Representing Runtime Variability in Business-Driven Development Systems*

lldefonso Montero, Joaquin Pefa, Antonio Ruiz-Cortés
Departamento de Lenguajes y Sistemas Informaticos
Av. Reina Mercedes s/n, 41012 Seville (Spain)
University of Seville
{monteroperez, joaquinp, aruiz}@us.es

Abstract and their strategic management. Thus, Information Tech-
nology (IT) infrastructure must evolve to adapt companies
Business-Driven Development(BDD) is a research field to the continuous evolution of markets. Currently this evo-
that provides techniques and mechanisms for designinglution is supported byd hoctechniques to maximize the
software systems starting from the business processes of thlevel or reuse from one version to another, redesign the pro-
companies. Companies are in continuous evolution to adaptcesses every time that is needed. It motivates that runtime
to market changes, thus, current process engineers ragesig variability support in business processes is needed.
the processes every time that is needed using ad hoc tech- Software Product Line¢SPL) systematizes the reuse
niques. This situation motivates that these changes,dalle across the set of similar products that a software company
runtime variability, must be managed. Some authors haveprovides. A. Schniederst al. explores the idea of apply-
used Software Product Lines (SPL) ideas to manage fit. ing (SPL) techniques to BDD in an approach calf-
Current approaches for documenting runtime variability cess Family Engineerin(PFE) [7]. Basically, PFE follows
in SPL and BDD, proposes different model representations.the SPL philosophy for managing the variability of the busi-
Unfortunately, we have determined that the expressivenessiess process of an unique business, thus, managing only one
level in BDD is not adequate and SPL solutions needs for software system. That is to say, each product in PFE rep-
adaptation to BDD context for describing under which cir- resents an evolution of the process (at runtime). However,
cumstances a business evolves. although PFE may be the solution to manage the evolution
In this paper, we present a model for representing run- of the business process of a company, proposed models, fea-
time variability in BDD systems. The main contributions ture models, are not expressive enough for documenting this
of this proposal are: (i) it presents the enough expressive- evolution because are devoted to design time.
ness level for representing runtime variability; and (iipp In addition, runtime variability has been also analyzed
cess engineers can represent and understand under whichn SPL, as J. Bosclet al. in feature models [4], or H.
events a business evolves and how is managed this evolusomaaet al. in software components-based architectures
tion, which is not present in current approaches. We call design [3][2]. Although these proposals presents valuable
this approach Product Evolution Model (PEM). solutions for other contexts, they need for integration and
extensions in the BDD context.
The main motivation of this paper is that analyzed ap-
1 Introduction proaches does not provide the expressiveness level needed
for representing runtime variability. In addition, curten

Business-Driven Developme(BDD) is a research field approaches does not take into account that process engi-
that provides techniques and mechanisms for designingneers must document, in their business process definitions,
software systems starting from the business processes of tha clear description about under which circumstances some

companies. Nowadays, BDD systems supports most of theohrocesses are In use anfd Wh'gh dot?ot.at runtlmle; and how
activities of a company due to it improves their daily work these Processes are performed in a business evo ution+(a par
allel collaboration between processes, a sequence, etc).

*This work has been partially supported by the European Cononiss Our approach integrates quoted approaches for model-
(FEDER) and Spanish Government under CICYT project Webefist ; : il : P
(TIN2006-00472) and under a scholarship from the Educati@hUniver- Ny runtlme_ variapility in BDD systems oriented prowdlng
sities Spanish Government Secretariat given to the authiefolhso Mon- a set of artifacts able to represent properly runtime evolu-

tero. tions and trigger events that implies these changes into the

business process of a company. For that purpose, it pro-__Feature Model Formal Definition Process Evolution Model
vides an abstract formal description of business evolstion @) s Business B
and a proposal for representing it basedaisiness Process AA SE
Model Notation(BPMN) [1]. The main benefits of our ap- AAAA/A/AAAA/\;
proach are that it provides the enough expressiveness leve Business A !\\A G
for representing runtime variability in BDD systems, and ‘p—"
that events or conditions that fires business evolutions can R —— H -k svry - —|—
be observed and analyzed by process engineers. v Instant t+ 1 X

This paper is structured as follows: Section 2 presents| rrocesses AA SVFu }
the background information needed to understand our ap- 5 AA//A/A \\ Mt
proach; Section 3 presents our approach for modeling run- Legend ©r AAAAAA N é
time variability in BDD systems, calleBroduct Evolution A core processes o NE_as
Model Section 4 presents the related work and motivation Lo—uaefueese: v Processes
of our work; and finally, in the last section, we draw the Figure 1.a. Formal Figure 1.b. Graphical
main conclusions of our approach. Description Notation
2 Prdiminaries Figure 1. Product Evolution Model approach

defining an evolution of a business by Fa

2.1 Software Product Lines and Feature functionin ¢and ¢+ 1.

Models

Software Product LinegSPL) systematizes the reuse feature B, the inclusion of A in a product implies the inclu-
across the set of similar products that a software companySlon of B in such product; and (iixcludes if a feature A
produces. The main goal of SPL is to obtain a reduction of €xcludes a feature B, both features can not be part of the
the overall development costs and times for the products de-S2me product.
rived from the product line. In SPL a product is composed . . .
of a set of common features and a set of variable features 2-2 Process Family Engineering

Common features appears in all product and variable fea-)]))
tures appears under demand of consumer's products. Ob- Process Family Engineerin@FE) [7] explores the idea

serving a certain product of an SPL, although it is described ©f @PPlying SPL philosophy for managing the evolution of

as a set of fixed features, some features can be in use in SPP Systems. PFE uses FM for representing the set of pro-
certain moment and some not. This is called runtime vari- C€SS€s contained into a business, and BPMN for represent-

ability. ing an specific process. In PFE we obtain only one software
system that evolves at runtime, where the features are pro-
cesses. Every process evolution represents a product that
are common and which are variable. A FM represents all contains a subset of features, but the PFE system contains
possible products in an SPL in terms of features. There ex-a/l the features. ,

ists several notations of FM as FODA [5] or J. Bosch [4]. A 1he main difference between SPL and PFE is that SPL

FM establishes a parental relationship between each égatur Provides a set of different products that shares common fea-
as shown in Figure 2, that can be: Mandatory if a child tures, and PFE provides only one product, which represents

feature node is defined as mandatory, it must be included® PUSINess, that evolves at runtime, and each possible con-
in every product that contains the parent; Qiptionat if a flguratlon of this business is managed as a product that con-
child feature node is defined as optional, it can be included!@inS & subset of features (processes) enabled at a certain
or not when its father feature appears in a product; £ili) moment of_the execut|o_n. Thus, given that FM are d_evoted
ternative if the relationship between a set of children nodes t© design time, the main problem of PFE is that this ap-
and their father is defined as alternative, only one of the Proach uses FM for managing runtime properties.

children features could be included in every father feature

products; and (iv)Or: if the relationship between a set of 3 Product Evolution M odel

children nodes and their father is defined as or, one or more

of them could be included in every father feature products. In this section, we present an abstract formal description
In addition to the parental relations between features, a FMof Product Evolution Modehnd a proposal for representing
can also contain cross-tree constraints between couples oit by means of an extension of BPMN using stereotypes. We
features. These are: [®equires If a feature A requires a also include a case study to illustrate our approach.

Feature ModelgFM) are one of the most used artifacts
for modeling variability, that is, specifying which feats

l:‘ : Core Features CF

D : Variable Features VF

Services

| Serve Normal || Serve Fast |

e
Establishment

Mandatory Optional Alternative
relation relation relation relation

Fast-Food Restaurant

Delivery

AN

l Auto l

l Cafeteria l

———————— ™

T

| [}
________ Birthday's party

[AF-+{B][Ale>]B]

Requires constraint Excludes constraint

Figure 2. Case Study: Fast Food Restaurant

FA(t, ServelnCafeteria)

SVFL: ()

FA(t+1, ¢)
SVF t+2 ; ServelnAuto

Serve in

Autoand |
Establishment
.

Serve in
. | Cafeteria and
Establishment
[+

Serve in
Establishment
2O

11:20 am
(t+2)
Cafeteria Service close at 10:00 am

Q...

10:00 am
(t+1)

Fast-food restaurant

A client has arrived
to Auto-Service

Figure 3. Fast-food restaurant Product Evolu-
tion Model BPMN Compositions

3.1 Formal Description

Let B be a business. Each business can be defined as
set of processes (denoted wit). Thus,B can be defined
as follows:

B={P,Py,..,P};k>0;1<i<n

Fa(t,SVFE) =SVF, 4, € VF
.SVFt 7& SVFt+1

Figure 1.a sketches a graphical representatiort,of
where it is represented the transformationdf F; into
SV F,.1. In an instant there exists an specific set. 81 F;
for businessB that evolves in instant + 1 to another dif-
ferent setSV Fyy;.

3.2 Graphical Notation

As shown previously, a business that evolves can be rep-
resented byB = (CF,SVF € VI, Fa). where the evolu-
tion is defined by thd’A function int.

In PFE feature models are used to represent which fea-
tures are variable and which do not. From this, a the set
of common features({F") and (/' F) can be obtained [6].
Thus,CF andV F' can be represented by means of a fea-
ture model.

However, the feature model cannot establish the order
of apparition of business processes, representédasue
to feature models are not devoted for temporal conditions
or variables {) [2]. For that purpose, we have to add a
new model with a graphical notation that represehits
the Product Evolution Modelwhich is defined by means of
a BPMN state machine where each state represents a prod-
uct and each evolution between two or more states, is rep-
resented by means of a transition that is an application of
F'A function. Figure 1.b shows how is defined an evolution

Let CF be the set of common processes or features andof & business by’ function int and¢ + 1 by means of

let VF be the set of variable features, thids defined for-
mally as a tuple containing all th€ ' and a subset of F'
denoted a$'V F:

B=(CF,SVF € VF)

BPMN. It represents an specific graphical notation for the
formal description of our approach, but other notations can
be applied.

To show our approach we use a fast-food restaurant case
study. Figure 2 depicts a simplified set of processes con-
tained into a fast-food restaurant whiskrve NormalServe

As shown before, in PFE approach, each configuration g,qt angserve in Establishmeatre C F and all the rest of

of the set of processes enabled at certain moment representpo processes arg F

a product. Thus, we can say that thé’ of a B are always
enabled at runtime, but the set of processe¥® il is not
fixed at runtime.

In Figure 3 we present the PEM

of our case study. Each process contains a BPMN state
chart that represents how all the processes are performed.
It defines the configuration of the business at runtime and

Thus, we can set up a product line that takes into acCoUntgyatches that in every runtime instanthere exists a dif-

this runtime variability. For formalizing these concepts w
should redefine each busind3ss:
B=(CF,SVF € VF,Fx:
s t,{Feature x ... x Feature}
— {Feature x ... X Feature})

whereFa is a function that given an instahtransform
the set ofSV F; into the new set of variable features of the
following time instant+1, that is to says'V F; 1, formally:

ferent SV F' selected that represents an evolution. In this
example, on a time instantthe restaurant open its cafete-
ria service, thus, there exists in parallel two differerg-pr
cessesServe in CafeteriandC F (Serve in Establishment
Normal/Fas). When the restaurant close its cafeteria ser-
vice on time instant + 1, 10:00 am Fa function is applied

and an evolution is done to another state composed only by
CF. After that the restaurant opens its Auto-Service, due
to a client has arrived with his car, and a new evolution is
applied fort + 2 time instant.

Figure 4. J. Bosch approach

State machine view Component model view Feature model view

<< kernel >>
<< control component >>[[%
MicrowaveControl K

Reactivate

o o=

Passivate
[Waiting for
Neighbor
R d
Waiting for H << optional >>
<< output component >>
BeeperComponent
—
Transaction
Abprted \()
Transaction
<< interface >>
Passive Acknowledgement
from all Neighbors ,-----m—-- Fee
1 | {feature = Beeper} | Jewwws
+ initialize()
+ beep()

* Atleast one neighbor active
* All neighbors passive

Figure 5. Gomaa approach

4 Related work and motivation

As shown in Section 2, FM are one of the most used ar-
tifacts for modeling variability. Unfortunately, as sholm
[2], FM are devoted to design variability, and not for run-
time variability. To the best of our knowledge, there exists
two approaches for documenting runtime variability. On
the one hand, J. Bosdt al. [4] introduces an extension of
FM for representing runtime variability. Bosch’s notation
syntax is slightly different from FODA's or FORM's nota-
tion. It introduces a new kind of feature, calledternal

feature represented by dashed rectangles, for representing
features that varies at runtime. Figure 4 depicts an example

of a feature model in this notation that represdfitefox
plugin support. Time instants and conditions or constsaint
to enable/disabl®Vebsite Debuggegulugin, as for example
concrete website domains, can not be represented by FM.
On the other hand, H. Gomaa al. [3][2] propose a
set of models for representing runtime variability based on
evolutionary reconfigurable software architectures. Tifie d

any approach that provides an appropriate modeling sup-
port for runtime variability for BDD systems. Bosch ap-
proach represents a first step toward enabling runtime vari-
ability support for feature models, but unfortunately it it
does not associate any additional information about when
or how some features can be in use at runtime and some not
(it does not take into accouiity). Gomaa proposal is a so-
lution to manage the evolution of software systems based on
architectural reconfiguration patterns and SPL ideas,tbut i
is focused to software components architectures context in
stead of BDD systems and FM does not represent how en-
able/disable features at runtimgy is partially supported

but it is not associated with any FM). Process engineers
must see processes that are added or removed from their
business design instead of software components reconfigu-
rations at a lower and concrete software development level.
Finally Schnieders proposal, PFE, uses FM for managing
runtime evolution, which are devoted to design time.

5 Conclusions

We propose a new approach for modeling runtime vari-
ability in BDD systems, calledProduct Evolution Model
The main advantages over current solutions are that our pro-
posal provides to process engineers an enough expressive
set of models which are able to represent and understand:
(i) under which trigger events or business policies a busi-
ness evolves and (ii) how is managed this evolution.

References

[1] BPMI. Business process modeling notation BPMN version
1.0 - may 3, 20040MG.
H. Gomaa. Feature dependent coordination and adaptation
of component-based software architectures.\WEAT '07:
Proceedings of the 4th Workshop on Coordination and Adap-
tation Techniques for Software Entitjex)07.
H. Gomaa and M. Hussein. Model-based software design and
adaptation. INCSEW '07: Proceedings of the 29th Interna-
tional Conference on Software Engineering Workshap87.
[4] J.V. Gurp, J. Bosch, and M. Svahnberg. On the notion of vari-
ability in software product lines. IWVICSA '01: Proceedings
of the Working IEEE/IFIP Conference on Software Architec-
ture (WICSA'01)2001.

(2]

(3]

ferent versions of an evolutionary system are considered al®]
software product line, where each version of the system is a
SPL member and the reconfiguration is defined by an state
machine that, for each component, represents the steps tha[%]
has to be performed to evolve from a normal operation state
to an inactive state. Once inactive, the component can be
removed and replaced with a different version of the com- [7)
ponent. Figure 5 depicts trigger events in the state machine
Given this state of art for runtime variability in BDD and

SPL, the motivation of this paper is that there not exists

K. Kang, S. Cohen, J. hess, W. Novak, and S. Peterson.
Feature-oriented domain analysis FODA feasibility study.
CMUJ/SEI-90-TR-21. Technical report, Carnegie Mellon Uni-
versity. SEI, 1990.

K. Pohl, G. Bbckle, and F. van der LindeBoftware Product
Line Engineering: Foundations, Principles and Techniques
Springer, September 2005.

A. Schnieders and F. Puhlmann. Variability mechanisms in
e-business process families.Rmoceedings of BIS '06: Busi-
ness Information SysterZ06.

