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We study a boundary value problem for the system of nonlinear impulsive fractional differential equations of order 𝛼 (0 < 𝛼 ≤

1) involving the two-point and integral boundary conditions. Some new results on existence and uniqueness of a solution are
established by using fixed point theorems. Some illustrative examples are also presented. We extend previous results even in the
integer case 𝛼 = 1.

1. Introduction

For the last decades, fractional calculus has received a great
attention because fractional derivatives provide an excellent
tool for the description of memory and hereditary properties
of various processes of science and engineering. Indeed,
we can find numerous applications in viscoelasticity [1–3],
dynamical processes in self-similar structures [4], biosciences
[5], signal processing [6], system control theory [7], electro-
chemistry [8], and diffusion processes [9].

On the other hand, the study of dynamical systems with
impulsive effects has been anobject of intensive investigations
in physics, biology, engineering, and so forth. The interest in
the study of them is that the impulsive differential systems
can be used to model processes which are subject to abrupt
changes and which cannot be described by the classical dif-
ferential problems (e.g., see [10–13] and references therein).
Cauchy problems, boundary value problems, and nonlocal
problems for impulsive fractional differential equations have
been attractive to many researchers; one can see [10–22] and
references therein.

Fe ̆ckan et al. [22] investigated the existence and unique-
ness of solutions for
𝑐

𝐷
𝛼

0+
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐽



:= 𝐽 \ {𝑡
1
, . . . , 𝑡

𝑝
} ,

𝐽 := [0, 𝑇] ,

𝑥 (𝑡
+

𝑖
) − 𝑥 (𝑡

−

𝑖
) = 𝑎
𝑖
, 𝑖 = 1, 2, . . . , 𝑝,

𝑥 (0) = 𝑥
0
, 𝑎
𝑘
∈ R,

(1)

where 𝑐𝐷𝛼
0+

denotes the Caputo fractional derivative of order
𝛼 ∈ (0, 1) and 𝑓 : 𝐽 × R → R is a given continuous function.

In [21], Guo and Jiang discussed the existence of solutions
for the following nonlinear fractional differential equations
with boundary value conditions:
𝑐

𝐷
𝛼

0+
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐽



:= 𝐽 \ {𝑡
1
, . . . , 𝑡

𝑝
} ,

𝐽 := [0, 𝑇] ,

𝑥 (𝑡
+

𝑖
) − 𝑥 (𝑡

−

𝑖
) = 𝐼
𝑖
(𝑥 (𝑡
−

𝑖
)) , 𝑖 = 1, 2, . . . , 𝑝,

𝑎𝑥 (0) + 𝑏𝑥 (𝑇) = 𝑐,

(2)
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where 𝑐𝐷𝛼
0+

is the Caputo fractional derivative of order 𝛼 ∈

(0, 1) with the lower limit zero, 𝑓 : 𝐽 × R → R is jointly
continuous, 𝑡

𝑘
satisfy 0 = 𝑡 < 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑝
< 𝑡
𝑝+1

= 𝑇,
𝑥(𝑡
+

𝑘
) = lim

𝜀→0
+𝑥(𝑡
𝑘
+ 𝜀) and 𝑥(𝑡

−

𝑘
) = lim

𝜀→0
+𝑥(𝑡
𝑘
− 𝜀)

represent the right and left limits of 𝑥(𝑡) at 𝑡 = 𝑡
𝑘
, 𝐼
𝑘
∈

𝐶(R,R), and 𝑎, 𝑏, 𝑐 are real constants with 𝑎 + 𝑏 ̸= 0.
Ashyralyev and Sharifov [20] considered nonfractional 𝑛-

dimensional analogues of the problem (2) with two-point and
integral boundary conditions.

Motivated by the papers above, in this paper, we study
impulsive fractional differential equations with the two-point
and integral boundary conditions in the following form:

𝑐

𝐷
𝛼

0+
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐽



,

𝑥 (𝑡
+

𝑗
) − 𝑥 (𝑡

𝑗
) = 𝐼
𝑗
(𝑥 (𝑡
𝑗
)) , 𝑗 = 1, 2, . . . , 𝑝,

𝐴𝑥 (0) + 𝐵𝑥 (𝑇) = ∫

𝑇

0

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠,

(3)

where 𝐴, 𝐵 ∈ R𝑛×𝑛 are given matrices and det(𝐴 + 𝐵) ̸= 0.
Here 𝑓, 𝑔 : [0, 𝑇] × R𝑛 → R𝑛 and 𝐼

𝑖
: R𝑛 → R𝑛 are given

functions.
The rest of the paper is organized as follows. In Section 2,

we give some notations, recall some concepts, and introduce a
concept of a piecewise continuous solution for our problem.
In Section 3, we give two main results: the first result based
on the Banach contraction principle and the second result
based on the Schaefer fixed point theorem. Some examples
are given in Section 4 to demonstrate the application of our
main results.

2. Preliminaries

In this section, we introduce notations, definitions, and
preliminary facts that will be used in the remainder of
this paper. By 𝐶(𝐽,R𝑛) we denote the Banach space of all
continuous functions from 𝐽 to R𝑛 with the norm

‖𝑥‖
𝐶
= max {|𝑥 (𝑡)| : 𝑡 ∈ 𝐽} , (4)

where | ⋅ | is the norm in space R𝑛. We also introduce the
Banach space

𝑃𝐶 (𝐽,R𝑛) = {𝑥 : 𝐽 → R𝑛 : 𝑥 (𝑡) ∈ 𝐶 ((𝑡
𝑖
, 𝑡
𝑖+1
] ,R𝑛) ,

𝑖 = 0, 1, 2 . . . , 𝑝, 𝑥 (𝑡
−

𝑖
) and 𝑥 (𝑡+

𝑖
)

exist 𝑖 = 1, . . . , 𝑝, and 𝑥 (𝑡−
𝑖
) = 𝑥 (𝑡

𝑖
)} ,

(5)

with the norm

‖𝑥‖
𝑃𝐶

:= sup {|𝑥 (𝑡)| : 𝑡 ∈ 𝐽} . (6)

If 𝐴 ∈ R𝑛×𝑛, then ‖𝐴‖ is the norm of 𝐴.
Let us recall the following known definitions and results.

For more details see [15, 16].

Definition 1. If 𝑔 ∈ 𝐶[𝑎, 𝑏] and 𝛼 > 0, then the Riemann-
Liouville fractional integral is defined by

𝐼
𝛼

𝑎+
𝑔 (𝑡) =

1

Γ (𝛼)

∫

𝑡

𝑎

𝑔 (𝑠)

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠, (7)

where Γ(⋅) is the Gamma function defined for any complex
number 𝑧 as

Γ (𝑧) = ∫

∞

0

𝑡
𝑧−1

𝑒
−𝑡

𝑑𝑡. (8)

Definition 2. The Caputo fractional derivative of order 𝛼 > 0
of a continuous function 𝑔 : [𝑎, 𝑏] → R is defined by

𝑐

𝐷
𝛼

𝑎+
𝑔 (𝑡) =

1

Γ (𝑛 − 𝛼)

∫

𝑡

𝑎

𝑔
(𝑛)

(𝑠)

(𝑡 − 𝑠)
𝛼−𝑛+1

𝑑𝑠, (9)

where 𝑛 = [𝛼] + 1 (the notation [𝛼] stands for the largest
integer not greater than 𝛼).

Remark 3. Under natural conditions on 𝑔(𝑡), the Caputo
fractional derivative becomes the conventional integer order
derivative of the function 𝑔(𝑡) as 𝛼 → 𝑛.

Remark 4. Let 𝛼, 𝛽 > 0 and 𝑛 = [𝛼] + 1; then the following
relations hold:

𝑐

𝐷
𝛼

0+
𝑡
𝛽

=

Γ (𝛽)

Γ (𝛽 − 𝛼)

𝑡
𝛽−1

, 𝛽 > 𝑛,

𝑐

𝐷
𝛼

0+
𝑡
𝑘

= 0, 𝑘 = 0, 1, 2, . . . , 𝑛 − 1.

(10)

Lemma 5. For 𝛼 > 0, 𝑔(𝑡) ∈ 𝐶[0, 𝑇]⋂𝐿
1
[0, 𝑇], the homo-

geneous fractional differential equation,
𝑐

𝐷
𝛼

0+
𝑔 (𝑡) = 0, (11)

has a solution

𝑔 (𝑡) = 𝑐
0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛−1
𝑡
𝑛−1

, (12)

where 𝑐
𝑖
∈ R, 𝑖 = 0, 1, . . . , 𝑛 − 1, and 𝑛 = [𝛼] + 1.

Lemma 6. Assume that 𝑔(𝑡) ∈ 𝐶[0, 𝑇]⋂𝐿
1
[0, 𝑇], with deriv-

ative of order 𝑛 that belongs to 𝐶[0, 𝑇]⋂𝐿
1
[0, 𝑇]; then

𝐼
𝛼

0+

𝑐

𝐷
𝛼

0+
𝑔 (𝑡) = 𝑔 (𝑡) + 𝑐

0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛−1
𝑡
𝑛−1

,

(13)

where 𝑐
𝑖
∈ R, 𝑖 = 0, 1, . . . , 𝑛 − 1, and 𝑛 = [𝛼] + 1.

Lemma 7. Let 𝑝, 𝑞 ≥ 0, 𝑓 ∈ 𝐿
1
[0, 𝑇]. Then

𝐼
𝑝

0+
𝐼
𝑞

0+
𝑓 (𝑡) = 𝐼

𝑝+𝑞

0+
𝑓 (𝑡) = 𝐼

𝑞

0+
𝐼
𝑝

0+
𝑓 (𝑡) (14)

is satisfied almost everywhere on [0, 𝑇]. Moreover, if 𝑓 ∈

𝐶[0, 𝑇], then (14) is true for all 𝑡 ∈ [0, 𝑇].

Lemma 8. If 𝛼 > 0, 𝑓 ∈ 𝐶([0, 𝑇]), then 𝑐𝐷𝛼
0+
𝐼
𝛼

0+
𝑓(𝑡) = 𝑓(𝑡)

for all 𝑡 ∈ [0, 𝑇].
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We define a solution problem (3) as follows.

Definition 9. A function 𝑥 ∈ 𝑃𝐶(𝐽,R𝑛) is said to be a solution
of problem (3) if 𝑐𝐷𝛼

0+
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)), for 𝑡 ∈ [0, 𝑇], 𝑡 ̸= 𝑡

𝑖
, 𝑖 =

1, 2, . . . , 𝑝, and for each 𝑖 = 1, 2, . . . , 𝑝,𝑥(𝑡+
𝑖
)−𝑥(𝑡

𝑖
) = 𝐼
𝑖
(𝑥(𝑡
𝑖
)),

0 = 𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑝
< 𝑡
𝑝+1

= 𝑇, and the boundary
conditions 𝐴𝑥(0) + 𝐵𝑥(𝑇) = ∫𝑇

0

𝑔(𝑠, 𝑥(𝑠))𝑑𝑠 are satisfied.

We have the following result which is useful in what
follows.

Theorem 10. Let 𝑓, 𝑔 ∈ 𝐶(𝐽,R𝑛). Then the function 𝑥

is a solution of the boundary value problem for impulsive
differential equation

𝑐

𝐷
𝛼

0+
𝑥 (𝑡) = 𝑓 (𝑡) , 𝑡 ∈ 𝐽



,

𝑥 (𝑡
+

𝑗
) − 𝑥 (𝑡

𝑗
) = 𝐼
𝑗
(𝑥 (𝑡
𝑗
)) , 𝑗 = 1, 2, . . . , 𝑝,

𝐴𝑥 (0) + 𝐵𝑥 (𝑇) = ∫

𝑇

0

𝑔 (𝑠) 𝑑𝑠

(15)

if and only if

𝑥 (𝑡) = (𝐴 + 𝐵)
−1

∫

𝑇

0

𝑔 (𝑠) 𝑑𝑠

+ ∑

0<𝑡
𝑗
<𝑇

𝐾(𝑡
𝑘
, 𝑡
𝑗
) 𝐼
𝑗
(𝑥 (𝑡
−

𝑗
))

+

1

Γ (𝛼)

∑

0<𝑡
𝑗
≤𝑇

𝐾(𝑡
𝑘
, 𝑡
𝑗
) ∫

𝑡
𝑗

𝑡
𝑗−1

(𝑡
𝑗
− 𝑠)

𝛼−1

𝑓 (𝑠) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝑡
𝑘
< 𝑡 ≤ 𝑡

𝑘+1
,

(16)

where

𝐾 (𝑡, 𝜏) =

{
{

{
{

{

0, 𝑡 = 0,

(𝐴 + 𝐵)
−1

𝐴, 0 < 𝜏 ≤ 𝑡,

−(𝐴 + 𝐵)
−1

𝐵, 𝑡 < 𝜏 ≤ 𝑇.

(17)

Proof. Assume that 𝑥 is a solution of the boundary value
problem (15); then we have

𝑥 (𝑡) = 𝑥 (0) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑡
1
.

(18)

If 𝑡
1
< 𝑡 ≤ 𝑡

2
, then
𝑐

𝐷
𝛼

0+
𝑥 (𝑡) = 𝑓 (𝑡) , 𝑡

1
< 𝑡 ≤ 𝑡

2
,

𝑥 (𝑡
+

1
) − 𝑥 (𝑡

1
) = 𝐼
1
(𝑥 (𝑡
1
)) .

(19)

Integrating the expression (19) from 𝑡
1
to 𝑡, one can obtain

𝑥 (𝑡) = 𝑥 (𝑡
+

1
) +

1

Γ (𝛼)

∫

𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠. (20)

It follows that

𝑥 (𝑡) = 𝑥 (𝑡
1
) + 𝐼
1
(𝑥 (𝑡
1
)) +

1

Γ (𝛼)

∫

𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

= 𝑥 (0) + 𝐼
1
(𝑥 (𝑡
1
)) +

1

Γ (𝛼)

∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠.

(21)
Thus if 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1
], we get

𝑥 (𝑡) = 𝑥 (𝑡
𝑘
) + 𝐼
𝑘
(𝑥 (𝑡
𝑘
)) +

1

Γ (𝛼)

∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

= 𝑥 (0) + ∑

0<𝑡
𝑘
<𝑡

𝐼
𝑘
(𝑥 (𝑡
𝑘
))

+

1

Γ (𝛼)

∑

0<𝑡
𝑘
<𝑡

∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠,

(22)
where 𝑥(0) is still an arbitrary constant vector. For deter-
mining 𝑥(0) we use the boundary value condition 𝐴𝑥(0) +
𝐵𝑥(𝑇) = ∫

𝑇

0

𝑔(𝑠)𝑑𝑠:

∫

𝑇

0

𝑔 (𝑠) 𝑑𝑠 = 𝐴𝑥 (0) + 𝐵𝑥 (𝑇)

= (𝐴 + 𝐵) 𝑥 (0) + 𝐵 ∑

0<𝑡
𝑘
<𝑇

𝐼
𝑘
(𝑥 (𝑡
𝑘
))

+

1

Γ (𝛼)

∑

0<𝑡
𝑘
<𝑇

𝐵∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

+

1

Γ (𝛼)

𝐵∫

𝑇

𝑡
𝑘

(𝑇 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠.

(23)

Hence, we obtain

𝑥 (0) = (𝐴 + 𝐵)
−1

∫

𝑇

0

𝑔 (𝑠) 𝑑𝑠 − (𝐴 + 𝐵)
−1

𝐵 ∑

0<𝑡
𝑗
<𝑇

𝐼
𝑗
(𝑥 (𝑡
𝑗
))

−

1

Γ (𝛼)

(𝐴 + 𝐵)
−1

𝐵 ∑

0<𝑡
𝑗
≤𝑇

∫

𝑡
𝑗

𝑡
𝑗−1

(𝑡
𝑗
− 𝑠)

𝛼−1

𝑓 (𝑠) 𝑑𝑠,

(24)
and consequently for all 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1
]

𝑥 (𝑡) = (𝐴 + 𝐵)
−1

∫

𝑇

0

𝑔 (𝑠) 𝑑𝑠 − (𝐴 + 𝐵)
−1

𝐵 ∑

0<𝑡
𝑗
<𝑇

𝐼
𝑗
(𝑥 (𝑡
𝑗
))

−

1

Γ (𝛼)

(𝐴 + 𝐵)
−1

𝐵 ∑

0<𝑡
𝑗
≤𝑇

∫

𝑡
𝑗

𝑡
𝑗−1

(𝑡
𝑗
− 𝑠)

𝛼−1

𝑓 (𝑠) 𝑑𝑠

+ ∑

0<𝑡
𝑗
<𝑡

𝐼
𝑗
(𝑥 (𝑡
𝑗
))
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+

1

Γ (𝛼)

∑

0<𝑡
𝑗
<𝑡

∫

𝑡
𝑗

𝑡
𝑗−1

(𝑡
𝑗
− 𝑠)

𝛼−1

𝑓 (𝑠) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

= (𝐴 + 𝐵)
−1

∫

𝑇

0

𝑔 (𝑠) 𝑑𝑠 − (𝐴 + 𝐵)
−1

𝐵 ∑

𝑡
𝑘
<𝑡
𝑗
<𝑇

𝐼
𝑗
(𝑥 (𝑡
𝑗
))

+ (𝐴 + 𝐵)
−1

𝐴 ∑

0<𝑡
𝑗
<𝑡

𝐼
𝑗
(𝑥 (𝑡
𝑗
))

−

1

Γ (𝛼)

(𝐴 + 𝐵)
−1

𝐵 ∑

𝑡
𝑘
<𝑡
𝑗
≤𝑇

∫

𝑡
𝑗

𝑡
𝑗−1

(𝑡
𝑗
− 𝑠)

𝛼−1

𝑓 (𝑠) 𝑑𝑠

+

1

Γ (𝛼)

(𝐴 + 𝐵)
−1

𝐴 ∑

0<𝑡
𝑗
<𝑡

∫

𝑡
𝑗

𝑡
𝑗−1

(𝑡
𝑗
− 𝑠)

𝛼−1

𝑓 (𝑠) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠

= (𝐴 + 𝐵)
−1

∫

𝑇

0

𝑔 (𝑠) 𝑑𝑠 + ∑

0<𝑡
𝑗
<𝑇

𝐾(𝑡
𝑘
, 𝑡
𝑗
) 𝐼
𝑗
(𝑥 (𝑡
−

𝑗
))

+

1

Γ (𝛼)

∑

0<𝑡
𝑗
≤𝑇

𝐾(𝑡
𝑘
, 𝑡
𝑗
)∫

𝑡
𝑗

𝑡
𝑗−1

(𝑡
𝑗
− 𝑠)

𝛼−1

𝑓 (𝑠) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠.

(25)

Conversely, assume that 𝑥 satisfies (16). If 𝑡 ∈ [0, 𝑡
1
],

then, using the fact that 𝑐𝐷𝛼
0
+ is the left inverse of 𝐼𝛼

0+
, we get

𝑐

𝐷
𝛼

0+
𝑥(𝑡) = 𝑓(𝑡), 𝑡

0
< 𝑡 ≤ 𝑡

1
. If 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1
], 𝑘 = 1, 2, . . . , 𝑝,

then, using the fact that the Caputo derivative of a constant is
equal to zero, we obtain 𝑐𝐷𝛼

0+
𝑥(𝑡) = 𝑓(𝑡), 𝑡

𝑘
< 𝑡 ≤ 𝑡

𝑘+1
, and

𝑥(𝑡
+

𝑘
) − 𝑥(𝑡

𝑘
) = 𝐼
𝑘
(𝑥(𝑡
𝑘
)). The lemma is proved.

Theorem 11 (see [18]). Let 𝑋 be a Banach space and 𝑊 ⊂

𝑃𝐶(𝐽,𝑋). If the following conditions are satisfied,

(1) 𝑊 is uniformly bounded subset of 𝑃𝐶(𝐽, 𝑋),
(2) 𝑊 is equicontinuous in (𝑡

𝑘
, 𝑡
𝑘+1
), 𝑘 = 0, 1, 2, . . . , 𝑝,

where 𝑡
0
= 0, 𝑡
𝑝+1

= 𝑇,

(3) 𝑊(𝑡) = {𝑢(𝑡) : 𝑢 ∈ 𝑊, 𝑡 ∈ 𝐽


}, 𝑊(𝑡
+

𝑘
) = {𝑢(𝑡

+

𝑘
) :

𝑢 ∈ 𝑊}, and𝑊(𝑡
−

𝑘
) = {𝑢(𝑡

−

𝑘
) : 𝑢 ∈ 𝑊} are relatively

compact subsets of 𝑋,

then𝑊 is a relatively compact subset of 𝑃𝐶(𝐽, 𝑋).

3. Main Results

Our first result is based on Banach fixed point theorem.
Before stating and proving the main results, we introduce the
following hypotheses.

(H1) 𝑓, 𝑔 : 𝐽 × R𝑛 → R𝑛 are continuous functions.

(H2) There are constants 𝐿
𝑓
> 0 and 𝐿

𝑔
> 0 such that





𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)





≤ 𝐿
𝑓





𝑥 − 𝑦





,





𝑔 (𝑡, 𝑥) − 𝑔 (𝑡, 𝑦)





≤ 𝐿
𝑔





𝑥 − 𝑦






(26)

for each 𝑡 ∈ [0, 𝑇] and all 𝑥, 𝑦 ∈ R𝑛.

(H3) There exist constants 𝑙
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑝 such that





𝐼
𝑖
(𝑥) − 𝐼

𝑖
(𝑦)





≤ 𝑙
𝑖





𝑥 − 𝑦






(27)

for all 𝑥, 𝑦 ∈ R𝑛.

For brevity, let

𝐿
𝐴𝐵

:= max (

(𝐴 + 𝐵)

−1

𝐴






,






(𝐴 + 𝐵)

−1

𝐵






) . (28)

Theorem 12. Assume that (H1)–(H3) hold. If

𝐿
𝑔






(𝐴 + 𝐵)

−1





𝑇 + 𝐿

𝐴𝐵

𝑝

∑

𝑗=1

𝑙
𝑗

+

1

Γ (𝛼 + 1)

𝐿
𝑓
𝐿
𝐴𝐵

𝑝+1

∑

𝑗=1

(𝑡
𝑗
− 𝑡
𝑗−1
)

𝛼

+

𝑇
𝛼

Γ (𝛼 + 1)

𝐿
𝑓
< 1,

(29)

then the boundary value problem (3) has a unique solution on
𝐽.

Proof. The proof is based on the classical Banach fixed
theorem for contractions. Let us set

sup
𝑡∈𝐽





𝑓 (𝑡, 0)





= 𝑀
𝑓
, sup

𝑡∈𝐽





𝑔 (𝑡, 0)





= 𝑀
𝑔
,





𝐼
𝑘
(0)




= 𝑚
𝑘
,

𝛿 (𝑇) := 𝐿
𝑔






(𝐴 + 𝐵)

−1





𝑇 + 𝐿

𝐴𝐵

𝑝

∑

𝑗=1

𝑙
𝑗

+

1

Γ (𝛼 + 1)

𝐿
𝑓
𝐿
𝐴𝐵

𝑝+1

∑

𝑗=1

(𝑡
𝑗
− 𝑡
𝑗−1
)

𝛼

+

𝑇
𝛼

Γ (𝛼 + 1)

𝐿
𝑓
< 1,

𝛾 :=






(𝐴 + 𝐵)

−1





𝑇𝑀
𝑔
+ 𝐿
𝐴𝐵

𝑝

∑

𝑗=1

𝑚
𝑗

+

1

Γ (𝛼 + 1)

𝑀
𝑓
𝐿
𝐴𝐵

𝑝+1

∑

𝑗=1

(𝑡
𝑗
− 𝑡
𝑗−1
)

𝛼

+

𝑇
𝛼

Γ (𝛼 + 1)

𝑀
𝑓
.

(30)
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It is clear that




𝑓 (𝑡, 𝑥)





≤ 𝑀
𝑓
+ 𝐿
𝑓
|𝑥| ,





𝑔 (𝑡, 𝑥)





≤ 𝑀
𝑔
+ 𝐿
𝑔
|𝑥| ,





𝐼
𝑘
(𝑥)





≤ 𝑚
𝑘
+ 𝑙
𝑘
|𝑥| , 𝑡 ∈ 𝐽, 𝑥 ∈ R𝑛,






𝐾 (𝑡
𝑘
, 𝑡
𝑗
)






≤ 𝐿
𝐴𝐵
, 𝑘, 𝑗 = 0, 1, . . . , 𝑝 + 1.

(31)

Consider

𝐵
𝑟
:= {𝑥 ∈ 𝑃𝐶 (𝐽,R𝑛) : ‖𝑥‖

𝑃𝐶
≤ 𝑟} , (32)

where

𝑟 ≥

𝛾

1 − 𝛿 (𝑇)

. (33)

Let 𝑄 be the following operator:

(𝑄𝑥) (𝑡)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

(𝐴 + 𝐵)
−1

∫

𝑇

0

𝑔 (𝑠) 𝑑𝑠

+ ∑

0<𝑡
𝑗
<𝑇

𝐾(𝑡
𝑘
, 𝑡
𝑗
) 𝐼
𝑗
(𝑥 (𝑡
𝑗
))

+

1

Γ (𝛼)

∑

0<𝑡
𝑗
≤𝑇

𝐾(𝑡
𝑘
, 𝑡
𝑗
)∫

𝑡
𝑗

𝑡
𝑗−1

(𝑡
𝑗
− 𝑠)

𝛼−1

𝑓 (𝑠) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝑡
𝑘
< 𝑡 ≤ 𝑡

𝑘+1
,

𝑘 = 1, . . . , 𝑝.

(34)

We show that 𝑄 maps 𝐵
𝑟
into 𝐵

𝑟
. It is clear that 𝑄 is well

defined on 𝑃𝐶(𝐽,R𝑛). Moreover for 𝑥 ∈ 𝐵
𝑟
and 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1
],

𝑘 = 0, . . . , 𝑝, we have

|(𝑄𝑥) (𝑡)| ≤






(𝐴 + 𝐵)

−1





∫

𝑇

0





𝑔 (𝑠, 𝑥 (𝑠))





𝑑𝑠

+ ∑

0<𝑡
𝑗
<𝑇






𝐾 (𝑡
𝑘
, 𝑡
𝑗
)












𝐼
𝑗
(𝑥 (𝑡
𝑗
))







+

1

Γ (𝛼)

∑

0<𝑡
𝑗
≤𝑇






𝐾 (𝑡
𝑘
, 𝑡
𝑗
)







× ∫

𝑡
𝑗

𝑡
𝑗−1

(𝑡
𝑗
− 𝑠)

𝛼−1 



𝑓 (𝑠, 𝑥 (𝑠))





𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼−1 




𝑓 (𝑠, 𝑥 (𝑠))





𝑑𝑠

≤






(𝐴 + 𝐵)

−1





𝑇 (𝑀
𝑔
+ 𝐿
𝑔
𝑟) + 𝐿

𝐴𝐵

𝑝

∑

𝑗=1

(𝑚
𝑗
+ 𝑙
𝑗
𝑟)

+

1

𝛼Γ (𝛼)

𝐿
𝐴𝐵
(𝑀
𝑓
+ 𝐿
𝑓
𝑟)

𝑝+1

∑

𝑗=1

(𝑡
𝑗
− 𝑡
𝑗−1
)

𝛼

+

𝑇
𝛼

𝛼Γ (𝛼)

(𝑀
𝑓
+ 𝐿
𝑓
𝑟) = 𝛾 + 𝛿 (𝑇) 𝑟 ≤ 𝑟.

(35)

Consequently 𝑄maps 𝑃𝐶(𝐽,R𝑛) into itself.

Next we will show that 𝑄 is a contraction. Let 𝑥, 𝑦 ∈

𝑃𝐶(𝐽,R𝑛). Then, for each 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1
], 𝑘 = 0, . . . , 𝑝, we have





(𝑄𝑥) (𝑡) − (𝑄𝑦) (𝑡)






≤






(𝐴 + 𝐵)

−1





∫

𝑇

0





𝑔 (𝑠, 𝑥 (𝑠)) − 𝑔 (𝑠, 𝑦 (𝑠))





𝑑𝑠

+ ∑

0<𝑡
𝑗
<𝑇






𝐾 (𝑡
𝑘
, 𝑡
𝑗
)












𝐼
𝑗
(𝑥 (𝑡
𝑗
)) − 𝐼

𝑗
(𝑦 (𝑡
𝑗
))







+

1

Γ (𝛼)

∑

0<𝑡
𝑗
≤𝑇






𝐾 (𝑡
𝑘
, 𝑡
𝑗
)







× ∫

𝑡
𝑗

𝑡
𝑗−1

(𝑡
𝑗
− 𝑠)

𝛼−1 



𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))





𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼−1 




𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))





𝑑𝑠

≤ 𝐿
𝑔






(𝐴 + 𝐵)

−1





∫

𝑇

0





𝑥 (𝑠) − 𝑦 (𝑠)





𝑑𝑠

+ 𝐿
𝐴𝐵

𝑝

∑

𝑗=1






𝐼
𝑗
(𝑥 (𝑡
𝑗
)) − 𝐼

𝑗
(𝑦 (𝑡
𝑗
))







+

𝐿
𝑓
𝐿
𝐴𝐵

Γ (𝛼)

∑

0<𝑡
𝑗
≤𝑇

∫

𝑡
𝑗

𝑡
𝑗−1

(𝑡
𝑗
− 𝑠)

𝛼−1 



𝑥 (𝑠) − 𝑦 (𝑠)





𝑑𝑠

+

𝐿
𝑓

Γ (𝛼)

∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼−1 




𝑥 (𝑠) − 𝑦 (𝑠)





𝑑𝑠

≤ (𝐿
𝑔






(𝐴 + 𝐵)

−1





𝑇 + 𝐿

𝐴𝐵

𝑝

∑

𝑗=1

𝑙
𝑗

+

1

𝛼Γ (𝛼)

𝐿
𝑓
𝐿
𝐴𝐵

𝑝+1

∑

𝑗=1

(𝑡
𝑗
− 𝑡
𝑗−1
)

𝛼

+

𝑇
𝛼

𝛼Γ (𝛼)

𝐿
𝑓
)

×




𝑥 − 𝑦




𝑃𝐶

.

(36)

Thus, 𝑄 is a contraction mapping on 𝑃𝐶(𝐽,R𝑛) due to
condition (29) and the operator 𝑄 has a unique fixed point
on 𝑃𝐶(𝐽,R𝑛) which is a unique solution to (3).

The second result is based on the Schaefer fixed point
theorem. We introduce the following assumptions.

(H4) There exist constants 𝑁
𝑓
> 0, 𝑁

𝑔
> 0 such that

|𝑓(𝑡, 𝑥)| ≤ 𝑁
𝑓
, |𝑔(𝑡, 𝑥)| ≤ 𝑁

𝑔
for each 𝑡 ∈ 𝐽 and all

𝑥 ∈ R𝑛.

(H5) 𝐼
𝑘
∈ 𝐶(R𝑛,R𝑛).

Theorem 13. Assume that (H1), (H4), and (H5) hold.Then the
boundary value problem (3) has at least one solution on 𝐽.
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Proof. We will use Schaefer’s fixed point theorem to prove
that 𝑄 defined by (34) has a fixed point. The proof will be
given in several steps.

Step 1. Operator 𝑄 is continuous.
Let {𝑥

𝑛
} be a sequence such that 𝑥

𝑛
→ 𝑥 in 𝑃𝐶(𝐽,R𝑛).

Then, for each 𝑘 = 0, 1, 2, . . . , 𝑝 and for all 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1
], we

have




(𝑄𝑥) (𝑡) − (𝑄𝑥

𝑛
) (𝑡)






≤






(𝐴 + 𝐵)

−1





∫

𝑇

0





𝑔 (𝑠, 𝑥 (𝑠)) − 𝑔 (𝑠, 𝑥

𝑛
(𝑠))





𝑑𝑠

+ ∑

0<𝑡
𝑗
<𝑇






𝐾 (𝑡
𝑘
, 𝑡
𝑗
)












𝐼
𝑗
(𝑥 (𝑡
𝑗
)) − 𝐼

𝑗
(𝑥
𝑛
(𝑡
𝑗
))







+

1

Γ (𝛼)

∑

0<𝑡
𝑗
≤𝑇






𝐾 (𝑡
𝑘
, 𝑡
𝑗
)







× ∫

𝑡
𝑗

𝑡
𝑗−1

(𝑡
𝑗
− 𝑠)

𝛼−1 



𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑥

𝑛
(𝑠))





𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 




𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑥

𝑛
(𝑠))





𝑑𝑠.

(37)

Since𝑓, 𝑔, and 𝐼
𝑘
, 𝑘 = 0, 1, 2, . . . , 𝑝, are continuous functions,

we have




𝑄𝑥
𝑛
− 𝑄𝑥




𝑃𝐶

→ 0 (38)

as 𝑛 → ∞.

Step 2. 𝑄maps bounded sets in bounded sets in 𝑃𝐶(𝐽,R𝑛).
Indeed, it is enough to show that, for any 𝜂 > 0, there

exists a positive constant 𝑙 such that, for each 𝑥 ∈ 𝐵
𝜂
= {𝑥 ∈

𝑃𝐶(𝐽,R𝑛) : ‖𝑥‖
𝑃𝐶

≤ 𝜂}, we have ‖𝑄(𝑥)‖
𝑃𝐶

≤ 𝑙. By (H4), (H5)
we have, for each 𝑘 = 1, 2, . . . , 𝑝 and for all 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1
],

|(𝑄𝑥) (𝑡)|

≤






(𝐴 + 𝐵)

−1





∫

𝑇

0





𝑔 (𝑠, 𝑥 (𝑠))





𝑑𝑠

+ ∑

0<𝑡
𝑗
<𝑇






𝐾 (𝑡
𝑘
, 𝑡
𝑗
)












𝐼
𝑗
(𝑥 (𝑡
𝑗
))







+

1

Γ (𝛼)

∑

0<𝑡
𝑗
≤𝑇






𝐾 (𝑡
𝑘
, 𝑡
𝑗
)






∫

𝑡
𝑗

𝑡
𝑗−1

(𝑡
𝑗
− 𝑠)

𝛼−1 



𝑓 (𝑠, 𝑥 (𝑠))





𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼−1 




𝑓 (𝑠, 𝑥 (𝑠))





𝑑𝑠

≤






(𝐴 + 𝐵)

−1





𝑇𝑁
𝑔
+ 𝐿
𝐴𝐵

𝑝

∑

𝑗=1






𝐼
𝑗
(𝑥 (𝑡
𝑗
))







+

1

𝛼Γ (𝛼)

𝐿
𝐴𝐵
𝑁
𝑓

𝑝+1

∑

𝑗=1

(𝑡
𝑗
− 𝑡
𝑗−1
)

𝛼

+

𝑇
𝛼

𝛼Γ (𝛼)

𝑁
𝑓
:= 𝑙.

(39)

Thus

‖𝑄𝑥‖
𝑃𝐶

≤ 𝑙. (40)

Step 3. 𝑄 maps bounded sets into equicontinuous sets of
𝑃𝐶(𝐽,R𝑛).

Let 𝜏
1
, 𝜏
2
∈ (𝑡
𝑘
, 𝑡
𝑘+1
], 𝜏
1
< 𝜏
2
, 𝐵
𝜂
be a bounded set of

𝑃𝐶(𝐽,R𝑛) as in Step 2, and let 𝑥 ∈ 𝐵
𝜂
. Then





(𝑄𝑥) (𝜏

2
) − (𝑄𝑥) (𝜏

1
)





≤











1

Γ (𝛼)

∫

𝜏
1

𝑡
𝑖

[(𝜏
2
− 𝑠)
𝛼−1

− (𝜏
1
− 𝑠)
𝛼−1

] 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝜏
2

𝜏
1

(𝜏
2
− 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠











≤

𝑁
𝑓

Γ (𝛼)

∫

𝜏
1

𝑡
𝑖

[(𝜏
2
− 𝑠)
𝛼−1

− (𝜏
1
− 𝑠)
𝛼−1

] 𝑑𝑠

+

𝑁
𝑓

Γ (𝛼)

∫

𝜏
2

𝜏
1

(𝜏
2
− 𝑠)
𝛼−1

𝑑𝑠

≤

𝑁
𝑓

Γ (𝛼 + 1)

[2(𝜏
2
− 𝜏
1
)
𝛼

+ 𝜏
𝛼

2
− 𝜏
𝛼

1
] .

(41)

As 𝜏
1
→ 𝜏
2
, the right-hand side of the above inequality tends

to zero.
As a consequence of Steps 1 to 3 together with the Arzela-

Ascoli theorem (Theorem 11 with 𝑋 = R𝑛), we can conclude
that the operator 𝑄 : 𝑃𝐶(𝐽,R𝑛) → 𝑃𝐶(𝐽,R𝑛) is completely
continuous.

Step 4. One has a priori bounds.
Now it remains to show that the set

Δ = {𝑥 ∈ 𝑃𝐶 (𝐽,R𝑛) : 𝑥 = 𝜆𝑄 (𝑥) , for some 0 < 𝜆 < 1}
(42)

is bounded.
Let then 𝑥 = 𝜆𝑄(𝑥) for some 0 < 𝜆 < 1. Thus, for each

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1
], we have

|𝑥 (𝑡)| = |𝜆 (𝑄𝑥) (𝑡)|

≤






(𝐴 + 𝐵)

−1





∫

𝑇

0





𝑔 (𝑠, 𝑥 (𝑠))





𝑑𝑠

+ ∑

0<𝑡
𝑗
<𝑇






𝐾 (𝑡
𝑘
, 𝑡
𝑗
)












𝐼
𝑗
(𝑥 (𝑡
𝑗
))







+

1

Γ (𝛼)

∑

0<𝑡
𝑗
≤𝑇






𝐾 (𝑡
𝑘
, 𝑡
𝑗
)






∫

𝑡
𝑗

𝑡
𝑗−1

(𝑡
𝑗
− 𝑠)

𝛼−1 



𝑓 (𝑠, 𝑥 (𝑠))





𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝛼−1 




𝑓 (𝑠, 𝑥 (𝑠))





𝑑𝑠

≤






(𝐴 + 𝐵)

−1





𝑇𝑁
𝑔
+ 𝐿
𝐴𝐵

𝑝

∑

𝑗=1






𝐼
𝑗
(𝑥 (𝑡
𝑗
))







+

1

𝛼Γ (𝛼)

𝐿
𝐴𝐵
𝑁
𝑓

𝑝+1

∑

𝑗=1

(𝑡
𝑗
− 𝑡
𝑗−1
)

𝛼

+

𝑇
𝛼

𝛼Γ (𝛼)

𝑁
𝑓
.

(43)
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Thus

‖𝑥‖
𝑃𝐶

≤






(𝐴 + 𝐵)

−1





𝑇𝑁
𝑔
+ 𝐿
𝐴𝐵

𝑝

∑

𝑗=1






𝐼
𝑗
(𝑥 (𝑡
𝑗
))







+

1

𝛼Γ (𝛼)

𝐿
𝐴𝐵
𝑁
𝑓

𝑝+1

∑

𝑗=1

(𝑡
𝑗
− 𝑡
𝑗−1
)

𝛼

+

𝑇
𝛼

𝛼Γ (𝛼)

𝑁
𝑓
.

(44)

This shows that the set Δ is bounded. As a consequence of
Schaefer’s fixed point theorem, we deduce that 𝑄 has a fixed
point which is a solution of the problem (3).

4. Examples

In this section, we give some examples to illustrate our main
results.

Example 1. Consider

𝑐

𝐷
𝛼

0+
𝑥
1
(𝑡) = cos( 1

10

𝑥
2
(𝑡)) , 𝑡 ∈ (0, 2) \ {1} ,

𝑐

𝐷
𝛼

0+
𝑥
2
(𝑡) =

𝑒
−𝑡

9 + 𝑒
𝑡





𝑥
1
(𝑡)





1 +




𝑥
1
(𝑡)





, 𝑡 ∈ (0, 2) \ {1} ,

𝑥
1
(0) +

1

2

𝑥
2
(1) = 0, 𝑥

2
(0) = 1,

Δ𝑥
1
(1) =

1

10

𝑥
2
(1) , Δ𝑥

2
(1) =

1

10

𝑥
1
(1) + 5.

(45)

Consider boundary value problem (3) with 𝑓
1
(𝑡, 𝑥
1
, 𝑥
2
) =

cos((1/10)𝑥
2
(𝑡)), 𝑓

2
(𝑡, 𝑥
1
, 𝑥
2
) = (𝑒

−𝑡

/(9+𝑒
𝑡

))⋅(|𝑥
1
|/(1+|𝑥

1
|)),

and 𝑇 = 1, 𝑝 = 1, 𝐼
1
(𝑥
1
, 𝑥
2
) = [

(1/10)𝑥
2

(1/10)𝑥
1
+5
].

Evidently,

𝐴 = 𝐼 = (

1 0

0 1
) , 𝐵 = (

0 0.5

0 0
) ,






(𝐴 + 𝐵)

−1

𝐴






=













(
1 −

1

2

0 1

)













=

3

2

,






(𝐴 + 𝐵)

−1

𝐵






=













(
0

1

2

0 0

)













=

1

2

,

𝐿
𝐴𝐵

= max(3
2

,

1

2

) =

3

2

,

(46)

and conditions (H1)–(H3) hold. We will show that condition
(29) is satisfied for, say, 𝛼 = 0, 2. Indeed,

𝐿
𝐴𝐵
𝑙
1
+

2
𝛼+1

𝛼Γ (𝛼)

𝐿
𝑓
𝐿
𝐴𝐵
+

2
𝛼

𝛼Γ (𝛼)

𝐿
𝑓

=

3

2

×

1

10

+

2
𝛼

Γ (𝛼 + 1)

×

3

10

+

2
𝛼

Γ (𝛼 + 1)

×

1

10

<

3

2

×

1

10

+

5

4

×

2

5

=

13

20

< 1,

(47)

where we used

Γ (𝛼 + 1) = Γ (1, 2) = 0.92,

2
𝛼

Γ (𝛼 + 1)

<

1.15

0.92

= 1.25.

(48)

Then, by Theorem 12, boundary value problem (45) has
unique solution on [0, 2].

Example 2. Consider

𝑐

𝐷
𝛼

0+
𝑥
1
(𝑡) =

𝑒
−𝑡

9 + 𝑒
𝑡





𝑥
1
(𝑡)





1 + 𝑥
2

2
(𝑡)

, 𝑡 ∈ (0, 1) , 𝑡 ̸= 0, 5

𝑐

𝐷
𝛼

0+
𝑥
2
(𝑡) = sin𝑥

1
(𝑡) , 𝑡 ∈ (0, 1) , 𝑡 ̸= 0, 5,

𝑥
1
(0) = 1, 𝑥

2
(0) +

1

2

𝑥
1
(1) = 0,

Δ𝑥
1
(

1

2

) =

1

1 + 𝑥
2

2
(1/2)

,

Δ𝑥
2
(

1

2

) =

1

1 + cos2𝑥
1
(1/2)

.

(49)

Here 0 < 𝛼 ≤ 1, 𝑓
1
(𝑡, 𝑥
1
, 𝑥
2
) = 𝑒

−𝑡

/(1 + 𝑥
2

2
(𝑡)),

𝑓
2
(𝑡, 𝑥
1
, 𝑥
2
) = sin𝑥

1
(𝑡), 𝐴 = (

1 0

0 1
), 𝐵 = (

0 0

0.5 0
), and 𝑇 =

1, 𝑝 = 1, 𝐼
1
(𝑥
1
, 𝑥
2
) = [

1/(1+𝑥
2

2
)

1/(1+cos2𝑥
1
)

]. Clearly, all the conditions
of Theorem 13 are satisfied (𝑁

𝑓
= 1, 𝑁

𝑔
= 0), and

consequently boundary value problem (49) has at least one
solution.
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