quality on the train set such
as SURE (Stein, 1981), AIC/BIC (Liu and Yang, 2011) or
Mallows Cp (Mallows, 1973), to name a few.

Choosing the appropriate set of hyperparameters has often
a dramatic influence in model accuracy and many hyperpa-
rameter optimization algorithms have been proposed in the
literature. For example, in the widely used grid-search al-
gorithm, the model is trained over a range of values for the
hyperparameters and the value that gives the best perfor-
mance on the cross-validation loss is chosen. This not only
scales poorly with the number of hyperparameters, but also
involves fitting the full model for values of hyperparame-
ters that are very unpromising. Random search (Bergstra
et al., 2011) has been proven to yield a faster exploration
of the hyperparameter space than grid search, specially in
spaces with multiple hyperparameters. However, none of
these methods make use of previous evaluations to make
an informed decision of the next iterate. As such, conver-
gence to a global minima can be very slow.

In recent years, sequential model-based optimization
(SMBO) techniques have emerged as a powerful tool for
hyperparameter optimization (see e.g. (Brochu et al., 2010)
for an review on current methodologies). These techniques
proceed by fitting a probabilistic model to the data and then
using this model as an inexpensive proxy in order to deter-
mine the most promising location to evaluate next. This
probabilistic model typically relies on a Gaussian process
regressor but other approaches exist using trees (Bergstra
et al., 2011) or ensemble methods (Lacoste et al., 2014).
The model is built using only function evaluations, and for
this reason SMBO is often considered as a black-box opti-
mization method.

A third family of methods, which includes the method that
we present, estimate the optimal hyperparameters using
smooth optimization techniques such as gradient descent.
We will refer to these methods as gradient-based hyper-
parameter optimization methods. These methods use local
information about the cost function in order to compute the
gradient of the cost function with respect to hyperparame-
ters. However, computing the gradient with respect to hy-
perparameters has reveled to be a major bottleneck in this
approach. For this reason we propose an algorithm that re-
places the gradient with an approximation. More precisely,
we make the following contributions:

• We propose a gradient-based hyperparameter opti-
mization algorithm that uses approximate gradient in-
formation rather than the true gradient.

• We provide sufficient conditions for the convergence
of this method to a stationary point.

• We compare this approach against state-of-the art
methods for the task of estimation of regularization
and kernel parameter on two different models and
three datasets.

Notation We denote the gradient of a real-valued function
by ∇. If this function has several input arguments, we de-
note ∇i its gradient with respect to the i-th argument. Sim-
ilarly, ∇2 denotes the Hessian and ∇2

i,j denotes the sec-
ond order differential with respect to variables i and j. For
functions that are not real-valued, we denote its differential
by D. We denote the projection operator onto a set D by
PD. That is, PD(α) � argminλ∈D �α− λ�2, where � · �
denotes the euclidean norm for vectors.

Throughout the paper we take the convention of denot-
ing real-valued functions with lowercase letters (such as
f and g) and vector-valued functions with uppercase let-
ters (such as X). Model parameters are denoted using low-
ercase Latin letters (such as x) while hyperparameters are
denoted using Greek lowercase letters (such as λ).

1.1. Problem setting

As mentioned in the introduction, the goal of hyperparam-
eter optimization is to choose the hyperparameters λ that
optimizes some criteria, such as a cross-validation loss or
a SURE/AIC/BIC criteria. We will denote this criteria by
f : Rs → R, where s is the number of hyperparameters.
In its simplest form, the hyperparameter optimization prob-
lem can be seen as the problem of minimizing the cost func-
tion f over a domain D ⊆ Rs. Some approaches, such as
sequential model-based optimization, only require function
evaluations of this cost function. The methods we are in-
terested in however use local information of the objective
function.

The cost function f (e.g. the cross-validation error) de-
pends on the model parameters, which we will denote by
X(λ). These are commonly not available in closed form
but rather defined implicitly as the minimizers of some cost
function that we will denote h(·,λ) : Rp → R, where p is
the number of model parameters. This makes the hyperpar-
mater optimization problem can be naturally expressed as
a nested or bi-level optimization problem:

argmin
λ∈D

�
f(λ) � g(X(λ),λ)

�

s.t. X(λ) ∈ argmin
x∈Rp

h(x,λ) ,
(HO)

where the minimization over h is commonly referred to
as the inner optimization problem. A notable example of
hyperparameter optimization problem is that of regulariza-
tion parameter selection by cross-validation. For simplic-



Hyperparameter optimization with approximate gradient

ity, we restrict the discussion to the case of simple or hold-
out cross-validation, where the dataset is split only once,
although the methods presented here extend naturally to
other cross-validation schemes. In this setting, the dataset
is split in two: a train set (denoted Strain) and a test or hold-
out set (denoted Stest). In this case, the outer cost function
is a goodness of fit or loss on the test set, while the inner
one is a trade-off between a data fitting term on the train
set and a penalty term. If the penalty term is a squared
�2-norm, then the problem adopts the form:

argmin
λ∈D

loss(Stest, X(λ))

s.t. X(λ) ∈ argmin
x∈Rp

loss(Strain, x) + eλ�x�2 .
(1)

The trade-off in the inner optimization between the good-
ness of fit term and the penalty term is controlled through
the hyperparamter λ. Higher values of λ bias the model pa-
rameters towards vectors with small euclidean norm, and
the goal of the hyperparameter optimization problem is
to find the right trade-off between these two terms. The
parametrization of the regularization parameter by an ex-
ponential (eλ) in Eq. (1) might seem unusual, but given that
this regularization parameter is commonly optimized over
a log-spaced grid, we will find this parametrization useful
in later sections.

Turning back to the general problem (HO), we will now
describe an approach to compute the derivative of the cost
function f with respect to hyperparameters. This approach,
which we will refer to as implicit differentiation (Larsen
et al., 1996; Bengio, 2000; Foo et al., 2008), relies on the
observation that under some regularity conditions it is pos-
sible to replace the inner optimization problem by an im-
plicit equation. For example, if h is smooth and verifies
that all stationary points are global minima (as is the case
for convex functions), then the values X(λ) are character-
ized by the implicit equation ∇1h(X(λ),λ) = 0. Deriving
the implicit equation with respect to λ leads to the equation
∇2

1,2h+∇2
1h ·DX = 0, which, assuming ∇2

1h invertible,
characterizes the derivative of X . The chain rule, together
with this equation, allows us to write the following formula
for the gradient of f :

∇f = ∇2g + (DX)T∇1g

= ∇2g −
�
∇2

1,2h
�T �

∇2
1h

�−1

∇1g .
(2)

This formula allows to compute the gradient of f given
the following quantities: model parameters X(λ) (g and
h are evaluated at (X(λ),λ)) and

�
∇2

1h
�−1 ∇1g, which

is usually computed as the solution to the linear system�
∇2

1h
�
z = ∇1g for z. In the section that follows, we

present an algorithm that relaxes the condition of both
knowledge of the exact model parameters and exact solu-
tion of the linear system.

2. HOAG: Hyperparameter optimiza-
tion with approximate gradient

As we have seen in the previous section, computing an ex-
act gradient of f can be computationally demanding. In
this section we present an algorithm that uses an approx-
imation, rather than the true gradient, in order to estimate
the optimal hyperparameters. This approach yields a trade-
off between speed and accuracy: a loose approximation can
be computed faster but might result in slow convergence
or even divergence of the algorithm. At iteration k, this
trade-off is balanced by the tolerance parameter εk. The
sequence of tolerance parameters {ε1, ε2, . . .} will turn out
to play a major role in the convergence of the algorithm, al-
though the time being, we will treat it as free parameter. We
now describe our main contribution, the HOAG algorithm:

Algorithm 1 (HOAG). At iteration k = 1, 2, . . . per-
form the following:

(i) Solve the inner optimization problem up to tol-
erance εk. That is, find xk such that

��X(λk)− xk

�� ≤ εk .

(ii) Solve the linear system ∇2
1h(xk,λk)qk =

∇1g(xk,λk) for qk up to tolerance εk. That is,
find qk such that
���∇2

1h(xk,λk)qk −∇1g(xk,λk)
��� ≤ εk .

(iii) Compute approximate gradient pk as

pk = ∇2g(xk,λk)−∇2
1,2h(xk,λk)

T qk ,

(iv) Update hyperparameters:

λk+1 = PD

�
λk − 1

L
pk

�
.

This algorithm consists of four steps. The first two steps
of the algorithm compute approximations to the quantities
used in Eq. (2) to compute the gradient of f . However,
since these are not computed to full accuracy, pk, computed
in step (iii) is a noisy estimate of the gradient. This approx-
imation is then used as a replacement of the true gradient
in a projected gradient-descent (iv) iteration.

This procedure requires access to three quantities at itera-
tion k: a εk-optimal solution to the inner optimization prob-
lem which can be computed with any solver, the first-order
derivatives of g, (∇1g,∇2g), and an εk-optimal solution
to a linear system involving ∇2

1h. In practice, this system



Hyperparameter optimization with approximate gradient

is solved using a conjugate-gradient method, which only
requires access to the matrix ∇2

1h through matrix-vector
products. For example, in machine learning problems such
as the ones introduced in Eq. (1), the quantity ∇2

1h cor-
responds to the Hessian of the inner optimization prob-
lem. Efficient schemes for multiplication by the Hessian
can be derived for least squares, logistic regression (Lin
et al., 2008) and other general loss functions (Pearlmutter,
1994).

2.1. Related work

There exists a large variety of hyperparameter optimization
methods, and a full review of this literature would be out-
side the scope of this work. Below, we comment on the
relationship between HOAG and some of the most closely
related methods.

Regarding gradient-based hyperparameter optimization
methods we will distinguish two main approaches, implicit
differentiation and iterative differentiation, depending on
how the gradient with respect to hyperparameters is com-
puted.

Implicit differentiation. This approach consists in deriv-
ing an implicit equation for the gradient using the optimal-
ity conditions of the inner optimization problem (as we did
in Eq. (2)). Originally motivated by the problem of set-
ting the regularization parameter in the context of neural
networks (Larsen et al., 1996; 1998; Bengio, 2000), has
also been applied to the problem of selecting kernel pa-
rameters (Chapelle et al., 2002; Seeger, 2008) or multiple
regularization parameters in log-linear models (Foo et al.,
2008). This approach has also been successfully applied
to the problem of image reconstruction (Kunisch and Pock,
2013; Calatroni et al., 2015), in which case the simplicity of
the cost function function allows for a particularly simple
expression of the gradient with respect to hyperparameters.

Iterative differentiation. In this approach, the gradient
with respect to hyperparameters is computed by differen-
tiating each step of the inner optimization algorithm and
then using the chain rule to aggregate the results. Since the
gradient is computed after a finite number of steps of the
inner optimization routine, the estimated gradient is natu-
rally an approximation to the true gradient. This method
was first proposed by Domke (2012) and later extended to
the setting of stochastic gradient descent by Maclaurin et al.
(2015). We note also that contrary to the implicit differen-
tiation approach, this method can be applied to problems
with non-smooth cost functions (Deledalle et al., 2014;
Ochs et al.).

HOAG, while belonging to the class of implicit differentia-
tion methods, is related to iterative differentiation methods

in that it allows the gradient with respect to hyperparame-
ters to be computed approximately.

Finally, we note that similar approaches have also been
considered in the setting of sequential model-based op-
timization. Swersky et al. (2014) proposes an approach
in which the inner optimization is “freezed” whenever the
method decides that the current hyperparameter values are
not promising. It does so by introducing a prior on train-
ing curves as a function of input hyperparameters. This ap-
proach however requires to make strong assumptions on the
shape of the training curves which gradient-based methods
do not make.

3. Analysis

In this section we will prove that the summability of the
tolerance sequence {εi}∞i=1 is sufficient to guarantee con-
vergence of the iterates in HOAG. The analysis of this al-
gorithm is inspired by the work of d’Aspremont (2008);
Schmidt et al. (2011); Friedlander and Schmidt (2012) on
inexact-gradient algorithms for convex optimization.

We will start this section by enumerating the regularity con-
ditions that we assume for the hyperparameter optimization
problem. The following conditions are assumed through
the section:

• (A1) L-smoothness. We assume that the first deriva-
tives of g and the second derivatives of h are Lipschitz
continuous functions.

• (A2) Nonsingular Hessian. We assume that the ma-
trix ∇2

1h, which corresponds to the Hessian of the in-
ner optimization problem, is invertible at the values
(X(λ),λ),λ ∈ D.

• (A3) Convex compact domain. The domain under
which the hyperparameters are optimized, D, is a con-
vex non-empty and compact subset of Rs.

These assumptions are verified by many models of inter-
est. For example, for the problem of estimation of regular-
ization parameters of Eq. (1), it allows twice-differentiable
loss functions such as logistic regression or least squares
(assumption A1) and strongly convex penalties (A2), such
as squared �2 regularization. Note that condition (A2)
need not be verified on all its domain, only on the points
(X(λ),λ), which would allow in principle to consider
models that are defined through a non-convex cost func-
tions. Assumption (A3) requires that the domain of the hy-
perparameters is a convex compact domain. In practice,
hyperparameters are optimized over a s-dimensional inter-
val, i.e., a domain of the form D = [a1, b1]× · · · [as, bs].



Hyperparameter optimization with approximate gradient

Our analysis however only require this domain to be con-
vex and compact, a constraint that subsumes s-dimensional
intervals.

The rest of the section is devoted to prove (under condi-
tions) the convergence of HOAG. The proof is divided in
two parts. First, we will prove that the difference between
the true gradient and the approximate gradient is bounded
by O(ε) (Theorem 1) and in a second part we will prove
that if the sequence {εi}∞i=1 is summable, then this implies
the convergence to a stationary point of f (Theorem 2). Be-
cause of space limitation, the proofs are omitted and can be
found in Appendix A.
Theorem 1 (The gradient error is bounded). For suffi-
ciently large k, the error in the gradient is bounded by a
constant factor of εk. That is,

��∇f(λk)− pk
�� = O(εk) .

This theorem gives a bound on the gradient from the se-
quence that bounds the inner optimization and the linear
system solution. Is will be the key ingredient in order to
show convergence to a stationary point, which is the main
result of this section. This property sometimes referred to
as global convergence (Nocedal and Wright, 2006):
Theorem 2 (Global convergence). If the tolerance se-
quence is summable, that is, if {ε}ni=1 is positive and veri-
fies

∞�

i=1

εi < ∞ ,

then the sequence λk of iterates in the HOAG algorithm has
limit λ∗ ∈ D, and this limit verifies the stationary point
condition:

�∇f(λ∗),α− λ∗� ≥ 0 , ∀α ∈ D .

In particular, if λ∗ belongs to the interior of D it is verified
that

∇f(λ∗) = 0 .

This results gives sufficient conditions for the convergence
of HOAG. The summability of the tolerance sequence sug-
gest several natural candidates for this sequence, such as
the quadratic sequence, εk = k−2 or the exponential se-
quence, εk = ρk, with 0 < ρ < 1. We will empirically
evaluate different tolerance sequences on different prob-
lems and different datasets in the next section.

Experiments

In this section we compare the empirical performance of
HOAG. We start by discussing some implementation de-
tails such as the choice of step size. Then, we compare

the convergence of different tolerance decrease strategies
that were suggested by the theoretical analysis. In a third
part, we compare the performance of HOAG against other
hyperparameter optimization methods.

Adaptive step size. Our algorithm relies on the knowledge
of the Lipschitz constant L for the cost function f . How-
ever, in practice this is not known in advance. Furthermore,
since the cost function is costly to evaluate, it is not feasi-
ble to perform backtracking line search. To overcome this
we use a procedure in which the step size is corrected de-
pending on the gain estimated from the previous step. In
the experiments we use this technique although we do not
have a formal analysis of the algorithm for this choice of
step size.

Let Δk denote the distance between the current iterate and
the past iterate, Δk = �λk − λk−1�. The L-smooth prop-
erty of the function g, together with Lemma 1, implies that
there exists a constant M > 0 such that the following in-
equality is verified:

g(λk, xk) ≤ g(λk−1, xk−1) + Cεk+

εk−1(C +M)Δk − LΔ2
k ,

(3)

where C is the Lipschitz constant of g (for loss functions
such as logistic or least squares this can easily be computed
from the data). This inequality can be derived from the
properties of L-smooth functions, and the details can be
found in Appendix B. The procedure consists in decreasing
the step (multiplication by α < 1) whenever the equation
is not satisfied and to increase it (multiplication by β >
1) whenever the equation is satisfied to ensure that we are
using a step size as large as possible. The constants that we
used in the experiments are M = 1,α = 0.5,β = 1.05.

Stopping criterion. The stopping criterion given in Al-
gorithm 1 depends on X(λ) which is generally unknown.
However, for objective functions in the inner optimiza-
tion which are µ-strongly convex (µ/2 can be taken as
the amount of regularization in �2-regularized objectives),
it is possible to lower bound the quantity �X(λk)− xk�
by µ−1�g�(λk, xk)�. Hence, it is sufficient to ensure
µ−1�g�(λk, xk)� ≤ ε. Details can be found in Appendix B.

Initialization. The previous sections tells us how to adjust
the step size but relies on an initial value of this parameter.
We have found that a reasonable initialization is to initalize
it to L = �p1� so that the first update in HOAG is of mag-
nitude at most 1 (it can be smaller due to the projection),
where p1 is the approximate gradient on the first step. The
initialization of the tolerance decrease sequence is set to
ε1 = 0.1. We also limit the maximum precision to avoid
numerical instabilities to 10−12, which is also the precision
for “exact” methods, i.e., those that do not use a tolerance
sequence. The initialization of regularization parameters
is set to 0 and the width of an RBF kernel is initialized to



Hyperparameter optimization with approximate gradient

− log(n feat), where n feat is the number of features or di-
mensionality of the dataset.

Although HOAG can be applied more generally, in our ex-
periments we focus on two problems: �2-regularized logis-
tic regression and kernel Ridge regression. We follow the
setting described in Eq. (1), in which an initial dataset is
partitioned into two sets, a train set Strain = {(bi, ai)}ni=1

and a test set Stest = {(b�i, a�i)}mi=1, where ai denotes the
input features and bi the target variables.

The first problem consists in estimating the regularization
parameter in the widely-used �2-regularized logistic regres-
sion model. In this case, the loss function of the inner op-
timization problem is the regularized logistic loss function.
In the setting of classification, the validation loss or outer
cost function is commonly the zero-one loss. However, this
loss is non-smooth and so does not verify assumption (A1).
To overcome this and following (Foo et al., 2008), we use
the logistic loss as the validation loss. This yield a problem
of the form:

argmin
λ∈D

m�

i=1

ψ(b�ia
�T
i X(λ))

s.t. X(λ) ∈ argmin
x∈Rp

n�

i=1

ψ(bia
T
i x) + eλ�x�2 ,

(4)

where ψ is the logistic loss, i.e., ψ(t) = log(1 + e−t). The
second problem that we consider is that of kernel Ridge re-
gression with an RBF kernel. In this setting, the problem
contains two hyperparameters: the first hyperparameter
(λ1) controls the width of the RBK kernel and the second
hyperparameter (λ2) controls the amount of regularization.
The inner optimization depends on the kernel through the
kernel matrix, formed by computing the kernel of all pair-
wise input samples. We denote such matrix as K(γ)train,
where the (i, j) entry is given by k(ai, aj , γ), where k is the
RBF kernel function: k(ai, aj , γ) = exp(−γ�ai − aj�).
Similarly, the outer optimization also depends on the ker-
nel through the matrix K(γ)test, where its entries are the
kernel product between features from the train set and fea-
tures from the test set, that is, k(ai, a�j , γ). Denoting the
full hyperparameter vector as λ = [λ1,λ2], the kernel ma-
trix on the train set as, the full hyperparameter optimization
problem takes the form

argmin
λ∈D

���b−Ktest(e
λ1)X(λ)

���
2

s.t.
�
Ktrain(e

λ1) + eλ2I
�
X(λ) = b ,

(5)

where for simplicity the inner optimization is already set as
an implicit equation. Note that in this setting, and unlike
in the logistic regression problem, the outer optimization
function depends on the hyperparameters not only through

the model parameters X(λ) but also through the kernel ma-
trix.

The solver used for the inner optimization problem of the
logistic regression problem is L-BFGS (Liu and Nocedal,
1989), while for Ridge regression we used a linear conju-
gate descent method. In all cases, the domain for hyperpa-
rameters is the s-dimensional interval [−12, 12]s.

For the experiments, we use four different datasets.
The dataset 20news and real-sim are studied with an �2-
regularized logistic regression model (1 hyperparameter)
while the Parkinson dataset using a Kernel ridge regression
model (2 hyperparameters). The MNIST dataset is investi-
gated in a high-dimensional hyperparameter space using a
similar setting to (Maclaurin et al., 2015, §3.2) and reported
in in Appendix B. Datasets and models are described in
more detail in Appendix B.

In all cases, the dataset is randomly split in three equally
sized parts: a train set, test set and a third validation set
that we will use to measure the generalization performance
of the different approaches.

3.1. Tolerance decrease sequence

We report in Figure 2 the convergence of different tolerance
decrease strategies. From Theorem 2, the sole condition
on these sequences is that they are summable. Three no-
table examples of summable sequences are the quadratic,
cubic and exponential sequences. Hence, we choose one
representative of each of these strategies. More precisely,
the decrease sequences that we choose are a quadratic de-
crease sequence of the form εk = 0.1 × k−2, a cubic one
of the form εk = 0.1 × k−3 and an exponential of the
form εk = 0.1 × (0.9k). The value taken as true minima
of the hyperparameter optimization problem is computed
by taken the minimum reached by 10 randomly initialized
instances of HOAG with exponential decrease tolerance.

The plot shows the relative accuracy of the different vari-
ants as a function of time. It can be seen that non-exact
methods feature a cheaper iteration cost, yielding a faster
convergence overall. Note that despite the global conver-
gence result of Theorem 2, HOAG is not guaranteed to
be monotonically decreasing, and in fact, some degree of
oscillation is expected when the decrease in the tolerance
does not match the convergence rate (see e.g. Schmidt et al.
(2011)). This can be appreciated in Figure 2, where the
quadratic decrease sequence (and to some extent the cubit
too) exhibits oscillations in the two first plots.



Hyperparameter optimization with approximate gradient

� � � � � � �

�����������������

��
��

��
��

��
��

��
�

��
�

��
�

��
�

�
�
��
�
��
�
�
��

��
�
�
��
�
��
�
�
�

�����

���������

�����������

�����

���������������

� � � � � �

�����������������

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
�

�����

���������

�����������

�����

����������������

� � �� �� �� �� �� �� ��

�����������������

��
��

��
��

��
��

��
�

��
�

�����

���������
�����������

�����

�����������������

Figure 2. Tolerance decrease strategies. Suboptimality as a function of time for different tolerance decrease strategies. The decrease
sequences considered are quadratic (0.1k−2), cubic (0.1k−3), exponential (0.1× 0.9k) and exact (gradient is computed to full accuracy
at every iteration). Non-exact methods exhibit smaller cost per iteration, which results in faster convergence.

3.2. Comparison with other hyperparameter
optimization methods

We now compare against other hyperparameter optimiza-
tion methods. The methods against which we compare are:

• HOAG. The method we present in this paper, with
an exponentially decreasing tolerance sequence. A
Python implementation is made freely available at
https://github.com/fabianp/hoag.

• Grid Search. This method consists simply in split-
ting the domain of the hyperparameter into an equally-
spaced grid. We split the interval [−12, 12] into a grid
of 10 values.

• Random. This is the random search method (Bergstra
and Bengio, 2012) samples the hyperparameters from
a predefined distribution. We choose to samples from
a uniform distribution in the interval [−12, 12].

• SMBO. Sequential model-based optimization
using Gaussian Process. We used the im-
plementation found in the Python package
BayesianOptimization (http://github.com/
fmfn/BayesianOptimization/). As initialization
for this method, we choose 4 values equally spaced
between −12 and 12. The acquisition function used
is the expected improvement.

• Iterdiff. This is the iterative differentiation ap-
proach from (Domke, 2012), using the same inner-
optimization algorithm as HOAG. While the origi-
nal implementation used to have a backtracking line
search procedure to estimate the step size, we found
that this performed worst than any of the alternatives.
For this reason, we use the adaptive step size strategy
presented in Section 3 (assuming a zero tolerance pa-
rameter ε).

For all methods, the number of iterations used in the in-
ner optimization algorithm (L-BFGS or GD) is set to 100,
which is the same used by the other methods and the default
in the scikit-learn (http://scikit-learn.org) pack-
age.

We report in Figure 3 the results of comparing the accu-
racy of these methods as a function of time. Note that it is
expected that the different methods have different starting
points. This is because Grid Search and SMBO naturally
start from a pre-defined grid that starts from the extremes of
the interval, while random search simply chooses a random
point from the domain. For HOAG and Iterdiff, we take the
initialization λ1 = 0.

In the upper row of Figure 3 we can see the suboptimal-
ity of the different procedures as a function of time. We
observe that HOAG and Iterdiff have similar behavior, al-
though HOAG features a smaller cost per iteration. This
can be explained because once HOAG has made a step it can
use the previous solution of the inner optimization problem
as a warm-start to compute the next gradient. This is not
the case in Iterdiff since the computation of the gradient
relies crucially on having sufficient iterations of the inner
optimization algorithm.

We note that in the Parkinson dataset, solution is inside a
region that is almost flat (the different cost functions can
be seen in Figure 1 of the supplementary material). This
can explain the difficulty of the methods to go beyond the
10−2 suboptimality level. In this case, SMBO, who starts
by computing the cost function at the extremes of the do-
main converges instantly to this region, which explains its
fast convergence, although it is unable to improve the ini-
tially reached suboptimality.

Suboptimality plots are a standard way to compare the per-
formance of different optimization methods. However, for
the context of machine learning it can be argued that es-
timating hyperparameters up to a high precision is unim-



Hyperparameter optimization with approximate gradient

� � �� �� �� �� ��

�����������������

��
��

��
��

��
��

��
�

��
�

��
�

��
�

�
�
��
�
��
�
�
��

��
�
�
��
�
��
�
�
�

����

����

������

�����������

��������

��������������

� � � � � � �

�����������������

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
�

����

����

������

�����������

��������

����������������

� � �� �� �� �� �� �� ��

�����������������

��
��

��
��

��
��

��
�

����

����

������

�����������

��������

�����������������

� � � � � ��

�����������������

���

���

����

����

����

����

����

�
�
�
�
��
�
��
�
��
�
�
�
��
�
��
�
�

����

����

������

�����������

��������

��������������

� � � � � � �

�����������������

����

����

����

����

����

����

����

����

����

������

�����������

��������

����������������

� � � � � ��

�����������������

���

���

���

���

���

���

���

���

����

����

������

�����������

��������

�����������������

Figure 3. Hyperparameter optimization methods. Top row: suboptimality of the different methods in terms of the test loss. Bottom
row: loss measured on a validation set for the different methods.

portant and that methods should be compared in terms of
generalization performance. In the lower row of Figure 3,
we display the test loss (g) on a validation set, that is, using
a third set of samples {(b̃i, ãi)}ri=1 which is different from
both the train and test set. This figure reveals two main ef-
fects. First, unsurprisingly, optimization beyond 10−2 of
relative suboptimality is not reflected in this metric. Sec-
ond, the fast (but noisy) early iterations of HOAG achieve
the fastest convergence in two out of three datasets.

4. Discussion and future work

In previous sections we have presented and discussed sev-
eral aspects of the HOAG algorithm. Finally, we outline
some future directions that we think are worthwhile explor-
ing.

Given the success of recent stochastic optimization tech-
niques (Schmidt et al., 2013; Johnson and Zhang, 2013) it
seems natural to study a stochastic variant of this algo-
rithm, that is, one in which the updates in the inner and
outer optimization schemes have a cost that is independent
of the number of samples. However, the dependency on
the Hessian of the inner optimization (∇2

1h) in the implicit
equation (2) makes this non-trivial.

Little is known of the structure of solutions for the hyper-
parameter optimization problem (HO). In fact, assumption

(A3) is introduced almost exclusively in order to guarantee
existence of solutions. At the same time recent progress on
the setting of image restoration, which can be considered
a subproblem of (HO), has given sufficient conditions on
the input data for such solution to exist in an unbounded
domain (De los Reyes et al., 2015). The characterization of
solutions for the HO problem can potentially simplify the
assumptions made in this paper.

The analysis presented in this paper can be extended in sev-
eral ways. For instance, the analysis of HOAG is provided
for a constant step size and not for the adaptive step size
strategy used in the experiments. Also, we have focused
on proving asymptotic convergence of our algorithm. An
interesting future direction would be to study rates of con-
vergence, which might give insight into an optimal choice
for the tolerance decrease sequence.

Although we found the method to be quite robust in prac-
tice, there are situations where it can get stuck in flat re-
gions. For example, if the initial step is too big, it might
land in a region with a large regularization parameter where
the curvature is amost zero (hence the reason to normalize
the first step by its norm). An interesting direction of fu-
ture work is to make the method robust to such flat regions,
scaping from flat regions and allowing the method to make
bigger steps in early iterations.



Hyperparameter optimization with approximate gradient

Acknowledgments

I am in debt with Gabriel Peyré for numerous discussions,
suggestions and pointers. I would equally like to thank the
anonymous reviewers for many insightful comments, and
to Justin Domke for posting the code of his Iterative differ-
entiation method.

Feedback and comments are welcome at the author’s blog
(http://goo.gl/WoV8R5).

The author acknowledges financial support from the
“Chaire Economie des Nouvelles Données”, under the aus-
pices of Institut Louis Bachelier, Havas-Media and Univer-
sité Paris-Dauphine (ANR 11-LABX-0019).

References
Yoshua Bengio. Gradient-based optimization of hyperpa-

rameters. Neural computation, 12(8):1889–1900, 2000.

James Bergstra and Yoshua Bengio. Random search for
hyper-parameter optimization. The Journal of Machine
Learning Research, 13(1), 2012.

James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. Algorithms for hyper-parameter optimiza-
tion. In Advances in Neural Information Processing Sys-
tems 24. 2011.

Eric Brochu, Vlad M Cora, and Nando De Freitas. A tu-
torial on bayesian optimization of expensive cost func-
tions, with application to active user modeling and
hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010.

Luca Calatroni, Cao Chung, Juan Carlos De Los
Reyes, Carola-Bibiane Schönlieb, and Tuomo Valkonen.
Bilevel approaches for learning of variational imaging
models. arXiv preprint arXiv:1505.02120, 2015.

Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and
Sayan Mukherjee. Choosing multiple parameters for
support vector machines. Machine learning, 2002.

Alexandre d’Aspremont. Smooth optimization with ap-
proximate gradient. SIAM Journal on Optimization,
2008.

J.C. De los Reyes, Carola-Bibiane Schönlieb, and Tuomo
Valkonen. The structure of optimal parameters for image
restoration problems. arXiv preprint arXiv:1505.01953,
2015.

Charles-Alban Deledalle, Samuel Vaiter, Jalal Fadili, and
Gabriel Peyré. Stein unbiased gradient estimator of the
risk (SUGAR) for multiple parameter selection. SIAM
Journal on Imaging Sciences, 2014.

Justin Domke. Generic methods for optimization-based
modeling. In International Conference on Artificial In-
telligence and Statistics, 2012.

Chuan-Sheng Foo, Chuong B. Do, and Andrew Y. Ng. Ef-
ficient multiple hyperparameter learning for log-linear
models. In Advances in Neural Information Processing
Systems 20. 2008.

Michael Friedlander and Mark Schmidt. Hybrid
deterministic-stochastic methods for data fitting. SIAM
Journal on Scientific Computing, 2012.

Nicholas J Higham. Accuracy and stability of numerical
algorithms. 2002.

Rie Johnson and Tong Zhang. Accelerating stochastic gra-
dient descent using predictive variance reduction. In Ad-
vances in Neural Information Processing Systems, 2013.

Karl Kunisch and Thomas Pock. A bilevel optimization
approach for parameter learning in variational models.
SIAM Journal on Imaging Sciences, 2013.

Alexandre Lacoste, Hugo Larochelle, François Laviolette,
and Mario Marchand. Sequential model-based ensemble
optimization. arXiv preprint arXiv:1402.0796, 2014.

Jan Larsen, Lars Kai Hansen, Claus Svarer, and M Ohls-
son. Design and regularization of neural networks: the
optimal use of a validation set. In Proceedings of the
IEEE Signal Processing Society Workshop. IEEE, 1996.

Jan Larsen, Claus Svarer, Lars Nonboe Andersen, and
Lars Kai Hansen. Adaptive regularization in neural net-
work modeling. In Neural Networks: Tricks of the Trade.
Springer, 1998.

Chih-Jen Lin, Ruby C Weng, and S Sathiya Keerthi. Trust
region newton method for logistic regression. The Jour-
nal of Machine Learning Research, 2008.

Dong C Liu and Jorge Nocedal. On the limited memory
bfgs method for large scale optimization. Mathematical
programming, 1989.

Wei Liu and Yuhong Yang. Parametric or nonparametric?
a parametricness index for model selection. The Annals
of Statistics, 2011.

Dougal Maclaurin, David Duvenaud, and Ryan P. Adams.
Gradient-based hyperparameter optimization through re-
versible learning. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, July 2015.

Colin L Mallows. Some comments on Cp. Technometrics,
1973.



Hyperparameter optimization with approximate gradient

Yurii Nesterov. Introductory lectures on convex optimiza-
tion. Springer Science & Business Media, 2004.

Jorge Nocedal and Stephen Wright. Numerical optimiza-
tion. Springer Science & Business Media, 2006.

Peter Ochs, René Ranftl, Thomas Brox, and Thomas Pock.
Bilevel optimization with nonsmooth lower level prob-
lems. In Scale Space and Variational Methods in Com-
puter Vision. Springer.

Neal Parikh and Stephen Boyd. Proximal algorithms.
Foundations and Trends in optimization, 2013.

Barak A Pearlmutter. Fast exact multiplication by the hes-
sian. Neural computation, 1994.

R Tyrrell Rockafellar and Roger J-B Wets. Variational
analysis. Springer Science & Business Media.

Mark Schmidt, Nicolas Le Roux, and Francis R Bach. Con-
vergence rates of inexact proximal-gradient methods for
convex optimization. In Advances in neural information
processing systems, 2011.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Mini-
mizing finite sums with the stochastic average gradient.
arXiv preprint arXiv:1309.2388, 2013.

Matthias W Seeger. Cross-validation optimization for large
scale structured classification kernel methods. The Jour-
nal of Machine Learning Research, 2008.

Charles M Stein. Estimation of the mean of a multivariate
normal distribution. The annals of Statistics, 1981.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams.
Freeze-thaw bayesian optimization. arXiv preprint
arXiv:1406.3896, 2014.

Robert Tibshirani. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society. Series
B (Methodological), 1996.

Athanasios Tsanas, Max A Little, Patrick E McSharry, and
Lorraine O Ramig. Accurate telemonitoring of parkin-
son’s disease progression by noninvasive speech tests.
Biomedical Engineering, IEEE Transactions on, 2010.


