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ABSTRACT 

This paper presents an Euler-Euler Large-Eddy Simulation 
(LES) approach for the numerical modeling of non isothermal 
dispersed turbulent two-phase flows. The proposed approach is 
presented and validated by a priori tests from an Euler-
Lagrange database, provided using discrete particle simulation 
(DPS) of the particle phase coupled with direct numerical 
simulation (DNS) of the turbulent carrier flow, in a non 
isothermal particle-laden temporal jet configuration. A 
statistical approach, the Mesoscopic Eulerian Formalism (MEF) 
[Février et al., J. Fluid Mech., 2005, vol. 533, pp. 1-46], is used 
to write local and instantaneous Eulerian equations for the 
dispersed phase and then, by spatial averaging, to derive the 
LES equations governing the filtered variables. In this work, the 
MEF approach is extended to scalar variables transported by the 
particles in order to develop LES for reactive turbulent 
dispersed two-phase flows with mass and heat turbulent 
transport. This approach leads to separate the instantaneous 
particle temperature distribution in a Mesoscopic Eulerian field, 
shared by all the particles, and a Random Uncorrelated 
distribution which may be characterized in terms of Eulerian 
fields of particle moments such as the uncorrelated temperature 
variance. In this paper, the DPS-DNS numerical database is 
presented, LES Eulerian equations for the dispersed phase are 
derived in the frame of the Mesoscopic approach and models 
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for the unresolved subgrid and random uncorrelated terms are 
proposed and a priori tested using the DPS-DNS database. 

 
Keywords: Euler-Euler LES, two-phase flows, mesoscopic 

approach, non isothermal planar jet. 

 
INTRODUCTION 
 Large-Eddy Simulations (LES) for single-phase flows are 
used in several industrial applications where complex 
geometries or/and unsteady phenomena occur such as acoustic 
instabilities in combustion chambers. When a second phase 
must be taken into account, for example injection of liquid fuel, 
it is necessary to develop models for the dispersed phase. This 
is commonly referred to as two-phase flow LES and t 
represents a promising tool for the future, receiving great 
attention from scientific and industrial communities. The 
dispersed phase can be treated in a Lagrangian or Eulerian 
framework leading to two type of two-phase flow LES 
approaches: Euler-Lagrange and Euler-Euler LES. In the last 
decade the Euler-Lagrange approach have been used nd 
several aspects have been investigated [2,3,4,5]. As alternative, 
the Euler-Euler LES approach (or two-fluid LES) remains still 
limited because of the great complexity to derive dispersed 
phase LES equations and models in the Eulerian framework. 
LES of the Eulerian dispersed phase computes dynamics of 
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larger-scale motions while the influence of the smaller scales is 
modeled since they should have, theoretically, universal 
character. The choice of approach to obtain the Eulerian particle 
LES equations plays an important role on the modeling. In the 
case of inertial particles with relaxation times larger than the 
Kolmogorov time scale, Fevrier et al. [1] shown that a 
decomposition in correlated and uncorrelated motion (by the 
Mesoscopic Eulerian Formalism, MEF) can be used to give a 
better interpretation of velocity distribution. Especially in the 
frame of spatial filtering application, where Moreau et al. [6,24] 
pointed out different scaling for correlated versus uncorrelated 
quantities, highlighting the different natures of the two 
contributions: the MEF approach, by accounting separately for 
the contributions, allows simplifying sub-grid terms modeling in 
filtered Mesoscopic equations. Despite that, modeling remains 
always quite complex considering that the dispersed phase can 
be compared to a highly compressible fluid with a Mach 
number largely greater than one [7] for which theory of smaller 
scales mechanism is still a topical research. In this paper we 
propose and test classical “low Mach” subgrid fluid model 
extended to dispersed phase. We also propose and test closure 
models for the uncorrelated moments issued from statistical 
continuum approach. Special attention is given to modeling 
terms issued from the mesoscopic decomposition of he 
temperature, which needs to be taken into account in order to 
develop LES for reactive turbulent dispersed two-phase flows. 
Validation is performed by a priori testing using a database
obtained from a Discrete Particle Simulation (DPS) for the 
particles coupled with a Direct Numerical Simulation (DNS) for 
the carrier flow. 

NOMENCLATURE  
pg   particle variable 

fg                fluid variable 

pfg @  fluid variable « viewed » by the particle 

pg
(   mesoscopic particle variable 

pg
(δ  random uncorrelated particle variable 

ĝ   spatial filtered variable 

 
STATISTICAL APPROACH 

In the framework of Mesoscopic Eulerian Formalism (see 
the Appendix for further details) the correlated (Mesoscopic) 
and uncorrelated (Quasi-Brownian, QB) Eulerian quantities are 
defined through the moments associated to conditioned 

probability density function (p.d.f.) )1(
pf
(

. The transport 

equations for velocity-temperature function ψp(Cp,ξp), are 
obtained by analogy with kinetic theory of dilute gases or dry 
granular media. In very dilute regime, the inter-particles 
collisions are assumed negligible as well as the turbulence 
modulation in the carrier flow equations. Without gravity, for 
particles with diameter smaller or equal than Kolmogorov 
length scale and with density much larger than the fluid one, 
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only drag force modify the pdf. If the inter-phase heat transfers 
are considered stationeries, the p.d.f. equation is closed as 
follows: 

 

[ ]








 −
∂

∂−










 −
∂

∂−

=
∂
∂+

∂
∂

)1(@)1(,@,

,

)1(
,

)1(

)()(
p

pfp

p
p

p

ipfip

ip

pjp
j

p

f
t

f
uc

c

fc
x

f

((

((

θτ
ξ

ξτ

τ
    (1) 

The first and the second terms on the right hand side (r.h.s) 
represent the effect of the external forces and heat exchanges 
acting on the particle respectively.  
 
THE EULERIAN PARTICLE SPATIAL FILTERED 
EQUATIONS 

Instantaneous moment transport equations are then derived 
from equation (1) by multiplying with functions ψp and 
integrating over the particle velocity and temperature spaces. 
Then, these equations are spatially filtered. Since particle 
number density is not homogenous, a Favre spatial filtering is 
used:  

                drrxrxnrGn pppp f
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ˆ −−= ∫ ∆ φφ
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            (2) 

where G∆f is the spatial filter kernel and ∆f the characteristic 
length. In this work a spherical box filter, with the filter function    
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A shortened version of the Euler LES system modeling the 
dispersed phase is: 
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All terms of the above equations are exacts with the 
exception of the terms of transfer in which mean particle 
relaxation times [23] are introduced as 
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The dispersed phase is well characterized by the evolutions 
of the filtered particle number density (3), velocity (4) and 
temperature (5) while the filtered uncorrelated energy equation 
(6) is used to model the second order moment of Random 
Uncorrelated Motion (RUM). In the above equations, the 
filtered RUM tensor is already split into its deviatoric and 
spherical parts   
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The physical signification of the r.h.s terms of the above particle 
equations are explained below. 

Filtered correlated velocity ipu ,

(̂
transport equation (4): 

• the first term represents the momentum transfe
through the drag force; 

• the second and the third terms are the contributions of 
the uncorrelated velocity correlations and ar
analogous to the viscous and pressure contributions in 
the carrier flow equations, respectively ;  

• the fourth term represents the contribution of th
subgrid correlated motions. The mesoscopic subgr
stress tensor is defined as   

 

 )ˆˆ( ,,,,, jpipjpippijp uuuun
((((( −=Σ   (9) 

Filtered correlated temperature pt̂
(

transport equation (5): 

• the first term represents the heat transfer by interaction 
with the carrier fluid; 

• the second term is the contribution of the Rando
Uncorrelated Heat Flux (RUHF) on the correlated
temperature;  

• the third one represents the contribution of the subgrid 
correlated motions. The mesoscopic subgrid heat flux 
is defined as  

                          )ˆˆ( ,,, pippippip tutun
((((( −=Υ               (10) 

Filtered Quasi-Brownian energy pθδ
(̂

transport equation (6): 

• the first term represents the dissipation of the Q 
energy by drag with carrier flow; 

• the second and the third ones represent the production 
of QB energy by shear and compression respectively 

• the fourth term is the diffusion of QB energy;  
• the fifth term represents the subgrid diffusion and it is 

defined as 
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• the sixth one represents the subgrid production of QB 
energy and it is 
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In the LES particle system, all moments of the Quasi-
Brownian velocity and temperature must to be modeled as well 
as all subgrid terms. In the following paragraphs, both closures 
are presented.  
 
RANDOM UNCORRELATED MOMENTS MODELING 

A viscosity model (Simonin et al. [8]) is used for the 
deviatoric part of filtered RUM tensor 
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while a diffusivity law, suggested by Kaufmann et al. [9] is 
retained to model contracted third order moment of 
uncorrelated motion 
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In order to close the RUHF, a gradient equilibrium model 
issued from the second order moment (QB heat flux) transport 
equation is proposed. It leads to 
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      The equilibrium assumption is considered only to supply a 
first simple modelling. However, such assumption remains very 
questionable for inertial particles [9].  
 
SUBGRID-SCALES (SGS) MODELING 

The subgrid stress tensor ijp,Σ  is split into deviatoric and 

spherical parts and a Smagorinsky-type and a Yoshizawa-type 
models are used to represent the anisotropic SGS stresses and 
the subgrid energy, respectively (see Moin et al. [10] or 
Lenormand et al. [22] for single-phase and Moreau et al. [6,24] 
for two-phase flows). The modeled tensor is then 
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where the filtered particle rate-of-strain tensor and its norm are   
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This model uses a linear eddy-viscosity assumption in which 
the energy is always transferred from filtered to residual motion, 
thus, no backscatter phenomenon is predicted. Moreover, it is 
well-know that it overestimates the dissipation rate in the 
laminar-turbulent transition region. A good alternative seems to 
be given by a mixed model, proposed by Speziale et al. [11], 
obtained from Leonard’s triple decomposition, in which the 
effects of momentum exchange between small and large scales 
are accounted for by the Leonard and Cross terms. The 
decomposition, based on Favre filtering, lead to a Leonard-
stress tensor (not modeled), a Cross-stress tensor modeled by a 
scale-similarity assumption (Bardina et al. [12]) with a model 
coefficient of unity imposed to ensure Galilean invariance, and 
a Reynolds-stress tensor that, split in deviatoric and isotropic 
parts can be modeled by Smagorinsky and Yoshizawa models 
respectively (see for instance Erlebacher et al. [13]).   

Adapted to the mesoscopic flows [6,24], the mixed model 
leads to 
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Analogously, we propose to extend a classical eddy
diffusivity type (see, for instance, Martin et al. [14] for single-
phase description) at the dispersed phase in order to model the 
mesoscopic SGS heat flux, which takes the form: 
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where CS is the Smagorinsky coefficient and PrT is the turbulent 
Prandtl number that has to be fixed or calculated dynamically 
(as suggested by Martin et al. [14]). In this model, similarly to 
the Smagorinsky type, a linear eddy-viscosity is used with a 
mixing length hypothesis (the length scale is proportional to the 
filter width). This is the simplest approach to model the 
mesoscopic subgrid heat flux. Also in this case, a mixed model 
proposed originally by Speziale et al. [11], can be adapted to 
dispersed phase. It becomes: 
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A simple eddy-diffusivity model (Moin et al. [10]) and a 
more accurate mixed model (Speziale et al. [11]), both adapted 
[6], are used to model the subgrid diffusion.  The first leads to 
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while the second leads to 
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Finally, in order to model Quasi-Brownian sub-grid 
production, Moreau [6] proposed a Ghosal-type model (Ghosal 
et al. [15]) where the production term is computed by using 
subgrid correlated energy evaluated by a Yoshizawa or scale-
similarity-type model. It can be written as: 

 
f

SGSpp
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where ijkkpSGSpq δ,, 3

1 Σ=  is the subgrid energy and C is a 

constant which can be calculated under assumption of a global 
equilibrium in a homogenous direction (Vreman [16]).  

NUMERICAL SIMULATION 
Our numerical simulation corresponds to the dispersion of a 

cold particle-laden planar turbulent jet. The initial velocity and 
temperature profiles of the carrier phase are imposed as 
hyperbolic tangent types supplemented with statistically 
homogeneous and isotropic velocity fluctuations. Particles are 
randomly embedded at the same velocity and temperature of the 
carrier flow and their number is large enough to permit 
Mesoscopic fields calculation. The numerical simulation is 
performed by a Lagrangian approach (DPS) coupled with a 
DNS of the carrier flow. The code used is the Euler-Lagrange 
NTMIX3D-2Φ which solves the compressible Navier-Stokes 
and energy equations in the dimensionless form with a third 
order Runge-Kutta time stepping and a sixth order compact 
finite difference scheme on cartesian grid. Also the 
advancement in time in Lagrangian tracking is ensured by a 
third order Runge-Kutta scheme. The interpolation of the 
Eulerian carrier flow variables at the location of the particles is 
performed by a third order Lagrange polynomial algorithm. The 
simulation domain is a cube with periodic boundary conditions. 
The principal parameters are listed in table 1. 

Lagrangian equations used in the DPS and governing the 
motion and heat exchange of each particle are: 
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where uf@p and tf@p are the undisturbed fluid velocity and 
temperature at the particle location, and τp et τθ are the 
dynamical and thermal relaxation times respectively defined as 
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with the drag coefficient and the Nusselt number     
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formulated in term of the particle Reynolds number 
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Pr is the Prandtl number while Cp and Cpp are the specific heat 
at constant pressure of fluid and particles.  
 
 

Parameters Value 
Box size L 2π 
Number of cells  1283 
Size of cells ∆x3  0.0493 
Kinematics Viscosity ν 1.82e-4 
Initial turbulent kinetic energy q2f  3.37e-4 
Initial dissipation εf  3.78e-5 
Jet mean velocity U0  0.15 
Jet mean temperature T0  2.0 
External mean temperature T∞  2.5 
Prandtl number 0.7 
Planar jet initial width  1.6 
Total particle number  80x106 
Dynamics relaxation time τp on y=0  12.8 
Dynamics Stokes number St (estimate at 
the equilibrium) on y=0 

~0.9 

Thermal relaxation time τθ on y=0 26 
Thermal Stokes number StT ( estimate at 
the equilibrium ) on y=0 

~1.8 

Table 1: simulation parameters 

 

Lagrangian values are then post-processed and mesoscopic 
fields are computed by using a projection algorithm [6,24]. ∆p is 
the characteristic size of projection mesh chosen as that ∆p 
= ∆x. In order to estimate the dynamical and thermal Stokes 
numbers, the particle fluctuation energy is supposed at the 
equilibrium with the turbulence of carrier flow (Tchen 
hypothesis) for the velocity components in spanwise direction 
(Simonin [17]). Previous assumption allows to calculate an 
effective Stokes number defined as the ratio between the 
particle relaxation time and a time scale characteristic of 
turbulence seen by the particles St=τp/τt

f. When the dynamical 
Stokes number is found, the characteristic time scale τt

f is 
estimated and, finally, the thermal Stokes number StT=τθ/τt

f is 
computed. Figure 1 shows a snapshot corresponding to the 
particle density time evolution. As can be seen from the figure, 
the Stokes number St corresponds to a regime of preferentia
concentration. Figure 2 shows the averaged profiles of 
mesoscopic velocity and temperature of the dispersed phase 
against the corresponding fluid fields, for a fixed time. Figure 3 
shows the averaged profile of the particle number density and 
the profiles of the Stokes numbers, at fixed time. The averages 
are computed over planes parallel to the stream direction.  
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Figure 1: snapshot on Z=64 of  pn

(
at time τ=4.8τt

f  

 
Figure 2: averaged profiles of velocity ( left) and temperature (right) 

at time τ=4.8τt
f ; fluid (−), particles  (−.−) . 

 
Figure 3: averaged profiles of particle number density pn

(
( left) and 

Stokes numbers (right), dynamical St (+) and thermal StT  (o), at time 
τ=4.8τt

f.   
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NUMERICAL SIMULATION VERSUS MODELING:        A 
PRIORI TESTING 

In this paragraph the results of a priori tests are presented.
The evaluation of the model accuracy is made comparing the 
exact terms against the modeled by using correlatin 
coefficients defined by [18]  
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The model reproducing exactly real term give correlation 
coefficient equal to 1. The angle brackets denote average over 
planes parallel to the stream direction.  
 
Random uncorrelated moments modeling 

The evolutions in time of correlation coefficients issued 
from a priori tests on random uncorrelated moments are show
The time axis was made dimensionless using the characteristic 
time scale τt

f. Results in the figures correspond to value
computed on the plane y=0.68. This plane is close to periphery 
of jet in the initial configuration. In order to test viscosity model 
for the RUM tensor (equation 13), correlation coefficients of 
the exact term against its model for the dissipation of 

mesoscopic kinetic energy 
j

ip
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u
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(( δ  are calculated and 

plotted on Figure 4. The tests found correlation coefficients 
greater than 0.8 confirming the assumption of the alignment 
between filtered second order uncorrelated motion and filtered 
rate of strain tensor. Same tests performed for the RUHF 
modeling (equation 15) are displayed on figure 5. The 
correlation coefficients are calculated in term of dissipation of 

mesoscopic temperature variance 
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p
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t
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(( δ . Also this 

model shows a good behavior.     
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Figure 4: correlation coefficient for contracted RUM tensor; y=0.68.  
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Figure 5: correlation coefficient for contracted RUHF; y=0.68.   

 
 

In the other hand, these models are not able to predict 
positive values of dissipation. Such behavior is clearly visible 
on figures 6 and 7 where the p.d.f. of the contracted RUM 
tensor and RUHF are plotted respectively. For dispersed phase, 
positive values mean that local phenomena of transfer from 
uncorrelated to correlated motions can occur. The probability to 
have positive values increases with inertia of particles [6]. 
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Figure 6: p.d.f. of contracted RUM tensor at time τ=4.8τt
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Figure 7: p.d.f. of contracted RUHF at time τ=4.8τt
f  for 

pf ∆=∆ 4  

 
 

Unfortunately, the diffusivity model (equation 14) for the 
third order contracted uncorrelated moment, do not give 
satisfactory results. 
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x

Dow
 SGS terms modeling  
In this section the results of a priori testing on the SGS 

models are presented. As in previous tests, the results are shown 
for the plane of coordinate y=0.68. On Figure 8, the comparison 
between the exact term against the Smagorinsky and mixed 
model (deviatoric part of equations 16-17) is displayed in term 
of subgrid dissipation of correlated kinetic energ 

j
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ijp

x

u

∂
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Σ ,
,

*
(̂

(contracted SGS stresses). As expected, the mi

model gives coefficient values higher than the Smagorinsky 
ones. A similar behavior is found for the subgrid energy (see 
figure 9) comparing the Yoshizawa and the mixed model 
(isotropic part of equations 16-17).  
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Figure 8: correlation coefficient for contracted SGS stresses; y=0.68.  
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Figure 9: correlation coefficient for SGS energy; y=0.68. 
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Figure 10: correlation coefficient for contracted SGS heat flux; 

y=0.68.  

The SGS heat flux is tested under its contracted form 
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and the results are displayed on figure 10. As for the SGS 
stresses and energy, the mixed model (equation 19) gives better 
results than the eddy-diffusivity type (equation 18).  

To check the differences between mixed and gradient like 
models, the profiles of the correlation coefficients across the jet 
at a fixed time are computed. The results for the contracted SGS 
stresses and the contracted SGS heat flux are displayed on 
figure 11 and 12 respectively. The mixed models confirm better 
accuracy also in term of spatial location values. 
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Figure 11: correlation coefficient for contracted SGS 

stresses; τ=4.8τt
f.  
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Figure 12: correlation coefficient for contracted SGS heat flux; 

τ=4.8τt
f. 

On Figure 13, the results of a priori tests for the subgrid 
Quasi-Brownian diffusion in term of contracted diffusion 

j

jp

x∂

Ψ∂ , for the eddy-diffusivity and mixed model (equation 20-

21) are shown. 
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Figure 13: correlation coefficient for contracted SGS diffusion; 

y=0.68. 
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Also in this case the mixed model behaves better than the 

eddy diffusivity one.  
The last term tested is the subgrid Quasi-Brownia

production (equation 22). The Ghosal-type model gives 
coefficient values in the range of 0.2 and 0.4 (results not 
shown).   

To conclude on the SGS modeling, models using assumption 
as the rate-of-strain tensor or gradient alignment (as 
Smagorinsky type) give satisfactory results in term of scalar 
correlation coefficients. But such models are not able to predict 
phenomena as the transfer from smaller to larger scales as 
predicted by the mixed models. To illustrate this behavior, 
figures 14 and 15 show the p.d.f. of the real against modeled 
mesoscopic subgrid heat flux for the eddy-diffusivity and the 
mixed model respectively.  

In the case of mixed models, where a scale similarity 
assumption is added, results shown a very good behavior 
confirming their better accuracy.  
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Figure 14: p.d.f. of contracted SGS heat flux at time τ=4.8τt

f 
for 

pf ∆=∆ 4 ; eddy -diffusivity model. 
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Figure 15: p.d.f. of contracted SGS heat flux at time τ=4.8τt

f for 

pf ∆=∆ 4 ; mixed model. 

 
SGS model constants  

The correlation coefficient values are independent of the 
constant used in the different models (they are invariant to the 
additive or multiplicative constants). In order to evaluate the 
model coefficients, the models are computed without constants 
and the constants are calculated as the ratio between the exact 
and the modeled terms, both averaged on planes parallel to the 
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stream direction. This procedure is applied on scalar level and 
the scalar quantities are achieved for tensor or vector variables 
by contracted them. Figures 16 and 17 display the Smagorinsky 
coefficient CS versus time and cross-stream coordinates. On 
Figures 18 and 19, the results for the Yoshizawa constant CY are 
shown. 
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Figure 16: Smagorinsky constant; y=0.68. 
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Figure 17: Smagorinsky constant; τ=4.8τt

f. 
 
The values of CS are mainly included between 0.08 and 0.1, 

quit comparables to the classical values found for the shear 
turbulent flows (Deardoff [19]: 0.1 in turbulent channel with 
filter width equal to grid size). 
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Figure 18: Yoshizawa constant; y=0.68. 

 
The values of CY vary between 0.03 and 0.04 and they seem 

smaller than theoretical value for single-phase flow (see 
Yoshizawa [20] or Martin et al. [14] which give value ~0.09). 
8 Copyright © 2008 by ASME 

se: http://www.asme.org/about-asme/terms-of-use



r

Downlo
0 0.01 0.02 0.03 0.04
−1.5

−1

−0.5

0

0.5

1

1.5

C
Y

y

 

 

∆
f
=4 ∆

p

∆
f
=6 ∆

p

∆
f
=8 ∆

p

 
Figure 19: Yoshizawa constant; τ=4.8τt

f. 
 

About the mixed model, the values of constant C’S range 
between 0.003 and 0.006 and those of C’Y between 0.012 and 
0.02. We notice that correspondent values for compressible 
single-phase flows are C’S=0.0085 and C’Y=0.0033 (Zang et al. 
[21], Erlebacher et al. [13] where the constants are divided fo
√2 and 2 respectively to have comparable values). The values of 
C’S seem to be lower than the single-phase one, while the values 
of C’Y are found much greater than the single-phase reference. 
In the compressible single-phase flows, when a dynamical 
model is used to evaluate C’Y, studies shown that in some case
its value is higher than that predicted by the theory (see for 
instance Moin et al. [10]). Other studies [13,21] pointed out the
insensitivity of the LES results to the value of this constant for 
turbulent Mach numbers <0.4. In case of the dispersed phase 
where the Mach number is largely greater then 1 (when an 
equivalent speed of sound [7] is used), this point should be 
further investigated and dependencies evaluated. Also a 
dynamical adjustment of the model coefficients should be tested 
[14].Imposing the found constants, a turbulent Prandtl number 
PrT included between 0.65 and 0.85 is computed. In conclusion, 
about the evaluation of the above model coefficients, since 
several studies shown that they are subjected to variability with 
the grid resolution and the energy spectrum [10] and also with 
the evaluation method, in tensor, vector and scalar level [13], 
further studies should be made.  

CONCLUSION 
In this paper a set of Eulerian filtered equations for the 

dispersed phase in a non isothermal configuration are presented. 
The system of local and instantaneous filtered equations is 
derived by using of Mesoscopic Eulerian Formalism extended 
to the temperature. The unclosed terms issued from the 
statistical approach (random uncorrelated moments) are closed 
by an equilibrium assumption. The subgrid terms issued from 
the spatial filtering are closed adapting classical compressible 
models to the dispersed phase. System and models are validates 
by a priori tests and results are found globally satisfactory. As 
further work, model coefficients should be better investigated. 
The results are found promising in order to accomplish real 
Euler-Euler Large-Eddy Simulations and to validate the model 
by using a posteriori tests.  
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MESOSCOPIC EULERIAN FORMALISM EXTENDED TO THE TEMPE RATURE 
Dispersed phase can be statistically described by one-
particle probability function (p.d.f.) obtained by ensemble 
averaging over a very large number Nf&p of two-phase flow 
realisations Hf&p. However, this approach loose information 
concerning spatial or temporal velocity correlation between 
particles so, to overcome this limit, MEF ([1]), propose to 
characterize statistically for dispersed phase associated to one 
realisation of fluid Hf. One can envision a large number Np of 
particulate phase realisations Hp which differ slightly, from a 
macroscopic point of view, in the initial conditions. By an 
ensemble average applied on the Np realisation Hp 
conditioned to the flow realisation Hf, to the refined-grid 
function Wp

(m) describing a single particle m in phase space,  
))(())(())((),,,,( )()()()( τξδτδτδτξ m
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p tW −−−= vcxxcx HH  

one can define the p.d.f. representing the average number of 
particle centres at the position x , with a given velocity 

p
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m
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The associated moments are, in order, local and instantaneous 
particle number density, mesoscopic velocity and mesoscopic 
temperature: 
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 (A4) 
For a given realisation Hf,, velocity and temperature can be 
formally written in terms of an instantaneous Eulerian 
mesoscopic field and a residual contribution associated with 
each particle and defined along its trajectory  
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Defining statistical operator 〈.〉, for average over a large 
number pN of realisation pH  for a given realisation Hf, as  
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 (A7) 
one can write high order moments characterizing Quasi-
Brownian velocity  and temperature, that are, in order, the 
uncorrelated kinetic stress tensor , the uncorrelated kinetic 
energy, the third moment correlation  
.asmedigitalcollection.asme.org on 06/30/2019 Terms of Us
 

 fpjpipfijp vvR HH ;)(),,( ,,, xxx == τδδτδ  (A8) 

 fpipipfp vv HH ;)(
2

1
),,( ,, xxx == τδδτδθ  (A9) 

 fpkpjpipfijkp vvvQ HH ;)(),,( ,,,, xxx == τδδδτδ (A10) 

and the uncorrelated heat flux and the uncorrelated 
temperature variance 

 fppipfip tv HH ;)(),,( ,, xxx ==Θ τδδτδ  (A11) 

 fpppf tt HH ;)(),,( xxx == τδδτδθθ  (A12) 
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