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ABSTRACT

This paper presents an Euler-Euler Large-Eddy Sitioud
(LES) approach for the numerical modeling of nasthisrmal
dispersed turbulent two-phase flows. The propogguicach is
presented and validated by priori tests from an Euler-
Lagrange database, provided using discrete padintelation
(DPS) of the particle phase coupled with direct arioal
simulation (DNS) of the turbulent carrier flow, ia non
isothermal particle-laden temporal jet configuratio A
statistical approach, the Mesoscopic Eulerian Fisma(MEF)
[Févrieret al, J. Fluid Mech., 2005, vol. 533, pp. 1-46], isdise
to write local and instantaneous Eulerian equatiforsthe
dispersed phase and then, by spatial averagingeive the
LES equations governing the filtered variablesthis work, the
MEF approach is extended to scalar variables tateg by the
particles in order to develop LES for reactive tuemt
dispersed two-phase flows with mass and heat tenbul
transport. This approach leads to separate thanitssieous
particle temperature distribution in a MesoscopideEan field,
shared by all the particles, and a Random Uncdeela
distribution which may be characterized in termsEnferian
fields of particle moments such as the uncorrel&tatperature
variance. In this paper, the DPS-DNS numerical lukga is
presented, LES Eulerian equations for the dispepbede are
derived in the frame of the Mesoscopic approach rmondels
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for the unresolved subgrid and random uncorrelégechs are
proposed and priori tested using the DPS-DNS database.

Keywords: Euler-Euler LES, two-phase flows, mespsco
approach, non isothermal planar jet.

INTRODUCTION

Large-Eddy Simulations (LES) for single-phase floave
used in several industrial applications where cemxpl
geometries or/and unsteady phenomena occur suaboastic
instabilities in combustion chambers. When a secphdse
must be taken into account, for example injectibhquid fuel,
it is necessary to develop models for the dispepdese. This
is commonly referred to as two-phase flow LES and i
represents a promising tool for the future, recwjvigreat
attention from scientific and industrial commurstieThe
dispersed phase can be treated in a Lagrangianuleri&h
framework leading to two type of two-phase flow LES
approaches: Euler-Lagrange and Euler-Euler LESthénlast
decade the Euler-Lagrange approach have been usgéd a
several aspects have been investigated [2,3,4s5al&rnative,
the Euler-Euler LES approach (or two-fluid LES) eéns still
limited because of the great complexity to derivspdrsed
phase LES equations and models in the Eulerianefnark.
LES of the Eulerian dispersed phase computes dysaof
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larger-scale motions while the influence of the lkenascales is
modeled since they should have, theoretically, ensizl
character. The choice of approach to obtain theriau particle
LES equations plays an important role on the madelin the
case of inertial particles with relaxation timesgkr than the
Kolmogorov time scale, Fevrieet al. [1] shown that a
decomposition in correlated and uncorrelated moftioy the
Mesoscopic Eulerian Formalism, MEF) can be usedite a
better interpretation of velocity distribution. Espally in the
frame of spatial filtering application, where Mouvezt al.[6,24]
pointed out different scaling for correlated versmgorrelated
quantities, highlighting the different natures odfet two
contributions: the MEF approach, by accounting sepdy for
the contributions, allows simplifying sub-grid testmodeling in
filtered Mesoscopic equations. Despite that, modetemains
always quite complex considering that the disperseake can
be compared to a highly compressible fluid with aadi
number largely greater than one [7] for which tlyeafr smaller
scales mechanism is still a topical research. is paper we
propose and test classical “low Mach” subgrid fluiwbdel
extended to dispersed phase. We also propose sindidsure
models for the uncorrelated moments issued froristtal
continuum approach. Special attention is given todeting
terms issued from the mesoscopic decomposition hef
temperature, which needs to be taken into accountrder to
develop LES for reactive turbulent dispersed twagghflows.
Validation is performed bya priori testing using a database
obtained from a Discrete Particle Simulation (DA&) the
particles coupled with a Direct Numerical Simulati®NS) for
the carrier flow.

—

NOMENCLATURE
9, particle variable
O¢ fluid variable
Jr@p fluid variable « viewed » by the particle
g, mesoscopic particle variable
A, random uncorrelated particle variable
g spatial filtered variable

STATISTICAL APPROACH

In the framework of Mesoscopic Eulerian Formalisag
the Appendix for further details) the correlatede@dscopic)
and uncorrelated (Quasi-Brownian, QB) Eulerian djtien are
defined through the moments associated to conéition

probability density function (p.d.f),"). The transport

equations for velocity-temperature functiog,(C,, &), are
obtained by analogy with kinetic theory of dilutasgs or dry
granular media. In very dilute regime, the intertistes
collisions are assumed negligible as well as thdulence
modulation in the carrier flow equations. Withoutgty, for
particles with diameter smaller or equal than Kdaomov
length scale and with density much larger thanfthid one,

only drag force modify the pdf. If the inter-phdseat transfers
are considered stationeries, the p.d.f. equatiomlased as
follows:

K 0
f(1)+ (1) =
az. p [ ]
@)
__0 l:(cp.i_uf@lli)fv(l):l {M (D}
acy,; T, P 0¢, To

The first and the second terms on the right hadé $i.h.s)
represent the effect of the external forces and erehanges
acting on the particle respectively.

THE EULERIAN PARTICLE SPATIAL FILTERED
EQUATIONS

Instantaneous moment transport equations are tegwed
from equation (1) by multiplying with functiongy, and
integrating over the particle velocity and tempemtspaces.
Then, these equations are spatially filtered. Sipeeticle
number density is not homogenous, a Favre spditialirig is
used:

Mo :IGAf ()i (x= 1)@, (x~r)dr @)
where Gy is the spatial filter kernel and; the characteristic
length. In this work a spherical box filter, withet filter function
_ 1 H(%Af _MJ , is used.

s’

A shortened version of the Euler LES system modetie
dispersed phase is:
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All terms of the above equations are exacts with th
exception of the terms of transfer in which meantigia
relaxation times [23] are introduced as

N\ N\

N N
1 1 1 1
==|=| === ™
Tp Tp Ty Ty

The dispersed phase is well characterized by tb&igens
of the filtered particle number density (3), vetgc{4) and
temperature (5) while the filtered uncorrelatedrgpesquation
(6) is used to model the second order moment ofd&an
Uncorrelated Motion (RUM). In the above equationise
filtered RUM tensor is already split into its detaiec and
spherical parts
=R pij +%mp,kk5ij =R pjj +§5€p6ij

R (8)

The physical signification of the r.h.s terms of tibove particle
equations are explained below.

p.ij

Filtered correlated velocitjﬁp’i transport equation (4):

» the first term represents the momentum transfer
through the drag force;

» the second and the third terms are the contribsitain
the uncorrelated velocity correlations and are
analogous to the viscous and pressure contribuiions
the carrier flow equations, respectively ;

e the fourth term represents the contribution of the
subgrid correlated motions. The mesoscopic subgrid
stress tensor is defined as

P

=N (UpiUp; —UpiUp ;)

b2 9

p.ij
Filtered correlated temperatufgtransport equation (5):

» the first term represents the heat transfer byacten
with the carrier fluid;

* the second term is the contribution of the Random
Uncorrelated Heat Flux (RUHF) on the correlated
temperature;

» the third one represents the contribution of thegsd
correlated motions. The mesoscopic subgrid heat flu

is defined as
N A o~

Yo =0, (U, —up,t,) (10)

Filtered Quasi-Brownian energ§ép transport equation (6):

« the first term represents the dissipation of the QB
energy by drag with carrier flow;

» the second and the third ones represent the plioduct
of QB energy by shear and compression respectively;

» the fourth term is the diffusion of QB energy;

« the fifth term represents the subgrid diffusion énid
defined as

- /= .
l‘IJp’i :np(up’i59p—up'i59p) (11)

» the sixth one represents the subgrid productioQBf
energy and it is

R ou,; di ou,; )
ol ol
p p.1 an ] an

In the LES particle system, all moments of the @uas
Brownian velocity and temperature must to be matiele well
as all subgrid terms. In the following paragragisth closures
are presented.

n, (12)

RANDOM UNCORRELATED MOMENTS MODELING
A viscosity model (Simonin et al. [8]) is used ftie
deviatoric part of filtered RUM tensor

R pij :VQBZS p.ij

_ T 5 | pi  Op; 2Mpy o 13)
3 Plox;  ox 3 ox

while a diffusivity law, suggested by Kaufmann ét [@] is
retained to model contracted third order moment of
uncorrelated motion

1 .2 5_- 2 000

ZX, i =—~7,00, — 14

Zagp,nj 3 p““p an ( )

In order to close the RUHF, a gradient equilibrinmodel
issued from the second order moment (QB heat fiwf)sport
equation is proposed. It leads to

~ o,
]Jep —r.
0X;

o 2
dap‘i = _g[

The equilibrium assumption is considered dolysupply a
first simple modelling. However, such assumptiomains very
questionable for inertial particles [9].

Tolg

0 (15)
Tp+Tg

SUBGRID-SCALES (SGS) MODELING
The subgrid stress tens@,; is split into deviatoric and

spherical parts and a Smagorinsky-type and a Yaskizype
models are used to represent the anisotropic S@Ssss and
the subgrid energy, respectively (see Mah al. [10] or
Lenormandet al. [22] for single-phase and Moreatial. [6,24]
for two-phase flows). The modeled tensor is then

2,5 =2 pii +:_:;Zp,kk5|j

, (6

= 2, 2|& o
:—2anS Af Sp Sp

Sx 2=
S piij +§anYAf2

where the filtered particle rate-of-strain tensod &s norm are

S'pii =

2 (o
=(28 p.ij S p,ijj
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This model uses a linear eddy-viscosity assumptiawhich
the energy is always transferred from filteredesidual motion,
thus, no backscatter phenomenon is predicted. Mergdt is
well-know that it overestimates the dissipationerah the
laminar-turbulent transition region. A good alteiva seems to
be given by a mixed model, proposed by Spezalal. [11],
obtained from Leonard’s triple decomposition, inieth the
effects of momentum exchange between small ane Iscgles
are accounted for by the Leonard and Cross ternte T
decomposition, based on Favre filtering, lead thesmnard-
stress tensor (not modeled), a Cross-stress temsgeled by a
scale-similarity assumption (Bardire al. [12]) with a model
coefficient of unity imposed to ensure Galileananance, and
a Reynolds-stress tensor that, split in deviatand isotropic
parts can be modeled by Smagorinsky and Yoshizavdels
respectively (see for instance Erlebacsteal. [13]).

Adapted to the mesoscopic flows [6,24], the mixeodel

leads to o~ L
Zpii = Mp(Upilp j —Upilp ;)
— 2— :* 2(17)
—ZﬁpCS'Af S S pl] +— n CY Af

Analogously, we propose to extend a classical eddy-

diffusivity type (see, for instance, Martéat al. [14] for single-
phase description) at the dispersed phase in ¢odeodel the
mesoscopic SGS heat flux, which takes the form:

nCSAf

Vo = Pk axj
whereCs is the Smagorinsky coefficient and:#s the turbulent
Prandtl number that has to be fixed or calculatgdachically
(as suggested by Martit al. [14]). In this model, similarly to
the Smagorinsky type, a linear eddy-viscosity isdusvith a
mixing length hypothesis (the length scale is prtppal to the
filter width). This is the simplest approach to mbdhe
mesoscopic subgrid heat flux. Also in this caseided model
proposed originally by Speziakt al. [11], can be adapted to
dispersed phase. It becomes:

NCs'A+ ‘ ‘atp 2
A simple eddy-diffusivity model (Moiret al. [10]) and a

more accurate mixed model (Speziateal.[11]), both adapted

[6], are used to model the subgrid diffusion. Tirs leads to

(18)

/\ A

>
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’ Pk 0x;
while the second leads to
MpCsA %S p‘ a5g 2N
Wi = Pr +np(up, —upl p) (21)

Finally, in order to model Quasi-Brownian sub-grid
production, Moreau [6] proposed a Ghosal-type m@@élosal
et al. [15]) where the production term is computed byngsi
subgrid correlated energy evaluated by a Yoshizawacale-
similarity-type model. It can be written as:

3/2

N, SGS
M _CL 22
p A, (22)
where g, sgs= = Z k9 s the subgrid energy an€is a

constant which can be calculated under assumpfiengbobal
equilibrium in a homogenous direction (Vreman [16])

NUMERICAL SIMULATION

Our numerical simulation corresponds to the disparsf a
cold particle-laden planar turbulent jet. The aditvelocity and
temperature profiles of the carrier phase are imgosas
hyperbolic tangent types supplemented with statlyi
homogeneous and isotropic velocity fluctuationsitiBlas are
randomly embedded at the same velocity and temperaf the
carrier flow and their number is large enough tornpe
Mesoscopic fields calculation. The numerical sirtiala is
performed by a Lagrangian approach (DPS) coupletth wai
DNS of the carrier flow. The code used is the Eulgrange
NTMIX3D-2® which solves the compressible Navier-Stokes
and energy equations in the dimensionless form witthird
order Runge-Kutta time stepping and a sixth ordempact
finite difference scheme on cartesian grid. Alsoe th
advancement in time in Lagrangian tracking is esduby a
third order Runge-Kutta scheme. The interpolatidn the
Eulerian carrier flow variables at the locationtloé particles is
performed by a third order Lagrange polynomial &thn. The
simulation domain is a cube with periodic boundeopditions.
The principal parameters are listed in table 1.

Lagrangian equations used in the DPS and govelthieg
motion and heat exchange of each particle are:

dx (1)

L= v, X)), (23)
v, Y@ 1
p _ (k)
———— ===V, “Us@p), (24)
dr T, P P
dr,“ @) 1
p _ k
—ar __T_(Tp( ) ~ti@p), (25)
g

where U;g, and t;g, are the undisturbed fluid velocity and
temperature at the particle location, amgd et 7, are the
dynamical and thermal relaxation times respectidelined as

4p.d 2
T, = p(” P and r, _1Prdy"Cpppp (26)
30, Co|V Y - g 6 NucC,
with the drag coefficient and the Nusselt number
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24
Cp=r @+ 015Re,*®®"), Nu=2+ 055Re,** Pr® (27)

p N
formulated in term of the particle Reynolasmber F
vV —ui gold
Re, = @ ) (28)
Pr is the Prandtl number whitg, andC,, are the specific heat
at constant pressure of fluid and particles. >
Parameters Value r
Box size L 2n “F
Number of cells 128’ A
Size of cells\x® 0.049 R T
Kinematics Viscosityw 1.82e-4
Initial turbulent kinetic energy?q 3.37e-4 Figure 1:snapshot on Z=64 offi, at time 7=4.87;
Initial dissipatione; 3.78e-5
Jet mean velocity §J 0.15 2 2
Jet mean temperaturg T 2.0
External mean temperaturg T 25
Prandtl number 0.7 ’
Planar jet initial width 1.6
Total particle number 80x10
Dynamics relaxation time, on y=0 12.8
Dynamics Stokes number St (estimate ¢ ~0.9 = 013
the equilibrium) on y=0
Thermal relaxation timeg on y=0 26
Thermal Stokes number;Stestimate at ~1.8 =1
the equilibrium ) on y=0
Table 1: simulation parameters !
J j ;
20 005 01 2

Lagrangian values are then post-processed and omgsos
fields are computed by using a projection algorifbr24]. A, is
the characteristic size of projection mesh choserthat A,
=AX. In order to estimate the dynamical and therntaké&s 2 2 ft ¢ o
numbers, the particle fluctuation energy is supgoat the b 45:',;’0 o
equilibrium with the turbulence of carrier flow (fen %, 1‘*’;*
hypothesis) for the velocity components in spanvdgection 8
(Simonin [17]). Previous assumption allows to chltal an ~, }

Figure 2:averaged profiles of velocity ( left) and temperat(right)
at time =4.87 fluid (=), particles (--).

effective Stokes number defined as the ratio betwde e,
particle relaxation time and a time scale charéstter of - 0 N 0 ]
turbulence seen by the particlssrp/z‘f. When the dynamical " oy ° ag
Stokes number is found, the characteristic timdesca is ot &
estimated and, finally, the thermal Stokes nun®grr/7; is ¢
computed. Figure 1 shows a snapshot correspondinthe / o
particle density time evolution. As can be seemftbe figure, +fo ﬁo
the Stokes numbeBt corresponds to a regime of preferential ;ﬁbé’o
concentration. Figure 2 shows the averaged profiids -20 100 -2 05 1 15 2 25
mesoscopic velocity and temperature of the dispers®ase ' ' '
against the corresponding fluid fields, for a fixede. Figure 3
shows the averaged profile of the particle numtesrsdy and
the profiles of the Stokes numbers, at fixed tifflee averages
are computed over planes parallel to the streaattiim.

Figure 3:averaged profiles of particle number densnfty( left) and

Stokes numbers (right), dynamical St (+) and thdr8ta(o), at time
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NUMERICAL SIMULATION VERSUS MODELING: A 1;
PRIORI TESTING

In this paragraph the results afpriori tests are presented.
The evaluation of the model accuracy is made compahe
exact terms against the modeled by using correlatio
coefficients defined by [18]

correlation coefficients

AB) - (A\B
oo (B -(Afe) 29
- 7))

The model reproducing exactly real term give catieh 02 3 4 5
coefficient equal to 1. The angle brackets denwtgaage over time /1
planes parallel to the stream direction. Figure 5:correlation coefficient for contracted RUHF; y=0.68
Random uncorrelated moments modeling ]

The evolutions in time of correlation coefficieritsued In the other hand, these models are not able tdigire
from a priori tests on random uncorrelated moments are shown, Positive values of dissipation. Such behavior &ad visible
The time axis was made dimensionless using theacteaistic on figures 6 and 7 where the p.d.f. of the coneddRUM

time scale 7. Results in the figures correspond to values (€Nnsor and RUHF are plotted respectively. For digmephase,

computed on the plane y=0.68. This plane is clogeetiphery positive values mean that local phenomena of teansbm
of jet in the initial configuration. In order toseviscosity model ~ Uncorrelated to correlated motions can occur. Thegbility to
for the RUM tensor (equation 13), correlation cioéhts of have positive values increases with inertia ofiplad [6].
the exact term against its model for the dissipatiof
~ G 10
- 2, u,;
mesoscopic kinetic energg, AR’ p,j are calculated and

4

i
plotted on Figure 4. The tests found correlatiorfiicients
greater than 0.8 confirming the assumption of thgnment 10
between filtered second order uncorrelated motiwh fdtered
rate of strain tensor. Same tests performed for RiuHF
modeling (equation 15) are displayed on figure SheT 0

correlation coefficients are calculated in termdefsipation of 10 ‘ ‘ ‘
- =2 af -5 0 5
mesoscopic temperature varianae,do , ; —P . Also this x 1072
aXJ’ Figure 6:p.d.f. of contracted RUM tensor at tirme4.87 for
model shows a good behavior. A, = 4Ap
----- real
102 | —modeled |
% o6 A=4 A
o 0
';:;; 04r Af:6 Ap 107
50.2 ——4784, Vi |
0 ‘ ‘ ‘ ~-0.05 0 0.05
2 3 4 5

ﬁmer/ﬂ

Figure 4:correlation coefficient for contracted RUM tensgr0.68. Figure 7:p.d.f. of contracted RUHF at time4.87; for Ap =44

p

Unfortunately, the diffusivity model (equation 1fjr the
third order contracted uncorrelated moment, do gie
satisfactory results.
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SGSterms modeling

In this section the results of a priori testing the SGS
models are presented. As in previous tests, thétsesre shown
for the plane of coordinate y=0.68. On Figure &, ¢bmparison
between the exact term against the Smagorinsky namdd
model (deviatoric part of equations 16-17) is digpl in term
of subgrid dissipation of correlated kinetic

energy

and the results are displayed on figure 10. Astfar SGS
stresses and energy, the mixed model (equatiogit83 better
results than the eddy-diffusivity type (equatior).18

To check the differences between mixed and gradiket
models, the profiles of the correlation coefficeatross the jet
at a fixed time are computed. The results for thetracted SGS
stresses and the contracted SGS heat flux areagésplon
figure 11 and 12 respectively. The mixed modeldioorbetter

ou
= pii ?(contracted SGS stresses). As expected, the mixed accuracy also in term of spatial location values.

j
model gives coefficient values higher than the Swnagky
ones. A similar behavior is found for the subgritergy (see
figure 9) comparing the Yoshizawa and the mixed ehod
(isotropic part of equations 16-17).

1
o 081
c
o
S
FOB[
%’ _____ A =4 A Smagorlnsky
504 —o b 4Ap Mixed
5 B .
Sool e Af—S Ap Smagorinsky |
_._Af:S Ap Mixed
0

2 25 3 35 4 4.5 5 55
time T/}

Figure 8:correlation coefficient for contracted SGS stresye®.68.

1
0.8
c
ko
8
go6r A=4 A Yoshizawa |
o p
c _ .
_% 04l _e_Af—4 Ap Mixed |
T Af:8 Ap Yoshizawa
o
© 02 ——AF8 A Mixed

0 . . . . . .

2 25 3 35 4 4.5 5 55

timeI/I:

Figure 9:correlation coefficient for SGS energy; y=0.68.

£ o8} s PR =
Q N 2 N~ s’
8 == T e
Eo.e— CeelL e
b e A 4A Eddy—dlffuswlty
2 04) ——AF 4ApM|xed
% I A8 5 Eddy-diffusivity |
—a—Af:B Ap Mixed
0 ‘ ‘ ‘ ‘ ‘ ‘
2 25 3 35 4 45 5 5.5
time 1/ T;
Figure 10:correlation coefficient for contracted SGS heakflu
y=0.68.

. . o,
The SGS heat flux is tested under its contractem fo, ; a—p,
X.
j

15

_____ Af:4 Ap Smagorinsky
_e_Af:4 Ap Mixed
0.5f ... A=8 A, Smagorinsky
L _;_Af:B Ap Mixed

1t

15 ‘ ‘ ‘ ot
0 0.2 0.4 0.6 0.8 1
correlation coefficients
Figure 11:correlation coefficient for contracted SGS

stresses7=4.81.

15 ==

PIREIES A=4 Ap Eddy—diffusivity
_e_Af:A Ap Mixed
0.5r

-1.5 L == PRTRYY: L 4
0 0.2 0.4 0.6 0.8 1

correlation coefficients
Figure 12:correlation coefficient for contracted SGS heakflu
=4.87".
On Figure 13, the results af priori tests for the subgrid
Quasi-Brownian diffusion in term of contracted dgion

MWy
PJ for the eddy-diffusivity and mixed model (equatidf-
.
j

21) are shown.

1
2 0.8%'
[=
2
2 SN e T
$ 067 T N ol
8 s S \
S _ Nl FRRIN
% 0al= =874 Ap Eddy—diffusivity-. - vl
© ——AF4 Ap Mixed
8

o
N

b Af=8 Ap Eddy-—diffusivity
——AF8 Ap Mixed

02 25 3 35 4 45 5 5.5
timeﬂr}
Figure 13:correlation coefficient for contracted SGS diffusio
y=0.68.
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stream direction. This procedure is applied onasclagvel and

Also in this case the mixed model behaves bettan the the scalar quantities are achieved for tensor otovevariables
eddy diffusivity one. by contracted them. Figures 16 and 17 display thag®rinsky
The last term tested is the subgrid Quasi-Brownian coefficient Cs versus time and cross-stream coordina@s.
production (equation 22). The Ghosal-type modelegiv  Figures 18 and 19, the results for the YoshizawestzmtCy are

coefficient values in the range of 0.2 and 0.4 Ultssnot shown.
shown). o1
To conclude on the SGS modeling, models using gstsoim
as the rate-of-strain tensor or gradient alignmgas
Smagorinsky type) give satisfactory results in tesfnscalar
correlation coefficients. But such models are rime do predict B YN
phenomena as the transfer from smaller to largatescas © ool AF6 A
predicted by the mixed models. To illustrate thishdwior, ' ——A=84
figures 14 and 15 show the p.d.f. of the real agjanodeled 002!
mesoscopic subgrid heat flux for the eddy-diffugivand the
mixed model respectively. %5 3 35 4 a5 © 55

In the case of mixed models, where a scale siryilari
assumption is added, results shown a very good vizgha
confirming their better accuracy.

time t/ r;

Figure 16:Smagorinsky constant; y=0.68.

15r
l,
102 r o5t  -- b4 Ap
““““ Af=6A
> 0f P
+Af=8A
-0.5
10° b
-15 ‘ ‘ ‘ ‘
0 0.02 0.04 0.06 0.12
] : ] c
_ . S
) 0.04 0.02 0 0.02 ) Figure 17:Smagorinsky constant=4.87".
Figure 14;p.d.f. of contracted SGS heat flux at tirrd.87;
for Ay =4A ; eddy -diffusivity model The values ofCs are mainly included between 0.08 and 0.1,
quit comparables to the classical values foundtli@r shear
reai turbulent flows (Deardoff [19]: 0.1 in turbulent aimel with
) ——modeled filter width equal to grid size).
10° ¢ 1

10
".' !" : 0.02f
-0.04 -0.02 0 0.02 0.01f
Figure 15;p.d.f. of contracted SGS heat flux at tirsd.87 for 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
Af - 4Ap' mixed model 2 2.5 3 3.5 4 4.5 5 55

time t/ r;

Figure 18:Yoshizawa constant; y=0.68
SGS mode constants

The correlation coefficient values are independeithe
constant used in the different models (they ararawt to the
additive or multiplicative constants). In order @galuate the
model coefficients, the models are computed witlomutstants
and the constants are calculated as the ratio bativee exact
and the modeled terms, both averaged on planefigbdaoathe

The values ofCy vary between 0.03 and 0.04 and they seem
smaller than theoretical value for single-phasewflg¢see
Yoshizawa [20] or Martiret al.[14] which give value ~0.09).
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Figure 19:Yoshizawa constani=4.81,.

About the mixed model, the values of consté@g range
between 0.003 and 0.006 and thoseCtf between 0.012 and
0.02. We notice that correspondent values for cesgible
single-phase flows ar€’'s=0.0085 andC’'y=0.0033 (Zanget al.
[21], Erlebacheet al [13] where the constants are divided for
V2 and 2 respectively to have comparable values).vBlues of
C’sseem to be lower than the single-phase one, Wielealues
of C’'y are found much greater than the single-phaseemater
In the compressible single-phase flows, when a mycel
model is used to evalua€y, studies shown that in some case
its value is higher than that predicted by the thegee for
instance Moiret al. [10]). Other studies [13,21] pointed out the
insensitivity of the LES results to the value ofthonstant for
turbulent Mach numbers <0.4. In case of the digukshase
where the Mach number is largely greater then lefwhn
equivalent speed of sound [7] is used), this psimuld be
further investigated and dependencies evaluatecdo Ah
dynamical adjustment of the model coefficients $thdne tested
[14].Imposing the found constants, a turbulent Btlanumber
Prr included between 0.65 and 0.85 is computed. Iclasion,
about the evaluation of the above model coeffisiersince
several studies shown that they are subjectedrtabitity with
the grid resolution and the energy spectrum [1@] also with
the evaluation method, in tensor, vector and sdaebsl [13],
further studies should be made.

CONCLUSION
In this paper a set of Eulerian filtered equatidos the

dispersed phase in a non isothermal configuratierpeesented.
The system of local and instantaneous filtered &opm is
derived by using of Mesoscopic Eulerian Formalistteeded
to the temperature. The unclosed terms issued fthen
statistical approach (random uncorrelated momearts)closed
by an equilibrium assumption. The subgrid termsi@dsfrom
the spatial filtering are closed adapting classaahpressible
models to the dispersed phase. System and modelakdates
by a priori tests and results are found globally satisfactasy.
further work, model coefficients should be bettreistigated.
The results are found promising in order to accdahpteal
Euler-Euler Large-Eddy Simulations and to validtite model
by usinga posterioritests.
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APPENDIX A

MESOSCOPIC EULERIAN FORMALISM EXTENDED TO THE TEMPE RATURE

Dispersed phase can be statistically described rm+ o
particle probability function (p.d.f.) obtained bgnsemble
averaging over a very large numis, of two-phase flow
realisations{,. However, this approach loose information
concerning spatial or temporal velocity correlatioatween
particles so, to overcome this limit, MEF ([1]),0pose to
characterize statistically for dispersed phasecestsul to one
realisation of fluidJ(;. One can envision a large numBéy of
particulate phase realisatioft§, which differ slightly, from a
macroscopic point of view, in the initial conditenBy an
ensemble average applied on ths, realisation J(,
conditioned to the flow realisatiofi{;, to the refined-grid
functionW,™ describing a single particta in phase space,
W™ (x,Cp, . 7]35,31) = 0=, ™ (1)S(e, =V ™ ()&, =1, (1)
one can define the p.d.f. representing the avenageber of
particle centres at the positior, with a given velocity
v, (7)=c, and temperature,(™(7) = ¢, at time 7:

N
- A 1 P
fp(l’(x,cp,fp,r,:}cf):Nlmjm{Nz > WM (x,¢p. &,
P PN, m=1

r,[3,,3¢)

(A1)
The associated moments are, in order, local andntaeous
particle number density, mesoscopic velocity andoseopic
temperature:

Ap(67,36) = [ T (%, 65,73, Yepd, (A2)
. 1 1
Vp,i(X:T:g{f):mJ‘Cp,ifp(l)(xfcp'fp’rlg{f)dcpdfp (A3)
— _ 1 rs (l)
tp(x,r,:}{f)_mjfpfp (X,C &y, 7, H )de, dE,

(Ad)
For a given realisatiofi;,, velocity and temperature can be
formally written in terms of an instantaneous Eialer
mesoscopic field and a residual contribution asgedi with
each particle and defined along its trajectory

v (@) =V, (¢, (D)1, 3 + v, (@) (a5
t,"™ () =6, @).1,5)+&, @) (R

Defining statistical operatof.), for average over a large
numberthof realisationf)tcp for a given realisatiofi(;, as

1 -

<gpt; >=mfg £ (x,5,€0,7,3; )dey e,
(A7)

one can write high order moments characterizing sQua

Brownian velocity and temperature, that are, ideor the

uncorrelated kinetic stress tensor , the uncoedldtinetic

energy, the third moment correlation

Ry (X,7,H¢) = <d/p,id/p,1 |X p(7) =X I > (A8)
B, (x,7,9(;) :%<a/p,id/p,i|xp(r) =XH; ) (A9)

Qi (4 7,3€¢) = (810, 18, X (1) =X, 3 ) (AL0)

and the uncorrelated heat flux and
temperature variance

B4 (67,3;) = (i p (1) =35, ) (ALY)

the uncorrelated

Op(x,7,9;) = (&, & xp (1) =3 ) (AL2)
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