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Abstract

This paper describes the design and implementation of a
lightweight static security analyzer that exploits the compi-
lation process of the gcc compiler. The tool is aimed at giv-
ing to programmers useful and precise hints for improving
the security of the developed software, while also detecting
format string vulnerabilities, buffer overflows, and subtle
vulnerabilities due to incorrect arithmetic and conversion
on integers. The experimented technique is a combination
of the taint analysis concept and of a value range propaga-
tion algorithm. The experimental results obtained by ana-
lyzing some real-world security critical programs show that
the tool is only slightly heavier than pure compilation, and
that it is able to detect known vulnerabilities, as well as
unknown ones. Moreover, even if false positives are given,
many of the warnings that do not correspond to vulnerabil-
ities are indeed instances of unsafe programming practices,
which can be avoided by applying a defensive programming
style. Then, the tool can be profitably used during develop-
ment, as a means that facilitates such coding practice.

1. Introduction

Software contains errors, because programmers are hu-
mans and, hence, they can easily make mistakes. The sim-
ple usage of a compiler to detect problems is insufficient.
While it reports many errors with certainty, it allows many
of them to pass unnoticed and to lie dormant for years be-
fore they are discovered and fixed. Unluckily, the longer a
vulnerability is not patched, the more expensive it can be to
fix it. Therefore, catching bugs early is better.

Current practices for bug detection apply testing, dy-
namic analysis and static analysis techniques. In essence,
while each one has its own particular strengths, each of
these techniques is not sufficient by itself to enable discov-
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ering all the errors, thus they usually need to be used in such
a way that they complement each other weaknesses.

This paper focuses on static analysis techniques for the
detection of security vulnerabilities.

The static program analysis problem of finding vulner-
abilities, such as for example buffer overflows, is undecid-
able for languages like C and C++, because it is a Turing
halting problem. Consequently, only approximate solutions
can be obtained, unless analysis is in some way restricted to
operate only on a decidable subset of programs. Depending
on the conservativeness of the approximation and on how
much approximation is used, there can be tools that provide
more or less accurate results in that they either miss or do
not miss errors or they produce more or less false positives.

Anyway, in general, better precision requires more anal-
ysis time. Therefore, besides the tool accuracy in detecting
errors, another practical important issue is the time taken
to perform the analysis. Tools that provide quite accurate
results with few false positives typically take hours to per-
form the analysis. Then, they are useful for final assess-
ment, but they are not adequate to be used regularly in the
code development loops for short-term iterations. Instead,
a lightweight tool that runs in minutes can be used during
development just as the compiler is, and can help program-
mers to promptly detect errors, and to avoid bad coding
practices. Of course, many of the warnings emitted by a
lightweight tool may not correspond to existing bugs, but
our experience shows that many times they indicate pro-
gram points that can be coded in a safer and/or cleaner
manner. So, by using lightweight tools during development,
there is the side effect benefit of raising the reliability and
security awareness of programmers, as well as to incentive
the usage of defensive programming practices that lead to
produce more robust code.

In the ambit of reliable and secure programs, code should
obey some simple principles, such as: all inputs have to be
validated before they are used, and defense has to be put
in depth, e.g. there should be checks placed right before
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the most sensitive usages of values, aimed at ensuring that
unwilling behaviors can never happen.

Based on the above considerations, this paper presents
our experience in developing a new lightweight static analy-
sis technique aimed at emitting warnings for the potentially
dangerous usages of inputs in sensitive operations. The final
aim is to facilitate the detection of some widespread vulner-
abilities, such as format string vulnerabilities, buffer over-
flows and many integer-related errors that can be the cause
of vulnerabilities. A tool prototype has been developed in-
side version 4.1 of the GCC suite of compilers, to target the
C language. Anyway, the tool can be easily ported inside
other versions, with minor modifications.

The rest of the paper is organized as follows. Next sec-
tion recalls the classes of vulnerabilities that the presented
analysis technique can detect and provides an explanation
of their causes. Section 3 presents the analysis technique
and section 4 describes some experimental results that have
been obtained by running a prototype implementation of the
technique on real world code. Finally, related works are de-
scribed and conclusions are drawn.

2. Software Vulnerabilities

This section recalls the causes of the most commonly ex-
ploited C implementation vulnerabilities, i.e. format string
vulnerabilities, buffer overflows, and integer related errors,
which are more and more often used by attackers to trigger
conditions that lead to vulnerabilities, such as buffer over-
flows.

A format string vulnerability [17] occurs when an at-
tacker is able to specify all or part of the format string to a
format function, such as: *printf, syslog, etc. By pro-
viding a format string containing unexpected format conver-
sions an attacker can cause the function to output the con-
tents of memory and/or to write arbitrary portions of mem-
ory with controlled values.

Most buffer overflow vulnerabilities [16][14] result from
improper or missing buffer bound checks and/or misuse of
some library functions (that work on buffers). However,
some buffer overflow vulnerabilities are enabled by more
subtle causes, such as the presence of integer errors in the
code. Common causes are errors on the logic aimed at en-
suring that operations on buffers operate inside their bounds
and errors on size computation of buffers that have to be dy-
namically allocated.

There are two categories of integer operations that can
lead to vulnerabilities, since they either cause a misinter-
pretation or a wrong computation of integer values. They
are type conversions and integer underflows/overflows.

Integers can be subject to type conversions explicitly by
means of cast operators or implicitly. Particular attention
must be paid to implicit conversions that are introduced by
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compilers, since vulnerabilities are often caused by unac-
counted effects due to these conversions.

Without going into the details of how and when integer
conversion rules are applied, it is sufficient to note that an
unsafe type conversion from A to B happens when all the
values of A cannot be safely represented in B, because either
it has a type with less width (i.e. less rank) or with different
signedness.

When conversions are between types of the same width,
but with different signs, Signed-Unsigned errors are pos-
sible. When a negative integer number is converted into an
unsigned integer, it is interpreted as a large number, whereas
when an unsigned integer is converted into a signed one and
the number is too big to be representable as signed, it is in-
terpreted as a negative number.

Indeed, for the conversions that involve types with dif-
ferent widths, it is possible to distinguish between two sub-
cases: conversions from a larger type to a smaller one and
viceversa.

A truncation or loss of precision cast arises when an in-
teger is converted into a type with less width, being greater
(for signed and unsigned integers) or smaller (for signed in-
tegers) than the maximum representable number. The con-
sequence is that the most significant bits are lost.

When a conversion happens from an integer of smaller
type to a larger one, the variable with less width is first
converted to its equivalent value as a variable of greater
width. It could seem that it is impossible to have prob-
lems with these conversions, since each number that is rep-
resentable on a given type can be safely represented on a
larger type. Unfortunately, combining these conversions
with some other particular code can lead to vulnerabili-
ties. For example, in the two’s complement representa-
tion of negative numbers (the one used in GCC and in
most compilers), the conversion implies sign extension. For
example both char c¢=0xFF; unsigned int i=c;
and char c=0xFF; int i=c; imply that i contains
OXFFFFFFFF. If the programmer is not aware of the ex-
tension and uses some values (by assuming that they are
not legitimate data values) of a variable (such as -1, i.e.
OxFFFFFFFF), as special values into a conditional check,
then it may happen that legitimate values will coincide with
the special ones. We call Extension vulnerabilities the vul-
nerabilities that derive from this behavior. An example of
a vulnerability (see CAN-2003-0161 or VU#897604 advi-
sories) allowing to evade a security check by exploiting a
cast from a char to an int and, consequently, causing a buffer
overflow, has been discovered in the Sendmail server.

An integer underflow/overflow happens when the com-
putation of an arithmetic operation results in a value that
is too small or too big to be representable on the available
bits. The C language standard [13] says that an integer over-
flow causes “undefined behavior”. This means that compil-



ers conforming to the standard can do anything, i.e. they
either may completely ignore the overflow or abort the pro-
gram. Most compilers (including GCC) simply ignore the
overflow and silently store the result of the erroneous com-
putation.

It is worth noting that integer overflows/underflows can
be very perilous, since it is not possible to detect them after
they have happened, mainly because when an integer over-
flow/underflow takes place, the program cannot distinguish
between a correct and an incorrect computation. Therefore,
safe programs should implement some extra logic to avoid
such problems.

Integer underflows/overflows do not directly allow ex-
ploitation of programs. However, when for example in-
tegers are used in memory management functions (i.e.
xalloc), exploitation conditions can arise.

3. The Static Analysis technique

All the vulnerabilities previously presented are made
possible by at least one of the following conditions or a
combination of them: (1) an attacker can control the con-
tent of a variable that is used into a security sensitive logic
(e.g. a check) or a function call (e.g. a malloc() call); (2)
data are not sufficiently validated (e.g. an integer variable is
not checked to be into a range of allowed safe values); (3)
integer variables are not bounded and arithmetic operations
can cause them to underflow or overflow; (4) type conver-
sions can cause misinterpretation of the value stored into
variables.

Given that, a static analyzer that aims at detecting the
vulnerabilities mentioned in the previous section should
emit warnings founding its decision on the following in-
formation: (1) what are the variables that can be under the
direct or indirect control of an attacker (taint variables), (2)
what is the range of values that integer variables can take at
run-time, (3) what integer variables can overflow/underflow,
(4) what unsafe type conversions happen on variables.

The lightweight static analysis technique presented here
is based on a dataflow analysis that computes the above in-
formation in a conservative way. Then, by exploiting the
above knowledge, warnings are emitted according to some
hard coded policies and some additional policies, specified
by means of annotations of library function prototypes con-
tained in a text file. We provide annotations for all the C
standard library functions.

Figure 1 shows some annotations as an example. The
lines following a function prototype are the annotations for
that function. Consider the annotation for the malloc
function, which starts with @VULN. This tag is used to de-
scribe the criteria used to decide whether a warning must
be emitted. Inside each pair of round brackets there is a
condition that has to be evaluated. Conditions are sepa-
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void * malloc (size_t size);
@VULN: (5: 1 VU & 1 VR & 1 VC)

(4: 1 VU & 1 VR) | (3: 1 VR & 1 VC) | (2: 1 VR)
int printf
@VULN: (5:

(const char xtemplate, ...);
1 VU)

(void *restrict to, const void
*restrict from, size_t size);

void * memcpy

@VULN: (5: 2 VU & 3 VU & 3 VR & 3 VC) | (4: 2 VU & 3 VU &
3 VR)[(3: 2 VU & 3 VU)|(3: 3 VU & 3 VR)
QTP: 2 > 1 & 2 > 0

int scanf
@INIT:
@VULN:

(const char *template, ...);
0 & 2
(4: 1 FS)

Figure 1. Annotation examples.

rated by OR (|) symbols and are ordered by importance,
so they are evaluated in the specified order. Warnings are
classified into five different ranks. The first condition (i.e.
(5: 1 VU & 1 VR & 1 VC)) isranked with level 5
(i.e. VERY HIGH) and is composed of a conjunction (&)
of three sub-conditions. In this case, all the sub-conditions
concern the first parameter (i.e. 1) of the function. The first
sub-condition is true if the first parameter (i.e. 1) is con-
trollable by a user (i.e. VU), the second one if the value of
the variable is not bounded (i.e. VR), and the third one if
an unsafe type conversion occurs along a path that reaches
the function call (i.e. VC). Consider now the annotation of
the scanf function. The @VULN tag here specifies that a
warning with rank 4 (i.e. HIGH) must be emitted if the first
parameter of the function contains a perilous format string
(i.e. FS), e.g. it contains a %s that can lead the correspond-
ing variable to overflow. The description of the @INIT and
@TP tags will be illustrated later on.

3.1. Determining taint variables

Determining the variables whose contents can be influ-
enced by a potential attacker, is primarily aimed at narrow-
ing the warnings emitted by the tool to the ones that really
matter from a security perspective, as well as to reduce false
positives. In fact, many potential vulnerabilities are not ex-
ploitable when the attacker has no control over certain data.
For example, an attacker usually needs to have control over
the data that overflows, in order to exploit a buffer overflow.
The idea of determining such variables is not new and it
has already been used with success in static analyzers for
vulnerability detection (e.g. [18][12]).

We formulate the taint analysis problem as a dataflow
problem, based on the lattice shown in figure 2. Differ-
ently form other approaches, we introduce the new value
may_be_tainted, in addition to tainted and untainted values.
This new value represents uncertainty about taintedness, so
as to allow analysis to make conservative assumptions about
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Figure 2. The lattice for taint analysis.

the fact that a variable can be tainted, but tracking this un-
certain assumption to the user. For example, when there is
a function call and the code of the function is not available,
we can make the conservative assumption that the function
returns a tainted value, however, since we cannot tell this
for sure, the variable is marked as may_be_tainted instead
of tainted.

It is worth noting that the lattice is unusual compared
to those used in classical dataflow analysis, in that the top
value, instead of representing a lack of information, repre-
sents the supposition that everything is initially untainted
(i.e. not controllable by an attacker). This important par-
ticularity enables an efficient propagation of the taint prop-
erty, since the propagation algorithm can start to propagate
information from the input points of the program (e.g. input
functions), without having to spend time to examine state-
ments on the untainted paths of the program.

In practice, analysis starts by marking all the variables
as untainted except the arguments of the main function, and
those function parameters that are specified by the annota-
tion file through the QRINIT tag. All these are marked as
tainted. Coming back to the annotation of the scanf func-
tion (see fig. 1), JRINIT: 0 & 2” means that the return
parameter (0) of the function has to be marked as tainted
and that the second parameter (2) of the function has to be
marked as tainted. In such cases, the annotation also speci-
fies that all the parameters after the second one have to be-
come tainted, because of the ellipsis (. . .) in the function
prototype.

Propagation is performed using an iterative worklist al-
gorithm. All the statements that have been initially deter-
mined to use a tainted variable are pushed into the worklist.
Then, propagation takes place by popping a statement at
a time off the worklist and by propagating the taintedness
of the variables of that statement. Hence, for each vari-
able that has become tainted, the corresponding statements
that immediately use them (they are determined by walking
the definition-use chains) are added to the worklist, if not
already present. Hence, propagation terminates when the
worklist is empty.

We have implemented two taint analysis engines.

One analysis is performed as an inter-procedural com-
pilation pass and allows whole program analysis on the
GIMPLE form (which essentially is a three address code
language with no high-level control flow structures). This
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analysis is performed quickly, being context-insensitive and
flow-insensitive. However, the analysis is conservative and
takes data aliasing into account by exploiting an implemen-
tation of the Andersen pointer analysis [2].The purpose of
this intra-procedural analysis is only determining the taint-
edness value of all global variables and of the parameters of
all program functions.

The other analysis is intra-procedural and more precise
than the inter-procedural one in that it works on the SSA
form and provides a limited form of context- and flow-
sensitivity, while exploiting the already existing gcc imple-
mentation of an intra-procedural alias-analysis. This taint
analysis can either work by exploiting the knowledge ob-
tained by the inter-procedural one or as a stand-alone anal-
ysis.

When the intra-procedural analysis exploits the results of
the inter-procedural one, the previously determined tainted
parameters are marked as tainted, while the tainted global
variables are marked as may_be_tainted when they were
tainted. The reason for that change is that the intra-
procedural analysis does not know when a global variable
has become tainted (i.e. if at run-time it becomes tainted be-
fore, during, or only after the execution of the function). As
a consequence, the analysis uses the may_be_tainted value
instead of rfainted to inform the user about the conservative
but possibly imprecise assumption about the taintedness of
the variable. Obviously, if the variable becomes tainted dur-
ing function execution, then the global variable changes its
lattice value from may_be_tainted to tainted during the intra-
procedural analysis.

On the other hand, when the analysis is performed with-
out exploiting the inter-procedural one, it works conser-
vatively. In particular, the analysis initially assumes that
all the parameters of functions and all global variables are
may_be_tainted, so as to assume the worst case scenario,
while reporting to the user the uncertainty about the taint-
edness assumptions. By considering the worst case sce-
nario, the analysis results apply when verifying the code of
libraries and of components during development, i.e when
there is no knowledge or assurance on where and how func-
tions are called (i.e. the function parameters that an attacker
can control or influence are unknown). Therefore, this anal-
ysis is helpful to incentive programmers to produce robust
code, by performing defensive programming.

The @TP annotation mechanism of function prototypes,
that we define, enhances the capabilities of both taint anal-
ysis passes, because it takes the functionality of the anno-
tated functions into account. In particular, these annotations
specify how taint propagation can be performed in a stricter
manner than the default conservative one. Consider the an-
notation @TP: 2 > 1 & 2 > 0 of the memcpy func-
tion (see fig. 1). This annotation means that the taintedness
of the second parameter (2) has to be propagated to the first



parameter (1) and to the return parameter (0), and no other
propagation must occur. Indeed, by default, the taintedness
of the first parameter would be propagated to the second one
and to the return value.

3.2. Determining the value ranges of integer
variables

The problem of determining the range of values that inte-
ger variables can take at run-time is a well-known issue for
compilers, since this knowledge can be used to predict what
is the likelihood taking each particular branch of a program,
which is useful to perform several optimizations.

The GCC already includes an implementation [15] of
such an algorithm, called value range propagation. This
algorithm can efficiently track the value ranges of variables
through a program, by producing significantly more accu-
rate predictions than heuristic techniques, while maintain-
ing pretty linear runtime behavior.

As described [15], this method must be applied to depen-
dence flow graphs where the variables have been renamed
to achieve single assignment. Unluckily, the GCC imple-
mentation of this algorithm is only available for the intra-
procedural optimization passes, since they work on an SSA
form, while the inter-procedural passes work on GIMPLE.
Therefore, our current prototype only uses intra-procedural
value range propagation. It is worth noting that this im-
plies some inability to determine that some variables have
been bounded by some previous checks along the inter-
procedural execution paths. By looking at vulnerability re-
ports, it can be noted that many vulnerabilities were caused
by missing checks along only few of the many execution
paths that reach a given sensitive code point. Therefore,
this analysis deficiency can cause some false positives, but it
can be exploited to identify code points where a new safety
check will make the program more resistent.

Anyway, in the future, GCC should allow inter-
procedural passes to work on an SSA form, thus providing
an inter-procedural value range propagation algorithm.

For our analysis, we made some slight modifications to
the original GCC implementation of the value range propa-
gation (VRP) algorithm, in order to allow considering vari-
ables as dangerous when they are unbounded, both be-
cause of lack of checks that limit their bounds and of in-
teger underflows/overflows. It is worth noting that there is
an important difference between signed and unsigned vari-
ables, since the former usually need to be lower and upper
bounded, while the latter only need to be upper bounded.
Thus, when a requirement about the range of a function
specified by an annotation is evaluated, depending on the
signedness of the parameter, a different check is performed.

The original version of the VRP algorithm represents in-
tegers in a lattice that is made of the following elements:

855

undefined (nothing is known about the value range), vary-
ing (i.e. the integer can take any value), a range or an anti-
range (the integer can only take values outside the specified
range). Ranges and anti-ranges are expressed using con-
stant bounds (e.g. [0;100]) or symbolic bounds (e.g. [x;
x+1]). It has to be noted that a symbolic bound is produced
when the value depends on the values of other variables with
unknown bounds.

One of the modifications consists of changing the sym-
bolic bounds containing arithmetic operators (such as x+1)
into constant bounds or varying ranges. For example, we
transform the range [2; x+1] into [2, MAX] where MAX
is the maximum representable value in the variable type,
while a range such as [x, x+1] is dropped to be varying.
This conservative strategy lets us treat the variables that
are unbounded, because not properly sanitized, and those
that can underflow/overflow in the same way. To clarify
this concept, consider what happens with ranges such as [2;
x+1] and [2; x]. In both cases the range is changed into
[2, MAX], since knowing that the variable can assume the
maximum value is enough to evaluate the variable as dan-
gerous (in terms of value range), despite of the overflow.
Anyway, the information that the variable could overflow is
maintained.

3.3. Tracking unsafe type conversions

Determining unsafe type conversions along tainted ex-
ecution paths is performed by the taint analysis pass that,
while tracking taintedness by following data flow informa-
tion, also checks what casts are unsafe. This is done accord-
ing to the casuistries presented in section 2.

Type conversion analysis emits an informative warning
for each unsafe cast and maintains information about what
are the types of all the unsafe casts that have been performed
along the execution paths that reach each SSA variable. The
types of casts, that are stored, belong to the following cate-
gories: truncation, unsigned to signed, signed to unsigned,
and sign extension. Moreover, the analysis keeps a more
detailed track of the last unsafe cast, in terms of code loca-
tion (i.e. file and line), so as to allow cross referencing with
informative warnings.

3.4. Putting analysis results together

Security warnings are emitted for library function usages
that match what specified by function annotations, as well
as for potentially dangerous array accesses and unsafe casts
that reach conditional expressions.

Warnings for functions are heuristically ranked in such a
way to have a high probability that real vulnerabilities are
caught by only examining warnings ranked as VERY HIGH
and HIGH, while those ranked as MID usually correspond



to vulnerabilities that are induced by previous vulnerabili-
ties, and the other ones are only useful in order to perform
a quite deeper code auditing.

For example, consider the annotation for the memcpy
function, as shown in figure 1. If only the criteria corre-
sponding to a MID rank (i.e. 3) are met, the function is
vulnerable because of some previous errors, which can be
caught and ranked higher by our analyzer.

Warnings for accesses to arrays, such as afx] = b; are
ranked as: - VERY HIGH when x is tainted and unbounded,
and b is tainted; - HIGH when x is unbounded and b is
tainted; - MID when x is tainted and b is tainted, or when x
is unbounded and b is untainted; - LOW when X is tainted.
Here, however, for the arrays that are statically allocated,
the analysis does not only look for the absence of bounds,
but it performs a comparison of the bounds computed by
the value range propagation algorithm with the real allo-
cation sizes. Moreover, it is important to note that the
compiler performs both an inter-procedural and an intra-
procedural constant propagation algorithm [4] which can
transform many variables (e.g. array indexes, and bounds
of loops) into constants. Therefore, many more accurate
checks concerning array accesses can be performed.

It is worth noting that the rank of warnings is not modi-
fied depending on the presence of unsafe casts that occur on
index variables, but that this information is simply provided.

Warnings for conditionals are ranked using similar cri-
teria, depending on the type of cast and on the comparison
operator involved. In particular, truncation or unsigned-to-
signed casts are ranked VERY HIGH when the operator is
an inequality (e.g. <, >, <=, >=) and HIGH when the op-
erator is an equality (==) or a difference (!=). Sign exten-
sion casts are ranked HIGH when the operator is an equality
or a difference and MID when the operator is an inequal-
ity. Signed-to-unsigned casts are ranked HIGH when the
operator is an inequality and MID when the operator is an
equality.

4. Real-World Tests

The prototype of the presented analysis algorithm has
been tested on 9 real-world network applications, since they
are the typical kind of programs where vulnerabilities imply
significant security risks.

Tab. 1 provides information about the programs that have
been analyzed. For each program, the table reports the ver-
sion used, the total number of lines (LOP), and the net num-
ber of non-comment, non-empty lines of code (LOC). Fi-
nally, it both reports the time taken by gcc to only perform
compilation (CT) and the time taken by gcc with the in-
tegrated analysis (CAT). Tests were made with code opti-
mization activated with option —02, and were performed
on a laptop equipped with a 2 Ghz Centrino and 1 GB of
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nullhttpd || 0.5.0 2254 1878 1,856s 2,365s
bftpd 1.5 4214 3666 4,693s 6,152s
cfingerd 1.4.1 5627 3702 6,908s 14,418s
muh 2.05d | 5850 4278 2,981s 17,635s
dcd 0.7.0 8781 5935 4,920s 16,671s
net-tools 1.46 10878 8677 18,166s | 27,741s
rsync 2.4.6 | 22277 | 15495 11,45s | 26,643s

Table 1. Programs characteristics, and com-
pilation and analysis times.

RAM, running Linux.

Some additional information is now provided about the
programs on which the analyzer has been tested. Null-
httpd is a very small, simple and multi-threaded web server
for Linux and Windows. Version 0.5.0 is known to have
a buffer overflow (see CVE-2002-1496). Bftpd (version
1.5 and further ones) is a small FTP server, that strives to
be fast, secure and quick to install and configure, with no
known vulnerabilities. Net-tools is a package that consists
of several system commands related to networking, such as
netstat, ifconfig, route, and so on. Version 1.46 is known to
have many buffer overflow vulnerabilities. Muh is a smart
IRC-bouncing tool (i.e. an IRC proxy) that remains on
IRC all the time. Version 2.05d is known to have a for-
mat string vulnerability (see CVE-2000-0857). Cfingerd
is aimed to be a free and secure finger daemon. Version
1.4.1 is known to have a buffer overflow (see CAN-2001-
0735) and a format string vulnerability (see CAN-2001-
0609). DConnect Daemon (dcd) is a Direct Connect’s hub
working as daemon. Version 0.7.0 is known to have a buffer
overflow and multiple instances of a format string vulnera-
bility (see SecurityTracker Alert ID: 1016641). Rsync is an
utility that provides fast incremental file transfer for bring-
ing remote files into sync. Version 2.4.6 is known to have
many buffer overflows (see CVE-2003-0962, CVE-2004-
2093, and CVE-2006-2083) and multiple signedness errors
(see CVE-2002-0048).

Tab. 2 summarizes the experimental results we obtained
by verifying the code for only warnings ranked as VERY
HIGH or HIGH. Warnings have been grouped into cate-
gories, i.e. as those that involve Arrays, Functions, and
Conditional expressions. For each category we distinguish
among warnings that correspond to code locations that ei-
ther cause or are real vulnerabilities/errors (TP, i.e. true
positives), to code locations where we think that a security
improvement should be performed (P, i.e. Possible im-
provements), and to code locations that do not correspond
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Array TP 0] 0 10|06 1
Array PI 0O, 0]0]O0]|3 0 1
Array FP 314110 2 2 1 4
Function TP 1 7 6 2 2 |14 ] 14
Function PI 012 2 8 1 0 3
Function FP 2 1147 8 7 |11 | 8
Conditional TP || 0 | O 1 00/ 0 3
Conditional PI 013 2 1 2 1|17
Conditional FP || 1 [ 14| 0 | O 1 2 112
Total TP 1 7 8 2 2 120 18
Total PI 0|5 4 19 6 1|21
Total FP 6 | 3217|1010 | 14 | 24
Total warnings || 7 |44 | 29 | 21 | 18 | 35 | 63

Table 2. Summary of warnings ranked as
HIGH and VERY HIGH.

to any real issue (FP, i.e. false positives). It is worth not-
ing that we do not catalogue as PI the code locations that
are signalled because of any analysis inaccuracy (e.g. an
integer variable is rightly bounded because of checks exter-
nal to the function) or because of ’unsafe” conversions and
integer overflows that seem to be consciously taken into ac-
count by the programmer. We found that the major causes
of false positives are these, as well as the ones due to inac-
curacy when determining integer bounds. Inaccuracy may
arise when arithmetic formulas are complex and/or involve
the return value of functions (this is a limitation of having
an intra-procedural value range propagation algorithm). In
summary, the result is that, of a total number of 217 warn-
ings, 27% correspond to TPs, 21% to PIs, and 52% to FPs.
The warning rate is acceptable (a warning every 275 lines
of code).

An important result is that all the known vulnerabilities
have been caught by the tool prototype, and seven previ-
ously unknown vulnerabilities have been found (those of
bftpd). Compilation and analysis takes, on average, approx-
imately twice the time taken by compilation alone.

5. Related Work

Many vulnerability detection techniques for C code have
been proposed in recent years. While many have focused on
the detection of buffer overflows and/or format string vul-
nerabilities, few have taken the effects of integer overflows
and of unsafe type conversions into account, both by them-
selves and as a trigger cause of buffer overflows.
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Lexical analysis tools (e.g. ITS4 [19], VulCAn [20]) can
aid guiding code auditing in order to spot vulnerabilities
caused by library functions only. Moreover, since they only
perform a lexical analysis and not a dataflow analysis, they
leave a lot of manual work to code auditors and they can
report many false positives.

Annotation driven tools (e.g. Splint [9], CSSV [8] and
Eau Claire [5]) analyze program code guided by user-
supplied and library-supplied annotations, which usually
take the form of function pre-conditions and post-conditions
that must respectively hold before and after function calls.
Their main limitation is that users are usually not willing to
annotate code. Anyway, depending on the underlying anal-
ysis engine, they can emit many false positives (e.g. Splint)
or they can be accurate but very slow (e.g. CSSV).

Model-based tools work by extracting a model from
source code and by analyzing it. Some of them (e.g. MJOL-
NIR [20], and ARCHER [21]) abstract away the code of
programs to formulate a linear programming problem, in
order to be scalable. Hence, constraint solvers are used and,
when inconsistencies are detected, warnings are emitted.
Our technique differs in that it is propagation based, instead
of equation based, so it is typically faster. Furthermore, it
has to be noted that the approaches of these model based
tools are someway less conservative than the one described
in this paper, since they report warnings only when there
is evidence that operations happen out-of-bounds. Indeed,
we always raise warnings when there is not evidence that
an operation is “bounded” and we rank warnings according
to risks. More accurate model-based tools (e.g. Astreé [7]
and Polyspace C verifier [1]) are based on abstract interpre-
tation techniques. Such tools provide very precise results,
but they are very slow [22]. Some other model based tools
(e.g. CBMC [6], UNO [11]) use model checking techniques
and perform path-sensitive analysis of abstracted programs.
Therefore, while they can provide precise information when
they find a vulnerability, they suffer from scalability prob-
lems. Moreover, while they can typically report very few
false positives, they usually detect less bugs.

Some compilers, such as gcc, already emit warnings
for comparisons involving signed and unsigned variables,
which inevitably lead to type conversions, but they do not
provide any detection mechanism for buffer overflows and
format string vulnerabilities. Moreover, detection of integer
problems in gcc is quite limited, because it does not con-
sider cases when the cast happens before comparison, and
ignores truncation and extension casts. Furthermore, it does
not attempt to determine if casts are safe because of the set
of values that the variable cannot take, and do not reduce
false positives because of untaintedness of cast variables.
Besides the limited detection capability of compilers, we
are not aware of other tools that emit warnings for unsafe
conversions that reach conditional checks.



A compilation-based approach is Meta-level compilation
[10]. Based on it, Coverity produces a commercial tool that
detects input validation errors on integer variables. The tool
[3] works by determining if tainted data is used in pointer
arithmetic and in memory management functions, so as to
report warnings. A remarkable difference is that [3] does
not consider data aliasing, while the technique illustrated
here does. Anyway, the analysis strategy works by turning
tainted data into untainted when it is sanitized by means of
any check (i.e. not necessarily the right ones), and a simple
heuristic is used to only take into account integer overflows
that happen on checks, i.e. data remains tainted when any
arithmetic operation is performed. Indeed, our tool can bet-
ter determine when arithmetic operations cause overflows,
since when variables are bounded my means of constants,
it is possible to know the effects of arithmetic operations
by simply computing them using bound values of the vari-
ables involved in the operations. Moreover, we do not limit
detection to overflows on variables involved in checks, but
we consider all the variables along tainted paths. Further-
more, our tool also takes the effects of type conversions into
account, and raises warnings for potential unsafe checks.

6. Conclusions

We have described the design and implementation of a
lightweight static analysis technique to find vulnerabilities,
incentive programmers to write defensive code, and raise
their awareness on the subtle aspects of the C language. We
show some of the advantages of integrating a security ana-
lyzer inside gcc, as well as how an already present compi-
lation algorithm (i.e. value range propagation) can be ex-
ploited and coupled with taint analysis. We describe a new
way of performing taint analysis, by combining an inter-
procedural and an intra-procedural pass and we define a new
taint lattice that allows us to report uncertainty of the anal-
ysis results to the user, as well as enabling a conservative
analysis of libraries. We present an annotation mechanism
for library functions that improves the taint analysis preci-
sion, easily allows to customize the causes that lead a tool to
emit warnings and the risk rank associated with that warn-
ings. We propose a solution to the problem of detecting
subtle integer errors, such as integer overflows and perilous
type conversion errors that lead to vulnerabilities.

We showed the effectiveness of our technique by testing
the tool prototype on some real-world programs. All the
known vulnerabilities and some previously unknown vul-
nerabilities have been found by the tool. Moreover, we
observed that many of the warnings raised by the tool that
were not vulnerabilities corresponded to weak code points
that need improvement. Compilation and analysis time is
on average approximately twice the time taken by compila-
tion only, thus indicating that this technique can indeed be
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used regularly during development for short term iterations.
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