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Abstract 

In this paper the vibration analysis of cantilever rotating shaft 

is considered. In this model the rotary inertia and the 

gyroscopic effects as well as the coupling effects have been 

incorporated. Natural frequencies of a rotating shaft have 

been calculated at whirling speed. A program is elaborated for 

theoretical calculation of critical speed of rotating shaft. To 

verify the present model the critical speed of shaft system are 

compared with those available in the literature. The 

calculations of effect of pressure on the vibration of a 

cantilever rotating shaft is carried out in this paper. 
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INTRODUCTION 

Rotating shafts are used for power 

transmission in many modern machines. 

Slender shaft or bar plays a crucial part in 

mechanical industry. For example, the 

broaching cutters and lead screw of 

machine tools are typical slender parts. But 

it is well known that turning operation of 

slender bar is much more difficult than that 

of ordinary shafts due to its low stiffness. 

For designing the slender shaft has to 

consider length to diameter ratio is high 

and low stiffness.   

Accurate prediction of dynamics of rotating 

shafts is necessary for a successful design. 

Free vibrations analysis is one of the 

important steps in rotor-dynamics. In this 

free vibrations of an in-extensional 

cantilever supported shaft with density and 

inertia are considered. Rotary inertia and 

gyroscopic effects are included, but shear 

deformation is neglected. To analyze the 

free vibrations of the shaft, the finite 

element method is used.  

This method is applied to the static as well 

as dynamic analysis on shaft, which 

demonstrates the results. A result is derived 

which describes the nonlinear free 

vibrations of the rotating shaft in two 

transverse planes. It is found that in this 

case, both forward and backward nonlinear 

natural frequencies are being excited. The 

transverse vibrations of a slender beam 

which is free to rotate. For free vibration 

(modal analysis) analysis of slender shaft we 

use the application tool of FEM with various 

boundary condition and loading conditions. 

Grybos[1] considered the effect of shear 

deformation and rotary inertia of a rotor on 

its critical speeds.  Jei and Leh[3] 

investigated the whirl speeds and mode 

shapes of a uniform asymmetrical Rayleigh 

shaft with asymmetrical rigid disks and 

isotropic bearings. Sturla and Argento[5] 

studied the free and forced response of a 

viscoelastic spinning Rayleigh shaft. 

Melanson and Zu[6] studied the free 

vibrations and stability of internally damped 

rotating shafts with general boundary 

conditions. El-Mahdy and Gadelrab[10] 

studied the freeVibrations of unidirectional 

fiber reinforcement rotating composite 

rotor. Raffa and Vatta[11] derived the 

equations of motion for an asymmetric 

Timoshenko shaft with unequal principal 

moments of inertia. The critical speeds and 
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mode shapes of a spinning Rayleigh beam 

with six general boundary conditions are 

investigated analytically by Sheu and Yang 

[12]. Gubran and Gupta [13] studied the 

effect of stacking sequence and coupling 

mechanisms on the natural frequencies of 

composite shafts.To simplify the analysis, 

researchers often try to use the linear 

analysis.  

In this paper, the equations of motion of a 

continuous cantilever rotating shaft with 

inertia are derived. Rotary inertia and 

gyroscopic effects are included but shear 

deformation is neglected. 

                            NOTATIONS 

A -  Shaft Cross sectional area, 

E - Modulus of elasticity, 

I - Moment of inertia, 

L - Length of Shaft, 

Lo - Length of Shaft subjected to 

pressure,  

M - Bending Moment, 

P - External Force, 

Po - Pressure at free end of Shaft, 

r - Radius of Shaft, 

Y - Lateral displacement of 

Shaft. 

ρ - Density Of Shaft, 

Ω - Whirling speed of Shaft, 

ω - Angular frequency of Shaft. 

η - Lateral displacement of shaft 

at axial coordinate ᶓ. 

BUCKLING OF A NON ROTATING SHAFT  

It will be assumed that the shaft is a 

‘slender member’ and that its deflection 

equation is that for an Euler beam 

for which 

 

where,  

M is the applied bending moment at section 

x and 

d2y/dx2 is the (approximate) curvature of 

the deflected beam.  

External pressure will cause the shaft to 

buckle statically if the bending moment at 

section x from the external pressure 

exceeds the restraining elastic moment M 
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in the shaft. It may not be immediately clear 

whether this can happen or not. For 

instance, consider two comparable 

situations (Figs 2a and b). In Fig. 2a a 

cantilever shaft is subjected to uniform 

negative pressure (i.e. a vacuum). In Fig. 2b 

a simply supported   is subjected to the 

same negative pressure over its area inside 

the supporting walls. The cantilever is 

always stable and will never buckle 

however high the hydrostatic tension. The 

simply supported shaft is potentially 

unstable and, if p is the applied tension per 

unit area, it will buckle when, 

 

If now both shafts are subjected to a 

uniform positive pressure, neither is 

unstable, however high the pressure. This 

behavior may be explained by the following 

heuristic argument. 

 From the theory of hydrostatics, if a fluid is 

in hydrostatic equilibrium, then the 

pressure forces acting over any closed 

surface in the fluid will be in static 

equilibrium with\the body forces acting on 

the fluid within the volume. The resultant 

moment of these forces about any point 

must therefore be zero. If the real shaft can 

be replaced by a fluid shaft which would be 

in hydrostatic equilibrium, then there can 

be no bending moment acting on the 

deflected shaft and, hence, there will be no 

possibility of buckling 

If, however, the external force system 

acting on the shaft is not one for which a 

fluid shaft would be in hydrostatic 

equilibrium, then there will in general be a 

resultantbending moment about any 

section of the deflected shaft, and if this 

acts to increase the deflection further, 

buckling is a possibility. Consider the 

cantilever shaft (Fig. 2a). If a uniform 

pressure is applied, it is clear that a fluid 

shaft will always be in equilibrium. Even 

when the shaft is deflected, it may still be 

replaced by a fluid shaft which will remain 

in hydrostatic equilibrium. Hence, the 

external forces do not cause a bending 

moment in the deflected shaft and there is 

never a buckling problem. However, in the 

case of the simply supported shaft of Fig. 

2b, a fluid shaft would not be in 

equilibrium. Consider the length of ‘fluid 

shaft’ between the supports, as shown 

shaded in Fig. 3a. It would be sucked in or 

squeezed out through the supporting walls. 
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To maintain equilibrium, additional stresses 

must be ’applied to the cut ends of the 

shaft at each end. When the applied stress 

is a tension stress, tension forces pA must 

be applied to each end of the fluid shaft as 

shown. If the shaft then deflects under this 

force system, there will beno resultant 

bending moment at any section of the shaft 

because it is in a state of hydrostatic 

equilibrium. However, since the external 

axial tension forces pA are not applied to 

the shaft, a fluid shaft would not be in 

hydrostatic equilibrium.       

The difference from a hydrostatic force 

system is an axial compressive force pA (Fig. 

3b), which does exert a resultant bending 

moment about any section of the deflected 

shaft, and leads to buckling when pA 

reaches the critical value given by equation 

(2). 

These conclusions confirm the results given 

by Peterson (3) for the buckling of a shaft of 

constant crosssectional area subjected to 

an axial load in the presence of uniform 

hydrostatic pressure. However, the above 

argument is useful because it applies also to 

the case when the external pressure is no 

longer uniform. Consider the cantilever of 

Fig. 1, subjected to a varying pressure field 

p(x). 

A fluid shaft would not now be in 

hydrostatic equilibrium. An additional axial 

body force A(dp/dx) dx must be applied to 

every section of length dx, acting to the 

right, to maintain hydrostatic equilibrium. 

The actual force system differs from that 

required to maintain hydrostatic 

equilibrium by A(dp/dx) dx acting to the 

left. The bending moment at section x of 

the real shaft when it is deflected is 

therefore that produced by forces A(dp/dx) 

dx acting to the left on every section of 

length dx (Fig. 4). Integrating from section x 

to the end of the shaft, the resultant 

bending moment at x from the external 

pressure is  
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Where y is the deflection at section x  andη 

is the deflection at section ᶓ  , and this may 

cause buckling if it exceeds the elastic 

restoring moment in the shaft. It will be 

clear from this discussion that the body 

forces 

A(dp/dx) dx shown in Fig. 4 do not exist in 

the real situation, in which    there are no 

body forces. The forces shown in Fig. 4 are 

therefore effective body forces which give 

the same bending moment in the deflected 

shaft as the actual external surface forces 

give. In Appendix 1 this equivalence is 

verified mathematically. If EZ(x) is the 

bending stiffness of the shaft about a 

diameter at section x, the differential 

equation for the 

shaft’s deflection is, from equation (I), 

 

 

The exact solution of this equation is the 

exact solution of the static buckling 

problem. Unfortunately, a general 

mathematical solution of equation (4) has 

not been found, and the only exact solution 

known to the author is for the case when 

the cross-sectional area and bending 

stiffness of the shaft are constant and when 

the pressure varies linearly from zero at the 

wall to p, (say) at the free end. 

In this case 

 

and equation (4) becomes 

 

 

which is the equation for the buckling of a 

flagpole under its own weight (2). It is 

shown in (2) that, after differentiating 
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equation (6) and changing the variable, 

Bessel’s equation is obtained and an exact 

numerical solution can be found. By 

comparison with the flagpole case, the 

lowest buckling pressure can be shown to 

be given by 

 

This may be compared with the result for 

the buckling of a cantilever shaft subjected 

to a single end load poA 

which is 

 

It is clear that the distribution of pressure 

along the shaft affects buckling by a large 

amount. The assumption made in (I) that 

equation (8) applies to the extruder 

problem may not therefore be numerically 

accurate, depending on the pressure 

distribution inside the extruder. 

 

ENERGY INTEGRALS 

 

Although an exact solution cannot be found 

for the general case when the shaft is 

rotating and the applied pressure and cross-

sectional area vary along its length, an 

accurate approximate solution can be 

obtained by an energy method, as 

described in (2) or, in the form used here, in 

(4). This involves calculating the energy of 

the shaft in terms of an assumed deflection 

curve which is unknown but which can be 

approximated without serious loss of 

accuracy. Suppose first that the non-

rotating shaft is undergoing a transverse 

vibration about its un deflected axis of 

symmetry. 

The difference between the maximum 

strain energy of the shaft U (when its 

deflection is a maximum) and the maximum 

kinetic energy T (when its deflection is zero) 

must be the work done on the shaft W by 

the external pressure forces as the shaft 

deforms from zero 

deflection to maximum deflection during 

the vibration. Let the shaft vibrate at 

angular frequency w so that 

 

 

and, hence 

 

 

The maximum kinetic energy of the shaft is 

then 
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where p is the density of the shaft, which 

may be a function of x if necessary. The 

strain energy of the fully 

deflected shaft is, from (4), 

 

 

where, unless otherwise indicated, y means 

y(x), the maximum deflection of the shaft. 

Finally, the work done by the external 

pressure forces can be calculated from first 

principles (see Appendix 1) or determined 

by extending the argument of the previous 

section. 

The effective body force A(dp/dx) dx shown 

in Fig. 4 may be considered to do work, 

because, as the shaft deflects, its point of 

application moves a small distance in the 

direction of the force. From (4), this axial 

displacement of the section at x is 

 

 

 

and so the work done by the axial force 

A(dp/dx) dx is 

 

 

which may be integrated to give 

 

 

Hence, since by the law of conservation of 

energy, 

 

therefore 

 

 

and the natural frequency of free lateral 

vibration of the shaft is given by 

 

An alternative form of this equation may be 

obtained by noting that the right-hand side 

of equation (15) may be integrated by parts 

using the result that, 

 

where 
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and 

 

to give 

whereAo and po are the area and pressure 

at the free end of the cantilever. Using this  

 

 

 

 

alternative (but completely equivalent) 

expression, equation (1 8) becomes 

 

 

 

 

Equations (18) and (23) are equivalent exact 

expressions for the natural frequency of 

vibration of a cantilever elastic shaft 

subjected to external pressure. If the 

correct deflection curve y(x) were 

substituted into equations (18) and (23), 

the same exact result for the natural 

frequency would be obtained. 

WHIRLING CALCULATIONS 

 

So far only non-rotating shafts have been 

considered. However, from the theory of 

whirling, a rotating shaft is likely to run 

unsteadily when its speed of angular 

rotation Q is close to the natural frequency 

of free lateral vibrations 

ω. It is assumed that gyroscopic effects are 

negligible for a shaft of small diameter-to-

length ratio. If the shaft 

is unrestrained (except by its own stiffness) 

synchronous whirl at shaft speed will occur 

when Q =ω. Consider 

how the (lowest) whirling speed Q is 

affected by the external pressure field. 

 

Shafts of constant cross-sectional area 

In this case dA/dx = 0, so that equation (23) 

gives 

 

where A = A. is the constant area of the 

shaft. If the correct deflection curve y ( x ) 

were substituted into equation (24), then 

the exact value of the critical speed would 

be obtained. However, since the deflection 

y(x) is not known exactly (even for the 

buckling flagpole problem it is a 
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complicated power series) an 

approximation for y(x) must 

be used. The flagpole problem is solved 

approximately in (2) and (4) by using the 

relation 

 

and, by comparison with the known exact 

solution, it is shown that good accuracy is 

obtained with this simple relation, which is 

therefore also adopted here. (A further 

comment on the accuracy of this 

approximation is given in Appendix (2) 

Substituting equation (25) into equation 

(24) and integrating gives, 

 

 

 

which relates the whirling speed Q to (po-p) 

for a shaft of constant area A. po is the 

pressure at the free end of the shaft, p is 

the pressure at section x, EI is the bending 

stiffness, p is the density and 1 is the length 

of the shaft. 

Case 1. Zero pressure gradients 

The integral in the right-hand side of 

equation (26) is 

then zero, giving, 

 

 

 

which compares with the known exact 

result for this case 

of 

 

The approximate critical speed is thus about 

4 per cent 

too high. 

Case2. No rotation, constant pressure 

gradient 

This is the flagpole problem. Equation (26) 

predicts that static buckling will occur 

when, 

 

 

Because then the whirling speed is zero. 

For constant pressure gradient, 

 

 

 

for which equation (29) gives 
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CONCLUSION 

The purpose of these calculations has been 

to determine theoretically the effect of 

external pressure on the vibration of a 

cantilever elastic shaft of variable area. An 

exact energy equation (18) has been 

obtained for the natural frequency of 

transverse (bending) vibrations in the 

presence of an external pressure field. It is 

clear from this equation that it is the 

distribution of pressure along the shaft, 

rather than the pressure at the free end, 

which affects the shaft stability. Equation 

(23) is a completely equivalent alternative 

form of equation (18). Whirling is assumed 

to occur when the rotational speed of the 

shaft coincides with the natural frequency 

of free lateral vibrations of the non-rotating 

shaft. Approximate values of the whirling 

speed can be obtained by substituting an 

approximate assumed deflection curve into 

either of the energy equations (18) or (23), 

and it has been shown that numerical 

values within about 5 per cent of the exact 

values may be expected for the lowest 

whirling speed. Since the problem was 

raised by a paper on the design of plastics 

extruders, it is of interest to record that 

some larger extruding machines apparently 

operate at speeds near or above their 

lowest whirling speed. Although the 

restraint of the barrel, the torque 

transmitted by the screw and viscous forces 

in the molten plastic make the extruder 

problem very much more complicated than 

the simplified theoretical problem 

considered here, the significance of this 

conclusion appears to merit further 

investigation. Shaft and barrel wear and 

fatigue of the hardened surfaces of the 

screw flights are becoming increasingly 

serious problems with large extruders, and 

a satisfactory explanation of their 

mechanical behavior is urgently needed. 
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