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Abstract  Automated vehicles can contribute to the improvement of transportation through their high capacity, 
increased safety, low emission and high efficiency. However, unstable conditions of automated mobile systems, which 
include automated vehicles and mobile robots) can cause serious problems, andthus, automated mobile system requiresto 
be highly reliable. The objective of this research is to develop on analgorithmfor detection faults (unstable condition) in an 
automated mobile system and to improve the overall reliability of this system. In  this study, we in itially  stored and updated 
a few patterns of data constellations under normal and unstable conditions for fault identification through real-world 
experiments. Multiple experiments were performed in a public urban area (with course distance per set 
beingapproximately1.1[km]), where several pedestrians, bicycles, and other robots were also present. The method used for 
detecting faults utilizes Mahalanobis distance, correlat ion coefficient, and linearization in  order to enhance the accuracy of 
detecting faults;further, because real-world experimental conditions vary frequently,it is essential for the proposed method 
to be robust undervarious conditions. The main feature of this study is that it involves the use of experimental results 
obtained under real-world conditions, to develop a fault detection algorithm and evaluate its validity. In addition, 
simulations were performed using the real-world experimental data, which includes newly logged experimental data after 
the algorithm was developed in order to evaluate the validity of the proposed algorithm. The simulat ion results show that 
the proposed algorithm detects faults accurately, thus, they prove its validity. 
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1. Introduction 
Transportation systems pose numerous problems such as 

traffic accidents, traffic congestion,high energy 
consumption, and air pollution.One of the ways to 
overcome these problems is to develop automated 
vehicles[1-9]. Automated vehicles can contribute to the 
improvement of transportation through their h igh capacity, 
increased safety, low emission and high efficiency. 
However, unstable conditions of or fau lts in automated 
vehicles can cause serious problems; thus, it is critical for 
an automated vehicle to be highly reliable. 

Further, an  automated vehicle should be able to identify  
its own posit ion with respect to  surrounding  obstacles. 
Therefore, automated vehicles are equipped with sensors for 
estimating their own position and detecting obstacles, and 
the automated mobile system controls the vehicle using the 
data obtained  from the sensors . Some data s ets  are  
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obtainedwhen the automated vehicle is under normal 
condition, and a few data sets are obtained when it is under 
unstable condition. In general it is easy to detect faults and 
unstable conditions using a simple algorithm. However, as 
the algorithm becomes complicated, it becomes difficult to 
detect faults in the vehicle because the number of data sets 
and the values to be calculated increase; further, because of 
the complexity of the algorithm, the obtained data tend to 
affect each other. 

Trough investigations, S.Shladoverestablished that a 
system for controlling automated vehicles requireto be 
highly reliab le because the mean t ime between failures 
(MTBF) fo ra human driver was very high[10]. Further, he 
mentioned that one of the most significant challenges faced 
in the research on automated vehicles was fault  detection 
and identification. The objective of this research is to 
develop an algorithm for detecting faults (unstable 
condition) in  automated vehicles and to improve the overall 
reliability of the vehicles. 

A few researchers have concluded researches on fault 
detection (failure detection) algorithms and fault  tolerant 
systems. T.H.Kerrconducteda study on fault alarm 
algorithm using a KalmanFilter[11]. He proposed a 
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generalized technique for evaluating tightened upper 
bounds on false alarm and for correcting detection 
probabilit ies. This technique can be applied to detect any 
type of failure or signal. S.Schneider, et al. proposed a 
sensor fusion and a fault detection algorithm forlanekeeping 
and headway maintenanceapplications[12]. Theyused 
assumed fault patterns and evaluated the proposed 
algorithm via a simulation. In their study, fault signature 
was obtained virtually,and thus, the study did not involve 
the use of the experimentaldata. M.Hashimoto et al. 
proposed an algorithm for fau lt detection and identification 
of sensor-scale failure in  a mobile robot, and they 
performed experiments by intentionally introducing faults 
in the robot, for evaluating the proposed algorithm[13]. 
Their study focused on the failure in  velocity  estimat ion, 
andthey evaluated the proposed algorithm usinga 
single-model-based Kalman Filter through experiments 
using a single mobile robot. With respect to fault detection 
at a system/device level, some algorithms for fault, failure, 
or unstable condition detection have already been proposed 
and evaluated[14-20]. In  particular, statistical approaches 
used in these proposed algorithms have been referred to, in 
this study. 

In this study, we first solved and updated a few patterns 
of data constellations under normal and unstable conditions 
for fault identification through real-world experiments. We 
performed these experiments in a public urban area, where a 
few pedestrians, bicycles and other robots were present. The 
main feature of this study is that it involves the use of 
experimental data obtained under real-world conditions, to 
develop a fault detection algorithm and evaluate its validity 
of it. The algorithm continuously monitors all data obtained 
using sensors installed in the vehicle, and if the vehicle 
becomes unstable the algorithm detects the unstable 
condition by comparing the current data with the prev iously 
stocked data using statistical approach. We have already 
studied the framework of the proposed algorithm using a 
small amount of data, and evaluated its validity[21]. This 
study involves the evaluation of the validity of the proposed 
algorithm under different conditions using a large amount 
of experimental data. 

This paper describes an algorithm for constructing faults 
patterns and for detection faults, further, experiments are 
performed under real-world conditions, and simulation 
results are obtained. 

2. Fault Detection Algorithm 
2.1. Overview 

This study focuses on the estimation of velocity and yaw 
angle, which are necessary tocalculate a vehicle’s 
position.Moreover, it  does not involve obstacle detection. In 
this section, we explain the types of data used in the 
proposed algorithm, fau lt data obtained through the 
real-world experiments, the method for detection and 
classifying faults and unstable conditions, and the flow of 

the study. 

2.2. Three Types of Faults 

Three types of fault data sets that may lead to unstable 
conditions have been collected through real-world 
experiments; these data sets are described in section 3. It 
should be noted that we can obtain other types of fault data 
sets by performing further experiments; however, this study 
considers only three sets of faults data because the objective 
of this study is to evaluate the proposed algorithm, and 
these three faults can be detected manually and given that 
all results are known. The following are the three types of 
faults: 

1. Communication fault  
2. Encoder fault  
3. Gyro fault  
Communicat ion fault (#1) indicates communication 

failure between a laptop and an on-board PC. 
Encoder fau lt (#2) does not necessarily imply the failure 

of encoders. If a slope exists in the course taken by the 
vehicle, then a fau lty estimate o f the vehicle’s velocity is 
obtained because the encoders overestimate the distance 
covered by the vehicle while climbing a slope than while 
traveling on a flat road. 

Gyro fau lt (#3) implies that the standard deviation of data 
obtained from a gyro is considerably higher than its 
specified limit. Further, the gyro requires to be calibrated 
before use, for determin ing its performance. It should be 
noted that the temperature was very h igh on the day when 
the data with a considerable high standard deviation has 
obtained from the gyro; therefore, we could not determine 
the main reason for the high standard deviation, but we 
consider that high temperature had a negative effect on the 
gyro. 

2.3. Data for Fault Detection 

The algorithm controls the automated vehicle  by 
referring to its velocity and yaw angle, which are calculated 
using the different types of data obtained from the sensors. 
The vehicle’s position is calculated from its velocity and 
yaw angle. 

With regard to velocitydetermination, velocity(Ve) can  be 
estimated by measuring the difference between  the current 
and the former values of the wheel encoder count. Velocity 
(Vm) can be estimated usinga map-matching algorithm[22]. 
The integral of deviation between the above two values is 
considered as the threshold value for fault  detection. The 
integral of velocity differences (Dv) is calculated as follows: 
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The average and standard deviation were calculated by 
performing several experiments. Thus, the Mahalanobis 
distance (mDv) of Dvcan be calculated using its average and 
standard deviation.  

In this algorithm, if Mahalanobis distance mDv is greater 
than threshold Th_Dmv, the algorithm considers that a failu re 
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in the velocity estimation flow has occurred; here, Th_Dmv 
is set to 2.0. 

If both values are identical, it  is assumed that the 
estimated value ofvelocity is highly reliable. On the other 
hand, even if both values are identical, there is a possibility 
that two sensors can bebroken or unstable at the same 
time;however, this case is not considered in this algorithm. 

Further, the yaw anglecan be estimated by the differences 
between the values obtained from the right and left wheel 
encoder (Re), a gyro sensor(Rg) and the map-matching 
algorithm(Rm). The integral o f velocity d ifference is used to 
estimate velocity, whereas the integral of differences 
between the amount of change in the yaw angle during a 
fin ite period of time(200[ms]) is used to estimate the yaw 
angle in order to reduce the drift effort. The integrals of 
each yaw angle difference (Egm ,EegandEem) are calculated 
as follows: 
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The average and standard deviation were also calculated 
by performing several experiments. Thus, the Mahalanobis 
distancesmEgm, mEeg, and mEem of Egm, Eeg, and Eem, 
respectively, can be calculatedin the same way as that used 
to estimate velocity. If only one of above Mahalanobis 
distances is greater than its threshold value (Th_mE), the 
algorithmconsiders that a failure in  the yaw angle 
estimation flow has occurred. 

Furthermore, velocity estimat ionrequires two  sensors, 
whereas yaw angle estimationrequires three sensors. 
Consequently, the number of parameters increases. It is 
easy to detect the type of faultthat occurs by majority voting, 
imply ing that a sensor that outputs a value that is different 
from other sensors is unstable among all the sensors. 

Hence, the number of data sets (N), is 200and the 
sampling frequency is 20[ms]. The d istance-series data is 
used instead of time-series data for the fault pattern sets, 
because the vehicletravels continuously unless it encounters 
an obstacle;moreover, d istance-series data does not include 
the data generated when the vehicles stops. 

2.4. Signature of Each Fault Data Set 
Through experiments, three types of fault patterns were 

obtained. This section describes the method for constructing 
a signature data set using these fault patterns. 

First, we attempted to detect faults by using only the 
correlation coefficient in the same way as that proposed in 
the previous paper[12]. However, it was found that the use 
of only the correlation coefficient was not sufficient to 
correctly detect a fault because the experiments were 
performed under various real-world environmental 

conditions and mult iplefau ltswereexpected. Thus, along 
with the correlation coefficient, we also used the 
linearization methods to detect faults. 

In order to detect faults in velocity, linear approximat ions 
of every Dv  of each fau lt pattern were constructedusing a 
least square algorithm; consequently, the linear approximate 
equation ofDv could be used to represent the relationship 
between Dv and the distance. Every Dv are shown in Fig.1. 

 
Figure 1.  Parameter DV obtained through experiments when the mobile 
robot climbs a slope 

In order to detect faults in yaw angle estimat ion, only 
Egmhasused in thealgorithm because only one type of fault 
occurred during several experiments. As in the case of 
determining fau lts in velocity estimat ion, in  this case, the 
linear approximations of every Egm of each fault pattern 
were constructed using a least square algorithm; 
consequently, the linear approximate equation ofEgmcould 
be used to represent the relationship between Egm and the 
distance. 

For calcu lating the correlation coefficient, five 
parameters that represented the characteristic of each fault 
were selected from among all the parameters in each fault 
data set. 

As mentioned previously, the algorithm requiresto 
preparean estimationof linear approximate equation and five 
data sets as signature data sets of each fault data set in 
advance in order to classify the faults. 

2.5. Algorithm of Classifying Faults 

In this section we first explain the algorithmfor detecting 
faults in velocity estimat ions. Figure 2 shows the flowchart 
of the proposed algorithm for detecting faults in velocity 
estimations. As described in Sect ion 2.3, if Dmv is greater 
than Th_Dmv, the algorithm ascertains an unstable condition 
or a fault in the velocity estimat ion flow. Subsequently, the 
algorithm detects the type offaultthat occurs by comparing 
it with the patterns that are already stored in the algorithm. 
As explained in Sect ion 2.4, the p roposed algorithm uses 
two values that are separately calculated for detecting fau lts. 
Onevalue is obtainedusing correlation coefficient. In this 
algorithm, five parameters with distance-series data were 
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used. The five values of correlation coefficient between 
each of the five parameterswere calculated. The expression 
for calcu lating the relat ive value (Cv) is given as follows: 

1
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The terms in this expression are defined as follows: 
m: number of parameters (5 in this study) 
X={Xi |i=1,2,..5}: pattern data sets stored in the algorithm 

(distance-series data) 
Y={Yi|i=1,2,..5}: current data set (distance-series data) 
V(X): standard deviation of X 
E(X): average of X  

 
Figure 2.  Flow chart of proposed algorithm for detecting faults in 
velocity estimation 

The other value used to classify faults is obtainedusing 
the on linearization method, and only one parameter (Dv) is 
used to obtain this value. The algorithmrequiresto estimate 
the gradient value of the linear approximate equation ofDv 
using the least square algorithm before detecting faults. 
Further, if Dmv is greater than Th_Dmv, the algorithm 
estimates the liner approximate equation of Dvfromthe 
distance-series data; thus, the algorithm calculates the 
gradient and interception of the current data set. For the 
detection of fault in velocity estimation, only the gradient 
value is used. Next , the algorithm estimates the distance 
value (Cl) between the gradient value obtained from the 
linear approximate equation of the fault  pattern set and the 
one obtained from the linear approximate equation of the 
current data set. If both Cv and Cl are greater than their 
threshold values, the algorithmascertains that afaulthas 
occurred. If both values are not greater than their threshold 

values, and the likelihood value for map-matching (Lm) is 
greater than its threshold (Th_Lm), then the 
algorithmconsiders that an unstable condition is 
createdowing to the missing map-matching. In other cases, 
the algorithmdeterminesthe occurrence of another failu re 
and saves the current data set as a new fault pattern. 

For the detection of fau lts in yaw angle estimation, an 
algorithm almost similar to that used for detecting faults in 
velocity estimat ion is used, except that this method does not 
involve the use of the gradient value of the linear 
approximate equation. 

From several experimental results obtained using a gyro 
fault pattern, the standard deviation is found to be large and 
the amplitude of the deviat ion is larger than usual. In 
addition, the correlation coefficient between the gyro fault 
data set and the linear approximate equation calculated 
using its data set is very small, and it  becomes difficu lt to 
estimate the liner approximate equation. Therefore, it is 
assumed that the correlat ioncoefficient may be s mall fo r the 
gyro fault pattern, as well.Thus, if Egm is greater than 
Th_mEgm, the algorithm estimates the linear approximate 
equation ofEgmusing the current data set and calcu lates the 
correlationcoefficient (Cc) between this equation and the 
current data set. As in the case of fault  detection in  velocity 
estimation, five values of the correlat ion coefficientfor each 
of the five parameters are calcu lated and the relative value 
(Cv) is also calculated using equation (5). If Cc is less than 
the threshold value and Cy is greater than Th_Cy, the 
algorithmconsidersa gyro fault has occurs. In other cases, 
the algorithm saves the current fault pattern as a new 
faultdata set. In this algorithm, only one pattern is used for 
detecting faults in yaw angle estimation, and therefore, the 
method for detecting these faults is less complicated; hence, 
we will consider other faults or unstable conditions in our 
future work. 

2.6. AlgorithmFlow 

 
Figure 3.  Algorithm flow 

Figure 3 shows the flow of the proposed algorithm. First, 
experiments were performed under real-world conditions, 
and all the parameters obtainedfrom experimental data, 
including raw data from sensors, were logged. In addit ion, 
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when afault occurred during the experiments, the exact time 
of occurrence and the type of fau lt were also stored. Second, 
the averages and standard deviations of each value 
(including equations 1-4) were calcu lated in order to use 
them for determining their Mahalanobisdistance. 
Subsequently, as described previously, the method for 
detecting each type of fault  was developed. Finally, the 
fault detection method was evaluated via a simulat ion using 
the experimental data, which includes two sets of data 
(logged in the first flow and newly logged). The map for 
map-matching was also relogged in order to evaluate the 
repeatability and robustness of the proposed algorithm. In 
the next section,we will explain the experiments and the 
experimental results in detail. 

3.Experiments under Real-World 
Conditions 

3.1.Instrumentation 

Amobile robot was usedfor the experiments. This robot 
was developed by modifying a wheelchair, as shown in 
Figure4. Figure 5 shows the system configuration of this 
robot. This robot can be controlled through an on-board PC 
using electrical signals or by a driver using a joystick. 
Further, it can move at  a velocity of 6 [km/h]; hence, its 
maximum velocity was set to 4 [k/m] during the 
experiments, for safety reasons. 

 
Figure 4.  Mobile robot 

 
Figure 5.  System configuration 

The mobile robot composes three laser scanner sensors 
(LSS), one gyro sensor, two encoder sensors for measuring 
the left and right wheel speeds, a laptop PC, and an 
on-board PC. 

This robot is equippedwith a lithium-ion battery as an 
energy source. The battery supplies 48 [V] to all the sensors, 
two main motor controllers, the on-board-PC, and thelaptop 
PC through a DC-DC converter. This robot cantravel 
continuously for approximately2[h] without requiring any 
charging. 

The robotconsists of only one laser scanner sensor 
mounted on top for localizat ion. The top laser scanner 
sensor is horizontally mounted at a height of 1.5 [m] above 
the ground;the sensor is SICK LMS151[23]. The specified 
maximum measurement range of LMS151 is 50 [m] when 
the scanned objects have good reflection. From our 
experience,the available maximum range is 30 [m] in urban 
environments. The other two laser scanner sensors, which 
are placed under the robot, are used for obstacle detection 
and collision avoidance;hence, two Hokuyo UTM-30LX 
[24] sensors are used.The specified maximum measurement 
range of UTM-30LX is 30 [m] when the scanned objects 
have good reflection.Further, thefibre optic gyroscope 
sensor is placed under the seat. 

The on-board PC, which is placed under the seat,is 
connected to the gyro sensor, two encoder sensors, an 
emergency switch, and a motor controller. The laptop PC is 
connectedto two laser scanner sensors placed under the 
robot through an USB and the laser scanner sensor mounted 
on the top of the robot through a LAN. The on-board and 
the laptop PCs are connected through RS-232c. 

The experiments were performed in Tsukuba, Japan. The 
experimental course consisted of pedestrian roads. The total 
length of this course was approximately 1.1 [km], as shown 
in Figure 6-8. The surface of the course was paved with 
asphalt and stones. Theoperation of the robot was fully 
automated from the start point to the goal point. Six stop 
points indicated by a white line were considered, as shown 
in Figure 9; further, as in the case where vehicles stop at a 
stop sign, the robot should also stop at each white line 
because these stop points are intersections with poor 
visibility. 

The mobile robot automatically stopped at each stop 
point, and it completely stopped operating when it reached 
the goal point. The experimental data that we used isthe one 
obtained from 100 [m] after the robot started moving to 100 
[m] before it completely stopped. When the robot detects 
obstacles on the desired course, it automatically reduces its 
speed and attempts toavoid collisions with the obstacles. If 
the robot cannot avoid collisions, it reduces its speed and 
stops, and it waits until the obstacles leave the desired 
course.Through our experiments, we found that there are no 
such obstacles that the robot cannot avoid 

In order to ensure safety, two researchers followed close 
behind the mobile robot during the experiments, and one 
researcher lead the robot a few meters ahead. This 
precaution is adopted from the previously conducted 
real-world experiments using a mobile robot in  Tsukuba 
City. The total number of experiments performed while the 
robot travelledfrom the start point to the goal point is 17; 
thus, the total experimental data consists oftraveling data 
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obtained over a course of approximately 19 [km].From 
among the 17 data sets, 10 sets of experimental data were 
used for fault detection and algorithm evaluationthe 
remain ing seven sets were used only for algorithm 
evaluation. 

 
Figure 6.  Course map 

 
Figure 7.  Desired course and map for map-matching 

 
Figure 8.  Map-matching 

 

Figure 9.  Stop point 

 

 
Figure 10.  Experimental scene 

Further, the desired course of each experiment was the 
same; however, the other conditions such as the temperature, 
weather, and environment around the mobile robot were 
differentbecause real-world environmental conditions vary 
frequently.The structures used in the map-matching 
algorithm were almost identical; however, the number of 
people (walking and riding bicycle) around the robot was 
almost different in each experiment. Figure 10 shows an 
experimental scene. 

4. Simulation Study Using Real-World 
Experimental Data 

4.1. Simulationsusing Real-World Experimental Data  

Simulations using real-world experimental data were 
performed in order to evaluate the validity of the proposed 
algorithm. The recognition rate of the proposed algorithm 
was considered to evaluate the valid ity of the algorithm,i.e., 
to obtain results indicating that the faults are detected 
correctly by the algorithm via simulations. Here, unknown 
faults are not considered because such faults were not 
foundwhen the algorithm was implemented.The algorithm 
continuously attempts to detect the type of faultthat occurs. 
The first detection result except for the map-matching fault 
is considered as the algorithm’s classifying result. The 
simulations wereperfo rmed consecutively using the first to 
final traveling data that was obtained. The first experimental 
data includes three types of faults; on the other hand, the 
second experimental data includes only one type of fault. 
Nevertheless, if the proposed algorithm can detect faults 
using other experimental data, then the validity of the 

Desired course
Stop point
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proposed algorithm can be proved. 

4.2.Simulation Results and Discussion 

4.2.1. First experimental data 

Table.1.  SimulationResult using Fault Experimental Data 

 

 
Figure 11.  Clipped simulation result obtained using the data of the first 
travel experiment (In case of fault ,values -1, -2, and -3 represent missing 
map match, communication fault , and fault  owing to slope, respectively 

Table1 lists the simulation results obtained using the first 
experimental data. W ith regard to in velocity estimat ions, 
two types of faults are considered, and the algorithm 
correctly detects the unstable condition and classifies the 
faults with only one overleaping;however a smallnumber of 
unnecessary detections occur. It is considered that no 
overleaping is more important than unnecessary detections; 
thus, the proposed algorithm is effect ive in  estimating fau lts 
or unstable conditions. With regard to in yaw angle 
estimations, only one type of fault is detected, and the 
algorithm correctly detects the unstable condition and 
classifies faults without overleaping;however, a few 
unnecessary detections occur here as well and 
therefore,further study is required in order to completely 
eliminate these unnecessary detection in future. 

Figure 11 shows the simulation results obtained using the 
data of the first travel experimentfrom among 11 
experiments;this result includes the communication fau lt 
and the fault during travel along a slope. The x-axis 
represents the distance of the robot from the start point. On 
y-axis, the red  line represents the value of mDv and the blue 
line represents the faults detected by the proposed 
algorithm.Values -1, -2, and -3 indicatea missing map 
match, a  communicat ion fault  and a fau ltowing to the slope, 
respectively. In fact, the communication fault occurred at 
approximately 160[m], and the robot travelledalong a slope 

approximately 680[m] to approximately 730[m];therefore, 
the proposed algorithm was able to detect these faults 
correctly. Th is result thus proves the validity of the 
proposed algorithm. 

4.2.2. Second experimental data 

Table 2lists the simulation results obtained using the 
second experimental data. Th is simulation focuses on fault 
detection in velocity estimat ion, because faults #1 and #3 
did not occur while performing the second set of 
experiments. This result shows that the proposed algorithm 
can detect the fault occurs when the robot climbs a slope 
with only  one unnecessary detection. In addition, this 
algorithm detected communicat ion faults correctly. This 
result proves the validity of the proposed algorithm for 
other experimental data, as well, thus validating its 
robustness. However, the algorithmrequires a few 
modifications in order to improve its reliability, which will 
be carried out in a future work. 

Table 2.  Simulation Results Using Second Experimental Data 

 

5. Conclusions 
This paper presents a study on fault detection for 

improving the reliability of automated vehicles or mobile 
robots. Multiple experiments were performed in a public 
urban area (with course distance per set 
beingapproximately1.1[km]), where several pedestrians, 
bicycles, and other robots were also present. Firstly, we 
solved and updated a few patterns of data constellations 
under normal and unstable conditions for fault  detection 
through real-world experiments. Next, on the basis of the 
data obtained during the unstable condition and through 
other experiments the methods for deciding the threshold 
value ofMahalanobis distance were developed. In addit ion, 
the method of constructing the patterns of fault data and 
detecting faults by comparing each pattern with the relative 
values calculated using the correlation coefficient and linear 
approximate equation was proposed. Simulations 
wereperfo rmed in order to evaluate the validity of the 
proposed algorithm, and the simulation results show that the 
proposed algorithm detects unstable conditions and almost 
correctly classifies the fau lts. Thus, the validity of the 
proposed algorithmwas proved using real-world 
experimental data. 

In our future work,we intend to consider other fault  
patterns by collecting additional fault  data sets through 
numerous experiments under real-world conditions using 

Number Actual fault Correct
Unnecessary
detection

Number of (Dv >Th_Dv )
in velocity [set]

30

Slope 10 9 8
Communication fault 2 2 0
Missing map match 18 10 1

Number of (Dv >Th_Dv )
in yaw angle [set]

20

Gyro fault 9 8 1
Missing map match 11 10 1

Number Actual fault Correct
Unnecessary

detection

Number of (Dv >Th_Dv  )
in velocity [set]

17

Slope 7 7 1
Communication fault 0 0 0
Missing map match 10 9 0
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automated updating algorithm to construct the fault pattern 
sets for classifying faults. 

NOMENCLATURES 
Ve: velocity estimated by measuring the difference between 

the current and the former values of the wheel encoder 
count 

Vm: velocityestimated usinga map-matching algorithm 
Dv :integral of velocity differences 
mDv :Mahalanobis distance of Dv 
Th_Dmv,: threshold ofmDv  
Re :yaw angle estimated by the differences between the 

values obtained from the right and left wheel encoder 
Rg :yaw angle estimated bygyro sensor 
Rm :yaw angle estimated bythe map-matching algorithm 
Egm:integrals of yaw angle difference(encoder) 
Eeg:integrals of yaw angle difference (gyro sensor) 
Eem :integrals of yaw angle difference (map-matching) 
mEgm :Mahalanobis distanceof Egm 
mEeg:Mahalanobis distanceof Eeg 
mEem:Mahalanobis distanceofEem 
Th_mE: threshold ofmEgm, mEegandmEem 
N :number of data sets 
Lm:likelihood value for map-matching 
Th_Lm: threshold of the likelihood value for map-matching 
Cl:distance value between the gradient value obtained from 

the linear approximate equation of the fault pattern set 
Cc:correlationcoefficient between this equation and the 

current data set 
Cv:expression forcalculat ing the relative value 
X={Xi |i=1,2,..5}: pattern data sets stored in the algorithm 
(distance-series data) 
Y={Yi|i=1,2,..5}: current data set (distance-series data) 
V(X): standard deviation of X 
E(X): average of X 
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