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ABSTRACT 

Experience from recent reliability analyses of jacket 
platforms is used to discuss selected aspects of probabilistic 
modelling in more detail.  These modelling details can have a 
significant effect on the computed reliabilities.  An overview of 
basic considerations and failure modes in jacket reliability 
analysis is included to set the various details into context.  
Ultimate limit states for jackets in relatively shallow water are 
emphasised; i.e. quasi-static structural response is applicable.  
The following topics are considered: 
(a) Failure modes and some requirements to load and 

resistance analysis. 
(b) Directionality in loading and resistance. 
(c) Random periods of individual extreme waves. 
(d) Foundations – axial and lateral capacity modelling for 

multiple piles and model uncertainty for pile capacity. 
Keywords:  jackets, structural reliability, directional effects, 
pile capacity. 
 

INTRODUCTION 
Two of the present authors published a paper on the 

reliability analysis of a jacket at OMAE last year [3].  That 
paper and subsequent jacket analysis work gave us the idea of 
exploring a few aspects of the reliability analysis of jackets in 
somewhat more detail, and led to the present paper.  Although 
this paper is less extensive than we planned, we hope it may 
generate some discussion and contribute a little to the 
development of reliability analysis procedures for jackets.  The 
exploration of random directionality presented here arises 
naturally in relation to jackets, but should have implications for 
reliability analysis of other types of structures, too. 
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NOMENCLATURE 
g limit state function 
l  applied base shear force 

Cl  characteristic base shear capacity  

Ml  mean load in an environmental state 

Sl  load standard deviation in an environmental state 

20 , ll  load parameters 
r  resistance 

Cr  characteristic resistance 

20 , rr  resistance parameters 

Cu  model uncertainty factor on capacity 

Lu  model uncertainty factor on loading 

Aλ  capacity factor, normalised wrt. individual load cases 

Bλ  capacity factor, normalised wrt. characteristic base 
shear capacity 

θ  direction 

Lθ  direction with largest load coefficient 

Rθ  direction with largest resistance 
ς  height of line of action of base shear force 

OVERVIEW 

Basic Analysis Considerations 
In relatively shallow water, the natural periods of the 

dominant modes of global lateral vibration of jackets tend to lie 
well below the periods of the incoming regular waves.  This 
permits quasi-static structural analysis.  Dynamic structural 
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analysis is required in deeper water, when the natural periods 
are longer and can be excited by the incoming waves.  
Nonlinear load-effects due to drag forces and to wave elevation 
can produce excitation forces at other frequencies, typically at 
two or three times the wave frequency.  These effects may also 
have to be taken into account when choosing the method of 
structural analysis. 

 The sub-division between response analysis methods is 
also reflected in the methods applied to load analysis.  The 
relative contributions of the various wave periods in a sea state 
are important for accurate assessment of dynamic response, and 
tend to require application of a wave spectrum, through 
frequency or time domain methods.  For quasi-static structural 
response, the peak values of the applied loads are of most 
importance, permitting use of regular waves; i.e. a single wave 
period in the load model.  Of course, the regular wave height 
and period have to be carefully selected to replace the more 
detailed spectral representation of the sea state. 

Dynamic amplification factors can be used to extend the 
quasi-static analysis procedure in regular waves to include 
jackets with some dynamic response.  However, detailed 
comparison of dynamic and quasi-static analyses results may be 
required to derive accurate dynamic amplification factors. 

The structural elements of jackets tend to be relatively 
slender, such that drag forces give rise to a significant portion 
of the hydrodynamic loads due to waves and current.  The 
nonlinear nature of the drag forces is a little awkward in a 
frequency domain analysis and requires some form of 
linearization.  The nonlinear drag forces do not present any 
difficulty to load analysis in regular waves and hence, tend to 
favour this approach.  Furthermore, it is straightforward to 
represent simultaneous wave kinematics at all points within the 
jacket in regular wave analysis, but more arduous to do so in 
irregular waves. 

The present paper is primarily concerned with jackets in 
relatively shallow water, implying quasi-static structural 
analysis and load analysis in regular waves. 

Failure Modes 
The ultimate limit state (ULS) tends to be critical for the 

global design of jackets in relatively shallow water, whereas the 
fatigue limit state (FLS) can be more critical in deeper water, 
with dynamic response.  The FLS can sometimes be critical for 
local design in shallow water.  Pushover analysis is commonly 
applied to the ULS; e.g. as implemented in ref.[1] & [2].  The 
passage of a regular wave past the jacket is discretised into a 
number of time steps with associated hydrodynamic (and wind) 
loads.  The instant giving the highest load is selected.  This 
environmental load is gradually applied in the pushover 
analysis and further incremented by a load factor, while the 
displacement is computed to describe a series of equilibrium 
states.  Plastic behaviour of the structural elements of the jacket 
is taken into account.  Nonlinear models for the behaviour of 
the foundation piles are included.  The maximum capacity is 
found at the peak of the load and displacement curve, as 
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indicated in Figure 1.  Thus, the capacity may be expressed in 
terms of a capacity factor Aλ , which is equal to the value of the 
load factor at this point.  If the capacity factor equals 1.0, then 
the specified load lies exactly on the limit state surface.  The 
details of the failure mode may be found from the underlying 
pushover analysis, and include plastic collapse of struts or legs, 
lateral soil failure, axial pile failure, and combinations of these 
modes, etc. 

Pushover analysis
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Figure 1  Load displacement curve from pushover analysis 
in a regular wave.  The maximum is indicated as a capacity 
factor. 

 

 
Figure 2  Interaction sketch for jacket capacity, where 
cross-hatched zone indicates range of probable limit states 
in shallow water 

In shallow water the load and capacity is fairly well 
characterised in terms of the base shear force acting on the 
jacket.  If only base shear is considered, then a limit state 
function might be defined as: 

Base shear force 

Safe  
zone 

Failed  
zone 

Overturning 
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(capacity for base shear force)  -  (applied base shear load) 

Of course, the environmental load is really distributed over the 
jacket structure and is more fully characterised in terms of the 
base shear force and an overturning moment, as indicated in 
Figure 2.  The limit between safe and failed zones may be 
thought of as the locus of all combinations of base shear and 
overturning moment with a capacity factor of 0.1=Aλ . 

Hence, a more precise limit state function may be 
formulated as: 

1−= Ag λ  (1) 

There are finer details in the effects of the load and 
capacity distributions over the jacket on the ULS which are not 
brought out in Figure 2, but they are included in Eq.(1), when 
the capacity factor is based on a detailed pushover analysis.   

The capacity factor in eq.(1) is a function of all the 
physical random variables defining the structural capacity and 
applied loads in the pushover analysis.  If the details of the load 
distribution over the structure are of less importance, then the 
load and capacity can be separated to some extent.  In this case, 
the load capacity factor Bλ  may be normalised relative to a 

characteristic base shear force Cl  and expressed as a function 
of  height of the line of action of the force ς  and the compass 
direction of the force θ .  Then the limit state function may be 
written in terms of the base shear force as 

llg CB −⋅= ),( θςλ  (2) 

where l is the applied base shear force.  The base shear force l, 
the force height ς  and the force direction direction θ   are all 
dependent on the environmental conditions, including the 
directions of wind , waves and current.  The characteristic force 

Cl  is not varied with direction.  Dependency on the height of 
the force can be omitted in some cases; e.g. for purely lateral 
failure of the foundation. 

Model uncertainty factors for capacity Cu  and load Lu  
can conveniently be included in the limit state function as  

lulug LCBC ⋅−⋅⋅= ),( θςλ  (3) 

The loads and capacity are dependent on a large number of 
physical parameters, many of which may need to be modelled 
as random variables.  Details of one case study are given in [3], 
where response surface methods are applied to handle these 
dependencies in the reliability analysis.  Some aspects of the 
dependencies on load direction and on wave period are 
discussed in the following sections 

DIRECTIONAL EFFECTS 
It tends to be computationally arduous to take full account 

of directional effects in a reliability analysis.  A simplified 
model is developed in the following, to permit investigation of 
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some aspects.  Fourier polynomials with only a few terms are 
used to model some typical features of jacket load and 
resistance here.  This type of function can be extended with 
additional terms, for increased accuracy, and used to interpolate 
between numerical results from detailed jacket analyses at 
discrete headings. 

Directional model 

Directional limit state 
The limit state function is written as 

)()( θθ lrg −=  (4) 

where both resistance r and load l are dependent on direction 
θ , and the same direction is assumed for both environmental 
effects and the induced loads.  Symmetry about a vertical plane 
in the longitudinal axis through the centre of the jacket is 
assumed. 

Directional resistance 
The resistance is expressed by 

[ ]( ))(2cos)( 20 RC rrrr θθθ −+=  (5) 

where Cr  is the characteristic resistance, 20 , rr are directional 

resistance parameters and 0=
R

θ indicates the direction with 
the greatest resistance; i.e. along the longitudinal axis through 
the centre of the jacket. 
 

Resistance coefficient
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Figure 3  Variation in resistance coefficient with direction. 

 
This Fourier polynomial provides symmetry of resistance about 
longitudinal and transverse axes, a lower resistance in the 
transverse directions than in the longitudinal directions, and 
smooth variation through intermediate directions.  These 
properties are typical of jacket resistance when length and 
breadth are unequal.  An eight-legged jacket in 80 m water 
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depth might typically have 85.0
15.0

0

2 =r
r , as illustrated in 

Figure 3, based on calculations of lateral foundation failure 
similar to those reported in ref.[3].  Subsequent parameter 
variation is carried out such that 0.120 =+ rr . 

Directional load 
The load coefficient is expressed by 

[ ]( ))(2cos)( 20 LL llQ θθθ −+=  (6) 

where 20 , ll are directional load parameters and 2/πθ =L  
indicates the direction with the highest load coefficient; i.e. 
along the transverse axis through the centre of the jacket.  
Similar reasoning is applied in the choice of the Fourier 
polynomial for the load coefficient, as is used for the 
resistance, but the peak load coefficient is found in the 
transverse, rather than the longitudinal direction.  When the 
breadth is smaller than the length of the jacket, then the loads 
on the various elements tend to be more nearly in phase when 
waves are propagating in the transverse direction.  Of course, 
this is also dependent on the ratio of the wavelength to the 
platform dimensions.  A typical jacket, as mentioned above, 

might have 90.0
10.0

0

2 =l
l , as illustrated in Figure 4. 
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Figure 4  Variation in load coefficient with direction. 

The mean and standard deviation of the load in a short term 
environmental state are expressed by 

)(θLM Qkl ⋅=  (7) 

)(θLS Qkl ⋅=  (8) 

where k is an environmental intensity factor, that is also 
dependent on direction.  The load maxima are assumed to be 
distributed according to the Rayleigh distribution in a short 
term environmental state, with a mean period of 8s between 
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maxima.  The maxima are assumed independent and the 
distribution of short term extreme largest in a 3-hour state 

)3;(* hrL θ  is obtained from a Gumbel distribution, via a 
probability transformation from Rayleigh to an auxillary 
exponential distribution.  This random variable is applied as the 
load in the limit state equation (4).  This type of distribution 
model is commonly applied to wave loads. 

Directional environment 
The long term probability density of environmental 

directions is written as 

( ) )2/()cos(1)( 1 πθθθ Eaf −+=  (9) 

where the 1st order coefficient is set to 333.01 =a  in the 
present example and the dominant direction is specified by 

0.0=Eθ .  This distribution is illustrated in Figure 5.  The 
present example is chosen such that the dominant direction 
leads to the highest  environmental intensity, and this direction 
is aligned with the platform direction that tends to maximise the 
resistance and minimise the load coefficient.  Such situations 
are not uncommon, and may be found in the South China Sea, 
for example, where the north-east monsoon is dominant for part 
of the year and produces the highest waves.  However, the 
present model is not specifically fitted to this location.  Note 
that the density is defined on a range ),( ππ−  and is zero 
elsewhere.   The length of this range is fixed, but the location is 
arbitrary.  Hence, the mean value of the direction is also 
arbitrary.  This is somewhat unusual, as compared to other 
types of random variables, and needs some extra consideration 
when applying asymptotic reliability methods. 
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Figure 5  Probability density function for environmental 
direction (scaled w.r.t. radians, but with angle shown in 
degrees).  

In the reliability analysis, the direction distribution can be 
obtained by a probability transformation from an auxillary 
variable with a uniform distribution.  This was originally set up 
with the uniform variable defined on the range (-1,+1).  The 
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present symmetrical case is then conveniently handled by 
redefining the uniform variable on the range (0,1), without 
modifying the original probability transformation. 

The short term environmental intensity k takes a long term 
Weibull distribution, written as 





















−−=

β

θα
θ

)(
exp1);(

K
K

kkF  
(10)

where the distribution parameters are 0.1=β and 

( ))cos()( 10 KK kk θθθα −+=  (11)

with coefficients 3.0,7.0 10 == kk , and most severe 

direction 0.0=Kθ .  The parameter of the environmental 
intensity distribution is illustrated in Figure 6. 
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Figure 6  Variation in distribution parameter for 
environmental intensity with direction. 

The simplified environmental loads are intended to 
represent the effects of wind, waves and current on a typical 8-
legged jacket, with only one plane of symmetry.  The 
distribution of environmental direction and intensity resembles 
the directional distributions found for these effects, and the 
distributions commonly applied for significant wave height or 
wind speed. 

Probabilistic model 
No time-independent random variables are included in this 

analysis, in order to allow more scope for computational 
investigation of directional effects; i.e. there is no model 
uncertainty on load or resistance and although the resistance is 
dependent on direction, it is otherwise deterministic.  The 
marginal probability of failure in a single, random short term 
state is obtained from the limit state equation (4) and 
integration with respect to the distributions of environmental 
direction, environmental intensity and short term extreme load.   
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θθ
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)()()3(
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0

Θ

<
ΘΘ∫=

 

(12)

The annual probability of failure is subsequently obtained 
by taking account of the number of short term states in a year 

yrN , as 

[ ] yrN
ff hrPyrP )3(11)1( −−=  

 
(13)

The PROBAN program is used for the reliability 
calculations [4]. 

Directional results 
The model is scaled to a typical probability level by 

inserting a characteristic resistance of 0.69=Cr  to be 
multiplied by the resistance coefficient in (5).  Results from a 
parameter study on the mean resistance parameter are shown in 
Figure 7.  Four types of reliability methods are applied in the 
calculation.  The second order reliability method (SORM) and 
directional simulation agree closely, while the first order 
reliability method overestimates the probability of failure by a 
factor of from 2 to 5.  These directional simulation results are 
unbiased and have been computed with a coefficient of 
variation of 6% to 7%.  One point has been checked by Monte 
Carlo simulation of 108 sample points, yielding a coefficient of 
variation of 12%, and showing good agreement with directional 
simulation and SORM.  The results seem fairly typical of 
directional problems, which tend to show sufficient curvature 
in the limit state function (in the transformed standard normal 
space) such that the FORM results are inaccurate. 
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Figure 7  Annual probability of failure as a function of 
mean resistance parameter for 4 types of calculation. 

Similar problems with FORM have previously been observed 
by the authors in another reliability problem with strong 
directional content; viz. the ultimate limit state for a single 
mooring line in a spread mooring.  A simple explanation of the 
5 Copyright © 2004 by ASME 
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different performance of FORM with respect to directional 
random variables as opposed to other types of  random 
variables may perhaps be provided by remembering that 
FORM provides a linear approximation to the failure surface, 
such that: 
• more effective approximation is provided to effects that 

behave monotonically; e.g. loads tend to increase with 
random wave height and lateral resistance tends to 
increase with soil strength, 

• whereas less effective approximation is provided to 
effects that do not behave monotonically; e.g. the load 
coefficient tends to decrease on both sides of the peak 
angles in Figure 4 and the resistance tends to increase on 
both sides of the troughs in Figure 3. 

SORM may be expected to be more effective, since it is based 
on a second order approximation to the failure surface. 

WAVE PERIOD 
Longuet-Higgins [5] provides an expression for the short term 
distribution of the period of an individual wave, conditioned on 
the wave height.  This distribution may also be found in 
Massel’s textbook [6].  It is more amenable for use in reliability 
analysis than the distributions given by Cavanie et al. [7] and 
by Lindgren and Rychlik [8].  Retaining most of the notation 
from the paper [5], this conditional probability density may be 
written as 



















 −−=

2

2

2

2

11exp
)(

1)(
t

r
t
r

rF
rtf RT νννπ

 
(14)

where ττ=t  is a normalised wave period, with τ  as the 

wave period and τ  as the mean wave period.  02mr ρ=  
is a normalised wave amplitude, with ρ  as the wave amplitude 

and 0m  as the zero order moment of the wave spectrum.  The 
wave amplitude is taken to be half the wave height.  

12
1

20 −=
m

mmν  is a spectral width parameter, with 1m  

and 2m  as the first and second moments of the wave spectrum.  

Now the function )( νrF  is a well-known error function, that 
may be neglected for our purposes, in relatively large waves, 
when 1>r .  This distribution is applicable to the period of the 
individual wave applied to load a jacket platform, when the 
wave height is drawn from the annual extreme wave period. 
When implementing this distribution in a reliability analysis, it 
is convenient to employ a transformation to an auxiliary 
variable Tu , with a standard normal distribution function, as 
defined by 
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ν

φ
 

(15)

where (.)φ  is the normal density function.  The auxiliary 
variable is modelled as an input variable in the reliability 
analysis, and a realisation of the individual wave period can be 
obtained as follows, in terms of more convenient parameters 

h
Hu

T
ST

Z

2
1

12

ν
ντ

−

+
=  

(16)

where h is the individual wave height, SH  is the associated 

significant wave height, and ZT  is the zero-up-crossing period.  
There is a possibility that the transformation may lead to 
negative wave periods for large values of  Tu .  This possibility 
is related to the correction made by the error function in the 
original distribution.  The transformation is not allowed at the 
transition between positive and negative values, at 

S
T H

hu ν
2=  .  Some bound needs to be set to avoid these 

values in the reliability computation, because they may give 
rise to numerical difficulties.  Another bound should be set to 
avoid wave height and period combinations that imply breaking 
waves.  Both bounds can easily be implemented using a 
truncated normal distribution for the auxiliary variable Tu . 

An example of the conditional wave period distribution is 
shown in Figure 8.  The distribution tends to become more 
narrow and centered on the mean period as the individual wave 
height increases.  The upper bound on Tu  has no real influence 
in this example, but the bound for breaking waves obviously 
has appreciable influence.  The example applies to a severe sea 
state, and to an extreme individual wave height in that state 

)0.2( =SHh .  The bound for breaking waves would have 
less effect in milder conditions.  This wave period distribution 
is primarily based on mathematical theory for narrow-banded 
processes, without making direct use of the physical properties 
of ocean waves.  The bound for breaking waves takes some of 
these properties into account, but it also seems that there may 
be further scope for improvement of the distribution model for 
individual wave periods under extreme conditions. 
6 Copyright © 2004 by ASME 
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Figure 8  Conditional distribution of periods of individual 
waves for 3.0,8,6,12 ==== νsTmHmh Zs . 
A deepwater bound for breaking waves is indicated at 7.3 s. 

Prior to introducing this conditional wave period distribution it 
might typically be assumed that the period corresponding to the 
extreme individual waves would be close to the peak period of 
the wave spectrum.  The conditional distribution tends to lead 
to a shorter wave period, closer to the average period of the 
spectrum.  This change in wave period was found to lead to an 
appreciable increase in wave loads in the reliability analysis of 
a jacket platform. 

GEOTECHNICAL ISSUES 
The axial capacities of the piles in a jacket foundation 

provide the resistance against the overturning moment on the 
jacket, while the lateral capacities provide the resistance against 
the base shear. 

For evaluation of the overall stability of a jacket 
foundation under extreme loading conditions, the spatially 
averaged soil strength properties over the extent of the 
foundation are of interest.  Soil strength properties exhibit 
spatial connectivity vertically as well as laterally, i.e. there is 
correlation between the soil strengths from one point to another 
within the soil volume.  The horizontal correlation length of the 
soil strength field is usually much larger than the vertical 
correlation length. 

Axial pile capacity 
The axial capacities of the piles in the foundation come 

about as the skin friction integrated over the respective fairly 
long pile lengths.  For the axial capacities, it can therefore be 
assumed that the effects of the local fluctuations of the skin 
friction from point to point along each pile will average out 
over the length of the pile, and the axial capacities of all piles 
can thus be represented by capacities calculated from average 
skin friction properties only, without considering any local 
variability 
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Lateral pile capacity 
The lateral capacities of the piles come about from a much 

more localized soil strength, i.e. it arises from the soil strength 
in a limited zone near the soil surface.  The vertical extent of 
this zone is so limited that for practical purposes it will not be 
reasonable to count on any effect of spatial averaging 
vertically.  This leaves to consider spatial averaging 
horizontally for its influence on the lateral capacities of the 
piles in the foundation. 

The lateral pile capacity is proportional to the undrained 
shear strength of the soil.  The spatial average of the lateral pile 
capacities over the lateral extent of the foundation will 
therefore come about in the same manner as the spatial average 
of the undrained shear strength over this extent.  In the 
structural reliability analysis, it will therefore suffice to 
represent the lateral capacity of each pile as the lateral capacity 
that comes about from a calculation on the basis of a spatially 
averaged undrained shear strength. 

In a reliability analysis, the spatially averaged undrained 
shear strength can be expressed as 

[ ] σλ ⋅⋅+= Suspatialu USES ,  (17)

in which E[Su] and σ denote the mean value and the standard 
deviation, respectively, of the local undrained shear strength.  
US denotes a standard normally distributed variable, and λ is a 
variance reduction factor associated with the spatial averaging 
in the horizontal plane and whose value is less than 1.0.  This 
representation is based on an assumption of a Gaussian strength 
field.  

For a jacket foundation of N piles, the value of λ can be 
established from Monte-Carlo simulations of joint outcomes of 
an N-dimensional standard normal variable X whose 
correlation matrix is an NxN matrix with entries calculated 
according to an expression for the correlation coefficient ρ(∆r) 
between two piles located a horizontal distance ∆r apart. The 
ith element Xi in X represents the local variability in the 
strength at the ith pile among the N piles in the foundation.  For 
the entry in the ith row and jth column of the correlation 
matrix, ∆r comes about as the distance between the ith pile and 
the jth pile in the foundation.  When a joint outcome of 
X=(X1,...XN)T is simulated, this gives one outcome of the 
derived variable 

∑
=

=
N

i
iX

N
Y

1

1
 

(18)

The distribution of Y can be established from an adequate 
number of Monte-Carlo simulations of X (and thus of Y).  The 
variance reduction factor λ can be interpreted as the variance of 
Y that results from the simulations and will be a function of the 
model for the horizontal correlation structure for the soil 
strength and of the horizontal correlation length in this model.  
The commonly assumed quadratic exponential decay model, 
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in which the correlation length R represents the horizontal scale 
of fluctuation, will produce a variance reduction factor λ as 
indicated in Figure 9 for an example foundation. 
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Figure 9  Example of standard deviation reduction factor 
vs. horizontal correlation length for an 8-legged jacket. 

Note that the emphasis in the above considerations has 
been placed on the total lateral capacity of the entire pile 
foundation, as there is no reason to expect that a variation in 
lateral capacity between the individual piles will lead to failure 
of one pile and thereby initiate a progressive failure scenario. 
This is so, because if one (weak) pile would tend to fail, then 
part of the load on this pile would immediately become 
redistributed through the jacket structure to the other (stronger) 
piles. The failure mode for the jacket foundation in lateral 
loading is thus a global failure mode, governed by the soil-
structure interaction and the total lateral capacity of the piles.  

Model uncertainty 
Another geotechnical issue of great importance for a 

reliability analysis of a jacket foundation is the model 
uncertainty associated with prediction of the axial pile 
capacities.  In a reliability analysis, the model uncertainty can 
be represented by a random model uncertainty factor F.  The 
factor is defined as the ratio between the true axial pile capacity 
and the predicted axial pile capacity and is applied as a factor 
on the capacity as predicted by the chosen capacity model in 
the limit state function.  The distribution of the stochastic 
model uncertainty factor F can be assessed based on data from 
full-scale tests on piles, from which the observed pile capacity, 
measured as the axial pile load at failure, can be interpreted as a 
measure of the true pile capacity.  For establishing the 
distribution of F, data bases of results from full-scale tests on 
piles need to be consulted.  Several such data bases exist, 
however, they cover a wide range of soil types and in many 
cases a very limited number of tests are available from each 
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location.  This puts a limit on which data can be of use for the 
piles of a particular jacket foundation.  A mean value of F 
different from 1.0 indicates a biased prediction model.  A data 
base, which is commonly referred to, is the so-called API data 
base presented in ref.[9]. 

CONCLUSIONS 
Some features of reliability analysis of jackets have been 

discussed and may be summarised as follows: 
 Detailed reliability analysis with respect to random 

directions of environmental effects is demanding, and can 
usefully be explored with simplified models. 

 FORM analysis tends to provide inaccurate results for the 
effects of random directions, while SORM appears to be 
reasonably accurate, when the conditional probability of 
failure with respect to direction has a single, dominant 
peak. 

 The mean direction is arbitrary and should be chosen such 
that the dominant peak is kept well away from the ends of 
the direction range, when SORM (or FORM) is applied. 

 The individual wave period associated with an extreme 
wave height may be modelled using a distribution function 
due to Longuet-Higgins [5].  This distribution appears to 
need a bound against breaking waves.  Shorter wave 
periods than the spectral peak period tend to be associated 
with the highest waves when using this distribution. 

 Average skin friction properties may be applied to 
establish the axial capacity of piles, without considering 
local variability. 

 Spatial averaging of the undrained shear strength of the 
soil is required to establish the lateral capacity of a pile 
foundation. 
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