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Abstract: The problem of combination between inertial sensors and CCD cameras is of paramount
importance in various applications in robotics and autonomous navigation. In this paper we develop a
totally geometric model for analysis of this problem, independently from a camera model and from the
structure of the scene (landmarks etc.). This formulation can be used for data fusion in several inertial
navigation problems. The estimation is then decoupled from the structure of the scene. We use it in the
particular case of the estimation of the gyroscopes bias and we build a nonlinear observer which is easy
to compute, provides an estimation of the biais, filters the image, and is by construction very robust to

noise.
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1. INTRODUCTION

N dynamic vision the inverse problem of recovering infor-

mation from a sequence of images is studied (see e.g [10]).
The main goal is to estimate the motion of the camera and
the structure of the scene. In the monocular case, without any
information about the scene, the camera translation can only be
estimated up to a scale factor [2]. Combining the output of the
camera with inertial sensors can give additionnal information
and make the problem observable [11, 8]. One application of
this type of data fusion is the field of inertial navigation. Indeed
in low-cost navigation systems, position and attitude are usually
estimated using the measurement of the relatively inaccurate
gyroscopes and accelerometers on the one hand, and veloc-
ity measurements (given by an air-data system or a Doppler
radar), magnetic sensors, and/or CCD cameras on the other. The
various measurements are fused according to the (flat-Earth)
motion equations of the aircraft, usually by a gain-scheduled
observer or an extended Kalman filter [5].

The central problem is to extract information from a sequence
of images. The main body of research has been devoted to
feature-based methods. They assume the point correspondences
in all the images of the sequence are available (or line corre-
spondances [11] etc.). They require to select good features in
the image. This is almost always done thanks to human inter-
vention (see [9]). Even when good features are to be found, they
still are subject to noise and occlusion. From a practical point of
view, the features can also be “lost” when the image is moving
too fast. In this paper we formulate the problem independently
from the structure (shape) of the scene, and the choice of any
features. We compute the dynamics (1) of the output signal (the
image from the camera) and we use it directly in the estimation
problem. Even if we only estimate the gyro bias in this paper,
the model could be used for pose estimation in particular cases
(planar motion, additional velocity sensor etc). It is an alter-
native to the usual inertial-vision fusion methods in velocity,
attitude, and bias estimation for UAV (see e.g. [4]).

In section II and III, we consider a flying body equipped with an
inertial measurement unit (accelerometers and gyrometers) and
a spherical video camera ! . We give a geometrical modelisation
of the problem. In section IV we assume that the environment
is far, and we build an observer (2) to estimate the bias of the
gyroscopes, independently from the structure of the environ-
ment. The observer provides a filter for the image, the signal
being integrated over space and time. In particular, no spatio-
temporal derivatives of the image are required. Moreover our
observer-based method requires fewer computations than an
extended Kalman Filter, or any estimator using feature-based
visual methods. Even if the design is based on the use of
a spherical camera and the invariance by rotation, it can be
adapted to a variety of camera models including the standard
pinhole model, as proved in section IV-C. For the problem of
vision and inertial sensor cooperation see e.g. [4, 11, §].

2. CAMERA MOTION : ASSUMPTIONS AND
NOTATIONS

The model is based on simple assumptions which are common
in this aera of research (see [9, 12]). We consider a flying object
equipped with a spherical camera, which “sees” any direction
of the space.

Geometry of the scene

The scene (the environment) is modeled as a surface S C R3
surrounding the object and diffeomorphic to the sphere S?. We
consider that the geometry of the environment is such that the
camera can “see” any point of the environment at any time (for
instance S is the boundary of a convex volume). It means that
any point inside the scene is the origin of a ray which intersects
S only once.

1 The use of a spherical camera is a theoretical hypothesis. In practice
panoramic or wide angle cameras with suitable image transformation are used.
Our work shows how to use only partial views associated to this problem in the
final section.
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Choice of the variables

Let us parameterize the environment S by a variable s € S?
such that to any s corresponds one and only one point M (s) €
S C R3. Let C' € R? be the position of the center of gravity
of the object. The implementation of the model equations are
strongly simplified when the body orientation is described by a
quaternion of length 1 (rather than by Euler angles or a rotation
matrix). The use of quaternions is standard in aeronautics. We
define the convention of reading any vector of R® as a pure
imaginary quaternion, as explained in a recap on quaternions,
section 6.1. The orientation of the object is the quaternion of
unitary norm ¢ € Hj. It corresponds to the rotation which
maps the earth-fixed frame to the body-fixed frame. Let v be
the velocity expressed in the body-fixed frame. By definition
v(t) = g1 % LC x g since 4 is the velocity in the earth-
fixed frame. Let 7 € S? be the unitary vector, expressed in the
body-fixed frame, pointing in a certain direction of the space.
We identify (see section 6.1) vectors of R? with quaternions
whose first coordinate is equal to zero. The structure of the
scene implies that, to one direction in space 7, there is one and
only one corresponding point of the scene M (s) € S for all .
Thus by definition

D(t,s) gxnxq * = C(t)M(s)
with
D(t,s) = [|C(t)M(s)]]
and

s = @(t,n)
where ¢ is a bijective function with respect to 7 for all ¢. Let its
inverse be n = ¥ (t, s).

Radiance of the scene

According to the complete paper [9], it is a common assumption
to assume the changes of the content and lighting of the scene
to be small over the time. Thus we assume that every point
M (s) of the environment has a radiant flux (total power of
light emitted) I(s) which is constant over the time. Even if
we could make the simple assumption (see e.g. [12]) that
the light received from the scene does not depend on the
distance to the scene, we are going to take into account the
variation of luminosity with the distance the following way.
In the standard lambertian reflectance model (see e.g. [7]) of
surfaces, the light perceived depends on the angle between the
surface normal and the specified direction, to take into account
the perspective. We relax this assumption assuming the light
is emitted (reflected) isotropically. We thus consider a point
source model: the amount of light received by the object (whose
position is C') coming from M (s) is proportionnal to the radiant
flux, as well as to the solid angle that the object subtends at

the point M (s), and it writes KDg((i)S) where K > 0 is a

normalisation factor. The output of the system is the amount
of light received by the camera in any direction:
I(s)

y(t,m) = Km

with s = ¢(t,n)

3. KINEMATIC MODEL

Let v be the velocity vector of the center of mass in the body-
fixed frame. Let w(t) be the instantaneous angular velocity
vector in the body-fixed frame. It is a known input since

it is measured by the gyroscopes. Let a(t) be the specific
acceleration vector, i.e, the aerodynamics forces divided by the
body mass. It is measured by the accelerometers. Let A 4.4, be
the gravity vector in the earth-fixed frame (we take the same
notations as [3]).

The output of the system is y(¢,n): it is the light received by
the pixel in the direction € S? of the spherical camera. We
are going to prove that the motion equations are given by (1).
The motion of a flying rigid body (assuming the Earth is flat
and defines an inertial frame) is described by

4 =1g
at? = 217

-1
dtv =UvXw-+gq

We use functions of three variables 7, s, ¢ but they only depend
on two of them since we have n = (¢, s). We are going to
differentiate the variables above with respect to ¢ with s held
constant. In the sequel 7 represents the function of two variables
¥(t, s), that we will differentiate with respect to ¢. Let % .
denote differentation with respect to time ¢ with s held constant.

Let % " denote differentation with respect to time ¢ with n held
constant. We will use the “reduced” velocity

v(t)
D(t,s)

*Agrav *q+a

f(t’ 5) =

1y d

where v = ¢~ x 5;C * ¢. Let us differentiate with respect
to the time variable, the following structural equality which
explicates the direction 7 in the earth-fixed frame (we forget
t in the equations)

—
. C@t)M(s) CM
qxnxq = =—
D(t,s)  |CM|
We have
0 —— d 1
En ) (CM) ——ac——q*v*q
and
) d _, CM
—
| ICM(s)]| = ——C.——
ol @ |oM|
= —(gxvxq )(gxn*xq")
= —v.n
where “.” is the scalar product, as the rotation preserves the

scalar product. Gathering these last two results, along with the
definitions of D(t, s) and £(¢, s) gives
M
<—>> =q* (=E+ En) xq~!
s \[CM]

0

ot

But we have using Leibniz differentiation rule % ]S (q * 1) % q—l) =

g*(wxn)xqgt+qx %L

concerns 1) = (¢, s):
on
ot

* ¢~ 1. The first equation obtained

=-—wxn+@mEn—¢

S

We also have



9y a‘ <KI(S)>
otl, Ot \" |o(t)M(s)?
I(s) -1 -1
= 2K—= * Gk g *
cagp T A
= —2(&n)y.

as the rotation preserves the scalar product. The camera pro-
vides at any time the scalar field S? > 1 — y(¢,7) which is the
output of the system. Since

9| _ Oy 9y} On

otl, ot|, On|, ot|

The output scalar field obeys the following partial differential
equation:

9y| 9y _
e n+ o t( w X+ (n&n —§&) = —=2(&n)y.
From %L ||CT4(5)|| = —% Qﬁ = —v.n we deduce also
s | 1oM]
(D = [[CM])
oD oD
¥ , anl, (—wxn+0nn—§) = —vn.

Let¢ = v(t)/D,let A = 1/ D, they are both functions of (¢, ).
We have the following kinematic model (partial derivatives are
with respect to the two independent variables (¢, n)):

LI

at? 21

%v:vxw—&-q_l*Agmv*q—&-a

N  OA M
E:_%(UX(W‘FA’?XU))‘FAQU-W

13 13}

Bt = g (1% (A0 x ) = 2A(wn)y

where

e ¢(t) € H; and v(t) € R3 are the unmeasured part of the
state, of finite dimension.

e S2 31— A(t,n) € R} is the infinite dimensional part of
the non-measured part of the state.

e S 3 y(t,n) € R is the infinite dimensional part of
the measured part of the state.

o The varying vectors w(t),a(t) € R3 and the fixed vector
Ay € R3/{0} are known.

Note that this system is invariant under the action of the
group G = H;. The action is defined by (right multiplication
corresponding to a change of body-fixed frame)

(¢:v,m,w,a,Agrar) — (9.9 'vg. 9" 09, ...

gilw.gagilagvgilAgravg)
for all g € G. A and y are unchanged by the transformation
since 7 is replaced with g~ !ng (change of parameterization).
It is also invariant under the other action of G = H; (left
multiplication, corresponding to a change of earth-fixed frame)

(@, Agrav) = (94, 9Agravg ™)
where all the rest is unchanged. The model (1) is a totally
intrinsic model based on the geometry of the problem. With
some additional information (v is known, the motion is 2-
dimensional...) it can be used to build observers in order to
estimate quantities which are not directly measured, as in the
sequel.

4. FAR ENVIRONMENT AND OBSERVER-BASED
ESTIMATION OF THE GYROSCOPES BIAS

We are going to study a simple case. We assume that the
environment (the scene) is far away (it can be the stars, the earth
seen from a plane...), so that we can make the approximation
A = 1/|CM| = 0 since |CM|| is very large. Thus (1)

becomes
4= tsw
at? = 21
d
£U:UXw+q_l*Agrav*Q+a
dy dy
T %(nxw)

So we see that we can not estimate v and ¢ using directly the
signal 3. But one can estimate a constant bias ¢ € R? on the
measurement w,,, of the gyroscope: w = w,, + c. Indeed in
[13], an Extended Kalman Filter which corrects the gyro bias
error using celestial observations from star trackers is built.
But once again background knowledge about the scene is used,
since 1183 bright stars are stored in the spacecraft computer,
and the brighter ones are tracked. We are going to correct the
bias without background knowledge on the scene as follows:
the evolution in time of the output map y now writes

oy | Oy _
5t +877(77><w)—0
which can be written
dy Oy dy _

At that stage, several solutions can be imagined to estimate
¢ € R3 from the measurement S? > 1 — y(t,n). Let us give
one of the Lyapunov type.

4.1 The observer

We are going to build a non-linear observer for this infinite
dimensional problem. The mean of y on the orbit spanned by
the action of rotations on the sphere [, y(t,7)do, where do is
the aera element of the unit sphere S2, is a scalar invariant, since
the group action is an isometry. It is independent from the time
since it is the total amount of light received from the scene,
which is constant over the time according to our assumptions
applied to a far environment.

Let Vy denote the gradient of the scalar function S? 35—
y(t,n). So Vy can be seen as a vector of R3, tangent to the
sphere at 7, and thus Vy - n = 0. We have

dy
%(nxwm) =Vy - (nxXwm) = (Vyxn)- wn
and the dynamics writes:
% _
ot
Let ky, k. > 0 be two constant gains. Consider the following
asymptotic observer:

(Vyxn) -w=—(Vyxn): (wn+c)

o
87? =—(Vigxn) (wm+¢) —ky(§—y)
g )
Ge=ke [ G- )(Vixn) do

SQ

At this point, in time the authors are unable to provied a
rigorous proof of convergence of the observer, however, we



offer the following discussion to justify its form. The discussion
relies on the following Lyapunov function:

1 1
V=c [ (§—y)?do+ =—|é—c|*
2/SQ(y Y) 0+2kcllc |l

For all ¢, n — ¢! % 1 x ¢ is an isometry of S. Thus do,, =
do, and

1
~Llxnxq

[ e~ e.n) P,

SQ
= /2 (Gt q " xnxq) —y(t,qg " *nxq))’do,
S

Note that one can view 7 in the second member of the equation
above as a constant vector of the earth-fixed frame. ¢~ ! xn*q is
this vector expressed in the moving frame, thus y(t, ¢~ *n*q)
is the light coming from a fixed point (“s=cste”) of the scene,
since it corresponds to the direction 7. It does not depend on the
time. We have

% (/s (t,m) = y(tvn))Qdan)

d, ., _ _ 2

:/ Wt g™ e mrg) —y(t.g " xnxq) doy
SZ

Using the equality 4 ¢ = ¢+*w, and ()(%7;3’)(7] xw) = (V(§—

y) X n) - w we have

i(/gz(?)—yfda)
= [ 2 (M2 (V- xm) ) do

Since 25 — —(V (§—y) xn)-w—ky (§—y)+(Viixn)-(c—¢)
etw — ¢ = wy,, we have

% (/Sz(yf — y)2d0>

=2/@—y)(—ky@—y)—(V@xn)-(é—c»)da
SQ

Thus p
—V = —2@,/ (4 —y)*do < 0.
dt s2

A more advanced convergence analysis requires the Lassalle in-

variance principle, which application to the infinite dimensional

case is not so easy. Intuitively, we have asymptotically § = y

so (which is not obvious here) V§j = Vy. It implies (Vy x 1) -

(¢ — ¢) = 0. So if the set of Vy x 7 spans all R? when 7 takes

values in all S2, one must have asymptotically ¢ = c. Even if

these ideas are semi-rigorous, they allow to give a reasonnable
condition of convergence: vect (Vy X 77),'7652 = R3, i.e., the

image must have a contrast in all three directions.
4.2 Pinhole model

In this section, we show how the observer can be adapted if the
camera used is modeled by the widespread standard pinhole
camera model (see fig 1). In fact, we think that many results
obtained with the totally symmetric model (1) (invariant by
rotation using a spherical camera), can be extended to the non-
symmetric case of an “usual” camera. This is a not-so-obvious
feature since the convergence analysis of the observer (2) is
based on the invariance by rotation of the integral over the
whole sphere. To sum up, the use of spherical cameras allows
us to enhance the geomery of the problem and the invariance
by SO(3) (that we identify here to Hj, see the appendix) but

this assumption can be relaxed, restricting the integrals to a
portion of the sphere the following way: let ¢ : R3 — R
be a C* function of only 7, whose support corresponds to
the camera “window” (or pinhole). It is equal to 0 everywhere
except in the interior of the window, and equal to 1 inside a
smaller window contained in the window of the camera. This
smaller window must be chosen as large as possible. On the
window, the measured output y is multiplied by ¢ to derive
a new output Y (¢,m) = &(n) y(t,n). It obeys the following
partial differential equation

Y
%—F(VYxn—ngbxn).w:O
The observer is modified as follows
oYy . R
5 = (VY X =gV xn) - (wm +8) — k(Y —Y),
d N R
—é:kc/ (Y =Y )VY xn—yVeo xn)do
dt S2

3

We take the same Lyapunov function
1 - 1
V== [ (Y -Y)do+ —|é—¢|*
5 07 =Yoo=l
and we have now
oY —Y - .
Y] 9@ ¥)xn)w— kg (V- Y)
— (VY xn—yVéxn)- (-
and the first term of the right-hand expression vanishes when
it is integrated over the whole sphere, as in the preceeding
sections.

The observer is also given using the usual cartesian coordinates
of the pinhole model in the appendix (section 6.2).

M

[
]

y
X

Fig. 1. Cartesian coordinates and “pinhole model”. C is the

optical center, Cz the optical axis, Cx and Cy are parrallel

to the image plane, and (Cxyz) is an orthonormal frame.

The point M is expressed in cartesian coordinates in the
camera frame. We assume the focal length to be 1.

4.3 Comparison between our approach and optical-flow based
methods

First of all we recall the observer (2) uses directly the output
signal y without using any type of background knowledge of
the scene. Moreover it provides a filter for the noisy output
y, and computes a filtered image ¢ in real time. Contrarily to
featureless methods based on optical flow or spatio-temporal
derivatives, which are standard when nothing is known about
the environment (see [9]), the image described by y is never
differentiated. It is even integrated over space and time when



computing ¢, which allows to very efficiently filter the high fre-
quencies (noise). Integrations over space are standard in image
processing (see e.g. [1]) and provide generally very efficient
filters to noise, although we did not provide simulations in this
article to support this claim.

The last advantage of this observer-based approach, is that the
noise is never rectified. Indeed the general featureless methods
almost always require a least squares fit. Thus the estimation
uses the square of the output or its derivatives. For instance, if
the measured output is noisy ¥,, = y+w where w is a standard
gaussian white noise, the mean of 2, is not equal to the mean
of y2 since w? is not a white noise, and the estimation is biased.

5. CONCLUSION

The main contribution of this paper is to give a mathematical
geometric formulation of the inertial-vision fusion problem,
and to propose a simple observer to estimate the gyro bias. The
method developped is different from the usual inertial-vision
techniques. In the future this approach should be tested on real
data, and extended to estimate other quantities (pose, attitude..)
the following way. When A is small, one can neglect in (1) the
second order terms in A and keep those of order one, including
partial derivatives in 7. We obtain the following approximated
system

d 1

797 59w
%v:vwarq*l*Agmv*qua

oA OA

a:—afn(ﬂxw)

% = —Z—Z(n X (w+ An x v)) —2A(v.n)y

This approximated model can be used to do pose and attitude
estimation in some particular cases.

6. APPENDIX
6.1 Quaternions

As in [6], we use the quaternion parameterization of SO(3) to
derive filters for state estimation. The quaternions are a non
commutative group. Any quaternion ¢ can be written ¢ = ¢° +
qler +q?es+qdes with (¢V, ¢, ¢2, ¢®) € R4, the multiplication
x is defined by

e1xe; = —1, eyxea = —egxe; = ez with circular permutations

and the norm of ¢ is 1/(¢°)2 + (¢)2 + (¢2)2 + (¢3)2. Any
vector p € R3 can be identified with the quaternion p'e; +
p?es + pies. We make this identification systematically. Then
one can associate to any quaternion whose norm is 1, a rotation
matrix R, € SO(3) thanks to the following equality: ¢! *
p * g = Ryp for all p. The subgroup of quaternions whose
norm is 1 is denoted by H. Conversely, to any rotation R, of
SO(3) are associated two quaternions +¢ of length 1. Thus we
will write the elements of SO(3) as quaternions whose norm
is 1 (denoted by H;) and the vectors of R as quaternions
whose first coordinate is equal to 0. Numerically, quaternions
are easier to manipulate and compute than matrices in SO(3).
The wedge product v x w of vectors of R writes for the
associated quaternions: (v * w — w x v) /2.

6.2 Cartesian coordinates

In the classical camera pinhole model, each pixel of the image
has two coordinates (z,y) € R2. A point M of the scene has
cartesian coordinates (z,y, z) € R? (see fig 1). Its projection
on the sphere is S? > (2/,y') = (sin(arctan x), sin(arctan y)).
We write n = (0,2',3y',1/1 — 2’2 — y2)T . Indeed € S? is a
quaternion of norm 1, whose first coordinate is 0. The output
is now a function h(t,z,y) (we let h denote the output map
rather than y, not to be confused with the y-coordinate) and the
observer (3) writes

) 5

S = (VY X = h(t,2,9)V6 x ) - (Wi +0)
- ky(Y - Y)7

d / -

—C=ke | penc, (Y =Y)..

dt _héfgh( )

(VY x5 —h(t,z,y)Ve x 1) dE(z',y', 2')
where dX is the area element of the sphere using cartesian

coordinates 2’ = /1 — /2 — y2.
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