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ABSTRACT

We propose a novel approach for real-time image registration for
image sequences of organs subject to repetitive movement, such as
breathing. The method exploits the redundancy within the images
and consists of a training and an application phase. During training,
the images are registered and then the relationship between the im-
age appearance and the spatial transformation is learned by employ-
ing dimensionality reduction to the images and storage of the cor-
responding displacements. For each image in the application phase,
the most similar images in the training set are selected for predicting
the associated displacements. Registration and update of the training
data is only performed for outliers. The method is assessed on 2D
sequences (4 MRI, 1 ultrasound) of the liver during free breathing.
The performance is evaluated on manually selected landmarks, such
as vessel centers and the distal point of the inferior segment. The
proposed algorithm is real-time (9 ms per frame) and the prediction
error is on average 1.2 mm for both MRI and ultrasound.

Index Terms— Respiratory motion, tracking, image registra-
tion, magnetic resonance imaging, ultrasound imaging

1. INTRODUCTION

Recent technical developments in radiation therapy, such as intensity-
modulated radiation therapy and high intensity focused ultrasound
(HIFU), provide the capability to deposit highly conformal radiation
dose distributions into the tissues. Therefore compensation for any
movement in the treatment region, like respiratory motion in the
abdomen, is vital [1, 2]. This not only requires an accuracy in the
range of millimeters but also real-time capability.

Unfortunately, observation of the target (e.g. the tumor) motion
in real-time during therapy is often impossible. Instead, methods
have been proposed based on surrogate measures of the target motion
and a model which relates target and surrogate motion [1]. Studies
of liver motion showed that an indirect strategy, based on tracking a
few surrogate markers inside the liver, allowed to accurately estimate
drifts of the organ by a statistical motion model [3, 4].

Common surrogates include external signals such as recordings
from a breathing bellow or a spirometer, and internal measurements
from fast imaging. The latter could be achieved by fluoroscopy, ul-
trasound (US) or cine MRI. Studies have shown that internal surro-
gates correlate better with the target motion than external respiratory
signals in the abdomen during breathing [1].

Several techniques were proposed to handle real-time respira-
tory organ movement in image-guided applications. Most of the cur-
rent tracking systems are based on fluoroscopy images [5] with the
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major disadvantages of higher dose to the patient and the need to im-
plant fiducial markers. Ries et al. [6] proposed tracking of 2D MRIs
based on a Kalman predictor combined with a compensation for
through-plane motion. Experiments carried out on images of the kid-
ney under regular respiratory motion due to mechanical ventilation
show tracking precision of ± 1.1 mm and processing time of 40 ±
8 ms. US imaging represents the best modality for image-guidance
as it is real-time, cheap and non-ionizing. US image sequences have
been tracked using speckle tracking algorithms [7] with an accuracy
of 1.7 mm. Other methods are based on feature extraction and reg-
istration [8]. Volumes were registered with an error of 1.3 mm, yet
missing real-time performance. A 2D real-time US tracking method
based on active contours and conditional density propagation was
proposed in [9] and evaluated on a short sequence. Results showed
an accuracy of 1.6 mm and a processing time of 5 ms per frame.

While feature-based tracking methods are potentially fast, they
might suffer from bad initialization, feature disappearances and fea-
ture location inaccuracies. Intensity-based methods do not require
feature extraction and hence can work in regions with weak features.
They usually need no preprocessing, but are generally computation-
ally expensive. In this study, we investigate how intensity-based im-
age registration employed for tracking respiratory motion can by ac-
celerated by exploiting the redundancy in the data.

We propose a novel approach for real-time image registration for
image sequences of organs subject to repetitive movement, such as
breathing. During an initial training phase the images are registered
and we learn the relationship between the image appearance and the
displacements. For each image in the real-time application phase,
the most similar images in the training set are selected for predicting
the associated displacements. We incorporate a mechanism to cope
with unseen variations in the images during the application phase,
which allows for tracking of non-periodic motions. Although the
presented framework is applicable to any image modality and any
organ subject to repetitive movement, we asses its performance for
real-time tracking of landmarks in 2D MRI and US sequences of the
liver of volunteers under free breathing.

2. MATERIAL

To explore the validity of the method independently from the image
modality, we acquired 4 MR sequences and 1 US sequence of the
liver of healthy volunteers during free breathing. For MRI, we use
the MR navigator slices, previously acquired and registered [10] to
generate 4DMRIs. Such 2D images could be employed as surrogates
during therapy where the patient is in the MR scanner (e.g. HIFU)
[11]. The sequence consists of sagittal slices acquired at the same
location at a frequency of 2.8-2.3 Hz over approximately 1 hour.
The MRIs have a spatial resolution of 1.4 mm. For US, we acquired
2D images in the longitudinal plane at the midline of the abdomen
to capture the movement of the cross section of the left branch of
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the hepatic portal vein of the liver. The US sequence has a temporal
resolution of 29 Hz and a spatial resolution of 0.16 mm. Images were
acquired over a period of approximately 4 min. Images examples are
depicted in Fig. 1 for both modalities.

Fig. 1. Examples of a 2D MRI (left) and 2D US image (right) of the
liver in exhalation phase. The tracked landmarks are depicted in red.

3. METHOD

3.1. Training Phase

During the training phase we acquire image sequences characterized
by D pixels at a frequency rate f Hz resulting in a temporal sequence

of T images �I(ti), with ti = t0 + i/f for 0 ≤ i ≤ T − 1.

Image Registration. The images �I(ti) are registered to a typ-

ical exhalation image (say �I(t0)) in order to obtain spatial corre-
spondence at each time ti. This enables the extraction of trajectories
for individual points. For MRI, the motion vectors of points within
the liver are estimated by intensity-based non-rigid registration us-
ing normalized cross correlation as image similarity measure and a
B-spline transformation model with 15 mm control point spacing
[10, 12]. The 2D US images are registered by optimizing the param-
eters of a local affine transformation with respect to normalized cross
correlation. The transformation is defined for a region enclosing the
cross section of a main vessel. To improve accuracy and robustness,
we choose a multi-resolution approach with 3 levels. The registra-

tion result from the previous image pair (�I(ti−1) to �I(t0)) is used as
an initial estimation.

PCA. In order to store the image appearance efficiently, we use
a preprocessing step to reduce the dimensionality of the data. A
large number of dimensionality reduction methods have been pro-
posed and compared [13]. On real data, the performance of lin-
ear methods was not inferior to that of nonlinear ones. As linear
methods are computationally less expensive, we choose PCA for

embedding �I(ti) ∈ R
D into a low-dimensional data representation

�S(ti) = [s1(ti); . . . ; sP (ti)] ∈ R
P ,with P � D.

Each image �I(ti) is reshaped into a single column vector
�x(ti) ∈ R

D . We calculate the mean with respect to time (�̄x)

and the covariance matrix �C = �̂XT �̂X , where the (i+ 1)-th column

of �̂X is equal to �̂x = �x(ti) − �̄x. We then solve the eigenproblem
�C �wj = λj �wj , ∀j ∈ [1, . . . , T ] and rearrange it such that the eigen-
values λj are sorted (λj ≥ λj+1), with �wj being the corresponding
eigenvector. For each j-th eigendirection we calculate the data pro-

jection pj = (�wj)
T �̂x, so that the original image sequence can be

reconstructed by �x =
∑T

j=1 pj �wj + �̄x. The most reconstructive in-
formation is captured by the eigenvectors associated with the largest
eigenvalues and data reduction is achieved by considering only
the first P eigenvectors, i.e. sj(ti) = pj(ti) for j ∈ [1, . . . , P ].
Selection of P is based on the energy accumulated in the first P
eigenvectors (calculated by the normalized cumulative sum of the
eigenvalues λ1 to λP ) as this describes the reconstruction accuracy.
We choose P by considering the 95th percentile of the energy.

The low-dimensional representation �S of the images and the cor-
responding registration results (e.g. spatial locations for points of
interest) are stored at each time step ti.

3.2. Real-time Application Phase

3.2.1. Displacement Prediction

During a real-time procedure, new images are continuously ac-

quired. Given the current image �I(t∗), we want to find the most
similar image in the training database for obtaining a prediction of
the current displacements. For this, we first project the new image
into the PCA space:

�S(t∗) =
P∑

j=1

pj �wj

(
�x(t∗)− �̄x

)
(1)

Then, we determine the K-nearest neighbors (K-NN) in the training

database to �S(t∗). In detail, we find tmk with the smallest distances

dk =

√√√√ P∑
j=1

[sj(t∗)− sj(tmk )]
2, (2)

1 ≤ k ≤ K. The distances are sorted so that dk ≤ dk+1. Hav-
ing determined the K-NN PCA representations from the training set,
we retrieve the K associated positions P̂(tmk ) per point of interest
P(t0). The prediction of P(t∗) is then obtained by linearly interpo-

lating P̂(tmk ):

P̄(t∗) =
K∑

k=1

(
1− dk∑

k dk

)
P̂(tmk ). (3)

3.2.2. Outliers

Completely repetitive motion is very unlikely. Therefore a mecha-
nism to cope with previously unseen variations (outliers) and adapt
to these (e.g. drift of exhale position) is incorporated. In order to
detect such outliers we establish a threshold on the image similar-
ity based on the statistics of the training data. Specifically, for each
training image we find its nearest neighbor to the remaining training
samples and calculate the minimum Euclidean distance d1, similar
to (2). The threshold θ is then set to the 95th percentile of the dis-
tribution of the minimum distances. During the application phase, if
dK(t∗) > θ then I(t∗) is categorized as outliers and registration is
computed as described above in 3.1. Finally we update the training
database by adding the registration result and the PCA description
of the outlier, and by recalculating θ.

3.2.3. Evaluation

We evaluate the prediction on manually selected landmarks defined

on the reference image �I(t0). Specifically, for each MR navigator
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sequence we annotate vessel centers and the distal point of the infe-
rior subsegment of the posterior segment. For the US sequence, we
place the landmark in the center of the tracked vessel, see Fig. 1.

We evaluate the performance by two measures. The prediction
error is employed to assess how well the registration result is pre-
dicted. The registration error states the difference from manually
annotated landmarks, which we call ground truth. In both cases, the
error is calculated by the Euclidean distance between the landmark
position P̂ and the corresponding location obtained from our method
P̄:

Ēt∗ =
∥∥∥P̂(t∗)− P̄(t∗)

∥∥∥ . (4)

For the prediction error, P̂ is computed by the image registration,
while for the registration error it is defined by the manual annota-
tion. We summarize the results by the mean and standard deviation
(SD) and the 95th percentile of Ē for all t∗ and all landmarks of a
sequence. To calculate our results we consider all the landmarks in
a single distribution.

3.3. Computational Complexity

The aim of the presented method is to speed-up image registration.
We therefore analyze the computational complexity of the proposed
algorithm compared to standard image registration. For each image
during the application phase, the complexity of our algorithm is:

• Projection of the new image into the training PCA space:
O(PD), being P the number of selected eigenvectors and
D the image dimension

• K-NN search: let Ttr ≤ T be the size of the search space (i.e.
the number of training images), then the K nearest neighbors
can be found in O(KTtrlogTtr)

• Prediction via interpolation: for each 2D point, the complex-
ity is O(2K)

For M points, this results in a total complexity of O(PD +
KTtrlogTtr + 2KM). With K,M � P � D and Ttr � D, the
main complexity is linear in D and can be approximated by O(PD).

For image registration, the complexity per image is O(IEV R),
where:

• I is the average number of iterations

• E is the number of image similarity calculations per iteration
and transformation parameter. Assuming numerical gradient
calculation, E = 2

• V is the number of displacements which needs to be calcu-
lated for the image similarity per registration parameters. As-
suming that the fixed and moving images have the same size
N , then V = Nn for affine registration, where n is the im-
age dimension (n = 2 for 2D). In the B-spline registration,
every control point affects a region of ± 2δs in each direc-
tion, where δs is the grid spacing. Therefore V =

(
4δs
δi

)n
,

where δi is the spatial image resolution

• R is the number of registration parameters. It is equal to
(n + 1)n for affine and and Cn for B-spline registration. In
addition, C =

(
N δi

δs
+ 1

)n
For 2D images, the complexity can be approximated by O(12IN2)
for the affine registration and by O(64IN2) for the B-spline regis-
tration. With D ≈ N , the complexity of our method is linear, while
the registration reaches quadratic growth.

4. RESULTS

We first measure the accuracy of the registration with respect to
manually selected landmarks, which serve as our ground truth. For
each dataset, we annotate approximately 10-15% of the images from
the application phase, as described in Sec. 3.2.3. As a baseline,
we also evaluate the motion magnitude of the landmarks defined by

||P̂(t∗)− P̂(t0)||.
The proposed method has 2 parameters, namely the number of

training images (Ttr) and the number of nearest neighbors (K). In
order to get a good trade-off between the size and the information
content of the training set, we apply the L-curve method to determine
Ttr . Specifically, we calculate the threshold value θ (see 3.2.2) for
increasing number of training images, see Fig. 2.a. We fit a low-
degree (degree=4) polynomial curve to the data and we finally find
the point on the curve which is closest to the origin. Ttr is in the
range of 300-500 frames for all datasets. The remaining training
images (Ttr + 1 to T ) are not used in the application phase but for
determining the last parameter (K). This is achieved by calculating
the prediction error for the images in the remaining training set. We
allow K = 1, 2, ..., 10, and then choose the K that corresponds
to the minimum error. Figure 2.b shows an example of the mean
prediction error as a function of K for a representative sequence.

a. Training Phase L-curve

b. Mean prediction error (in mm) vs number of nearest neighbors

Fig. 2. Example of parameter optimization (MRI dataset2). a. The
number of training images Ttr is selected to provide a good trade-
off between density and size of the training set using the L-curve
method. b. K is chosen so that the mean prediction error evaluated
over the remaining training images is minimum.

Using the aforementioned parameters, we evaluate our method
for each dataset. Results are listed in Table 2. The performance
of the method is evaluated comparing the prediction with respect to
registration results, see (4). As the registration itself is not with-
out error, we also asses the registration accuracy with respect to the
ground truth. On average, the prediction error Ē is less than 1.2 mm
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for both MRI (1.17 ± 0.83 mm) and US images (1.20 ± 1.40 mm).
The average registration error only increases by 0.45 mm for MRI to
2.07 mm and slightly decreases by 0.04 mm for US to 2.07 mm. The
percentage of required registrations during the application phase is
on average 3.44% (4.44%) for MRI (US) and always below 9%.

The average time needed to obtain a prediction for each appli-
cation image is 9 ms, using unoptimized MATLAB software and
no GPU parallel computing (single PC with Intel R©CoreTMi7-920 at
2.66 GHz processor and 8 GB RAM). Such a performance is faster
then the usual acquisition time for both image modalities.

Registration Motion
vs GroundTruth Magnitude

MRI 1 1.94 ± 0.81 (3.41) 5.63 ± 4.43 (14.48)
MRI 2 1.40 ± 0.77 (2.90) 3.62 ± 3.03 (8.88)
MRI 3 1.80 ± 1.23 (3.93) 7.45 ± 7.76 (21.41)
MRI 4 1.31 ± 1.45 (2.44) 5.64 ± 4.71 (15.06)
Mean 1.62 ± 1.07 (3.17) 5.58 ± 4.98 (14.96)

US 2.11 ± 1.36 (3.94) 6.41 ± 2.81 (12.33)

Table 1. Mean ± SD of the registration error (in mm) w.r.t. manually
selected landmarks and their motion magnitude. In brackets the 95th
percentile of the registration error and the motion magnitude.

Prediction Prediction Appl.Phase
vs Registration vs GroundTruth Registrations

MRI 1 0.98 ± 0.80 (2.26) 1.99 ± 1.09 (4.26) 2.98 %
MRI 2 0.94 ± 0.69 (2.26) 1.63 ± 0.78 (3.06) 1.69 %
MRI 3 0.56 ± 0.41 (1.31) 1.81 ± 1.14 (3.70) 8.51 %
MRI 4 2.18 ± 1.44 (4.89) 2.84 ± 1.38 (4.91) 0.60 %
Mean 1.17 ± 0.83 (2.68) 2.07 ± 1.10 (3.98) 3.44 %

US 1.20 ± 1.40 (3.08) 2.07 ± 1.15 (3.95) 4.44 %

Table 2. Results of the proposed method for all datasets. Mean ±
SD of the prediction error (in mm) w.r.t. registration (left column)
and manually selected landmarks (middle column). In brackets the
95th percentile of the prediction errors. Percentage of the images
that require registration during the application phase (right column).

5. CONCLUSION

We proposed a simple and flexible method to speed-up image reg-
istration for image sequences of organs subject to repetitive move-
ment, such as breathing. The method exploits the redundancy of
the images in a repetitive motion scenario while still being able to
adapt to irregularities. Results show real-time capability even for
a non-optimized implementation and accuracy comparable to state-
of-the-art methods. Tests on respiratory liver motion show that on
average 4% of the images required registration during the applica-
tion phase, despite acquisitions up to an hour and irregular changes
in exhale position (drift) [10]. Furthermore, the number of required
training images is relative low (<500).

We plan to acquire more image sequences and optimize the size
of the training set. We expect the proposed method to be gener-
ally beneficial for real-time tracking of mainly repetitive motion (e.g.
respiratory, cardiac). In particular, it will substantially improve the
real-time capability of intensity-based 3D image registration, which
has a considerably higher computational complexity.
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