
Representing Runtime Variability in Business-Driven Development Systems∗

Ildefonso Montero, Joaquín Peña, Antonio Ruiz-Cortés
Departamento de Lenguajes y Sistemas Informáticos

Av. Reina Mercedes s/n, 41012 Seville (Spain)
University of Seville

{monteroperez, joaquinp, aruiz}@us.es

Abstract

Business-Driven Development(BDD) is a research field
that provides techniques and mechanisms for designing
software systems starting from the business processes of the
companies. Companies are in continuous evolution to adapt
to market changes, thus, current process engineers redesign
the processes every time that is needed using ad hoc tech-
niques. This situation motivates that these changes, called
runtime variability, must be managed. Some authors have
used Software Product Lines (SPL) ideas to manage it.

Current approaches for documenting runtime variability
in SPL and BDD, proposes different model representations.
Unfortunately, we have determined that the expressiveness
level in BDD is not adequate and SPL solutions needs for
adaptation to BDD context for describing under which cir-
cumstances a business evolves.

In this paper, we present a model for representing run-
time variability in BDD systems. The main contributions
of this proposal are: (i) it presents the enough expressive-
ness level for representing runtime variability; and (ii) pro-
cess engineers can represent and understand under which
events a business evolves and how is managed this evolu-
tion, which is not present in current approaches. We call
this approach Product Evolution Model (PEM).

1 Introduction

Business-Driven Development(BDD) is a research field
that provides techniques and mechanisms for designing
software systems starting from the business processes of the
companies. Nowadays, BDD systems supports most of the
activities of a company due to it improves their daily work

∗This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project Web-Factories
(TIN2006-00472) and under a scholarship from the Educationand Univer-
sities Spanish Government Secretariat given to the author Ildefonso Mon-
tero.

and their strategic management. Thus, Information Tech-
nology (IT) infrastructure must evolve to adapt companies
to the continuous evolution of markets. Currently this evo-
lution is supported byad hoctechniques to maximize the
level or reuse from one version to another, redesign the pro-
cesses every time that is needed. It motivates that runtime
variability support in business processes is needed.

Software Product Lines(SPL) systematizes the reuse
across the set of similar products that a software company
provides. A. Schniederset al. explores the idea of apply-
ing (SPL) techniques to BDD in an approach calledPro-
cess Family Engineering(PFE) [7]. Basically, PFE follows
the SPL philosophy for managing the variability of the busi-
ness process of an unique business, thus, managing only one
software system. That is to say, each product in PFE rep-
resents an evolution of the process (at runtime). However,
although PFE may be the solution to manage the evolution
of the business process of a company, proposed models, fea-
ture models, are not expressive enough for documenting this
evolution because are devoted to design time.

In addition, runtime variability has been also analyzed
in SPL, as J. Boschet al. in feature models [4], or H.
Gomaaet al. in software components-based architectures
design [3][2]. Although these proposals presents valuable
solutions for other contexts, they need for integration and
extensions in the BDD context.

The main motivation of this paper is that analyzed ap-
proaches does not provide the expressiveness level needed
for representing runtime variability. In addition, current
approaches does not take into account that process engi-
neers must document, in their business process definitions,
a clear description about under which circumstances some
processes are in use and which do not at runtime; and how
these processes are performed in a business evolution (a par-
allel collaboration between processes, a sequence, etc).

Our approach integrates quoted approaches for model-
ing runtime variability in BDD systems oriented providing
a set of artifacts able to represent properly runtime evolu-
tions and trigger events that implies these changes into the

business process of a company. For that purpose, it pro-
vides an abstract formal description of business evolutions
and a proposal for representing it based onBusiness Process
Model Notation(BPMN) [1]. The main benefits of our ap-
proach are that it provides the enough expressiveness level
for representing runtime variability in BDD systems, and
that events or conditions that fires business evolutions can
be observed and analyzed by process engineers.

This paper is structured as follows: Section 2 presents
the background information needed to understand our ap-
proach; Section 3 presents our approach for modeling run-
time variability in BDD systems, calledProduct Evolution
Model; Section 4 presents the related work and motivation
of our work; and finally, in the last section, we draw the
main conclusions of our approach.

2 Preliminaries

2.1 Software Product Lines and Feature
Models

Software Product Lines(SPL) systematizes the reuse
across the set of similar products that a software company
produces. The main goal of SPL is to obtain a reduction of
the overall development costs and times for the products de-
rived from the product line. In SPL a product is composed
of a set of common features and a set of variable features.
Common features appears in all product and variable fea-
tures appears under demand of consumer’s products. Ob-
serving a certain product of an SPL, although it is described
as a set of fixed features, some features can be in use in a
certain moment and some not. This is called runtime vari-
ability.

Feature Models(FM) are one of the most used artifacts
for modeling variability, that is, specifying which features
are common and which are variable. A FM represents all
possible products in an SPL in terms of features. There ex-
ists several notations of FM as FODA [5] or J. Bosch [4]. A
FM establishes a parental relationship between each feature,
as shown in Figure 2, that can be: (i)Mandatory: if a child
feature node is defined as mandatory, it must be included
in every product that contains the parent; (ii)Optional: if a
child feature node is defined as optional, it can be included
or not when its father feature appears in a product; (iii)Al-
ternative: if the relationship between a set of children nodes
and their father is defined as alternative, only one of the
children features could be included in every father feature
products; and (iv)Or: if the relationship between a set of
children nodes and their father is defined as or, one or more
of them could be included in every father feature products.
In addition to the parental relations between features, a FM
can also contain cross-tree constraints between couples of
features. These are: (i)Requires: If a feature A requires a

Processes

Instant t

Instant t + 1

SVF t+1

Processes

SVF t

B

Business

B

Business

Formal Definition Process Evolution Model

Business B

...

t + 1

F (t, SVFt)

t + k;
k > 0...

Feature Model

Business B

Processes

... F (t, SVFt)

CF

VF

Legend

: Core Processes CF

: Variable Processes VF

Figure 1.a. Formal
Description

Figure 1.b. Graphical
Notation

CF +
SVF t

CF +
SVF t + 1

Figure 1. Product Evolution Model approach
defining an evolution of a business by F∆

function in t and t + 1.

feature B, the inclusion of A in a product implies the inclu-
sion of B in such product; and (ii)Excludes: if a feature A
excludes a feature B, both features can not be part of the
same product.

2.2 Process Family Engineering

Process Family Engineering(PFE) [7] explores the idea
of applying SPL philosophy for managing the evolution of
BDD systems. PFE uses FM for representing the set of pro-
cesses contained into a business, and BPMN for represent-
ing an specific process. In PFE we obtain only one software
system that evolves at runtime, where the features are pro-
cesses. Every process evolution represents a product that
contains a subset of features, but the PFE system contains
all the features.

The main difference between SPL and PFE is that SPL
provides a set of different products that shares common fea-
tures, and PFE provides only one product, which represents
a business, that evolves at runtime, and each possible con-
figuration of this business is managed as a product that con-
tains a subset of features (processes) enabled at a certain
moment of the execution. Thus, given that FM are devoted
to design time, the main problem of PFE is that this ap-
proach uses FM for managing runtime properties.

3 Product Evolution Model

In this section, we present an abstract formal description
of Product Evolution Modeland a proposal for representing
it by means of an extension of BPMN using stereotypes. We
also include a case study to illustrate our approach.

Services

Fast-Food Restaurant

Serve

Establishment

Cafeteria

Cook

Birthday´s party

Serve FastServe Normal

Delivery

: Core Features CF

: Variable Features VF

A

B

A

B

Mandatory
relation

Optional
relation

A

B1 B2

Alternative
relation

A B
Requires constraint

A B
Excludes constraint

A

B1 B2

Or
relation

Auto

Figure 2. Case Study: Fast Food Restaurant

. . .
Serve in

Cafeteria and
Establishment

10:00 am
(t +1)

F
as

t-
fo

od
 r

es
ta

ur
an

t

Serve in
Establishment

F (t, ServeInCafeteria)
SVF t+1 : SVF t+2 : ServeInAuto

F (t + 1,)

Serve in
Auto and

Establishment
. . .

Cafeteria Service close at 10:00 am

11:20 am
(t +2) A client has arrived

to Auto-Service

Figure 3. Fast-food restaurant Product Evolu-
tion Model BPMN Compositions

3.1 Formal Description

Let B be a business. Each business can be defined as a
set of processes (denoted withP). Thus,B can be defined
as follows:

B = {P1, P2, ..., Pk}; k > 0; 1 ≤ i ≤ n

Let CF be the set of common processes or features and
let VF be the set of variable features, thusB is defined for-
mally as a tuple containing all theCF and a subset ofV F

denoted asSV F :

B = (CF, SV F ∈ V F)

As shown before, in PFE approach, each configuration
of the set of processes enabled at certain moment represents
a product. Thus, we can say that theCF of aB are always
enabled at runtime, but the set of processes inV F is not
fixed at runtime.

Thus, we can set up a product line that takes into account
this runtime variability. For formalizing these concepts we
should redefine each businessB as:

B = (CF, SV F ∈ V F, F∆ :

: t, {Feature × ... × Feature} 7→

7→ {Feature × ... × Feature})

whereF∆ is a function that given an instantt transform
the set ofSV Ft into the new set of variable features of the
following time instantt+1, that is to saySV Ft+1, formally:

F∆(t, SV Ft) = SV Ft+1 ∈ V F

•SV F t 6= SV F t+1

Figure 1.a sketches a graphical representation ofF∆,
where it is represented the transformation ofSV Ft into
SV Ft+1. In an instantt there exists an specific set ofSV Ft

for businessB that evolves in instantt + 1 to another dif-
ferent setSV Ft+1.

3.2 Graphical Notation

As shown previously, a business that evolves can be rep-
resented byB = (CF, SV F ∈ V F, F∆). where the evolu-
tion is defined by theF∆ function int.

In PFE feature models are used to represent which fea-
tures are variable and which do not. From this, a the set
of common features (CF) and (V F) can be obtained [6].
Thus,CF andV F can be represented by means of a fea-
ture model.

However, the feature model cannot establish the order
of apparition of business processes, represented asF∆, due
to feature models are not devoted for temporal conditions
or variables (t) [2]. For that purpose, we have to add a
new model with a graphical notation that representsF∆,
theProduct Evolution Model, which is defined by means of
a BPMN state machine where each state represents a prod-
uct and each evolution between two or more states, is rep-
resented by means of a transition that is an application of
F∆ function. Figure 1.b shows how is defined an evolution
of a business byF∆ function in t and t + 1 by means of
BPMN. It represents an specific graphical notation for the
formal description of our approach, but other notations can
be applied.

To show our approach we use a fast-food restaurant case
study. Figure 2 depicts a simplified set of processes con-
tained into a fast-food restaurant whichServe Normal, Serve
FastandServe in EstablishmentareCF and all the rest of
the processes areV F . In Figure 3 we present the PEM
of our case study. Each process contains a BPMN state
chart that represents how all the processes are performed.
It defines the configuration of the business at runtime and
sketches that in every runtime instantt there exists a dif-
ferentSV F selected that represents an evolution. In this
example, on a time instantt the restaurant open its cafete-
ria service, thus, there exists in parallel two different pro-
cesses:Serve in CafeteriaandCF (Serve in Establishment
Normal/Fast). When the restaurant close its cafeteria ser-
vice on time instantt+1, 10:00 am,F∆ function is applied
and an evolution is done to another state composed only by
CF . After that the restaurant opens its Auto-Service, due
to a client has arrived with his car, and a new evolution is
applied fort + 2 time instant.

Firefox

Plugin

Flash Java Website
Debugger

runtime

Feature

External Feature

or specialization

Figure 4. J. Bosch approach

Beeper

MicrowaveControl

<< optional >>

BeeperComponent
<< output component >>

IBeeper
<< interface >>

{feature = Beeper}

+ initialize()
+ beep()

......

Microwave
System

ControlSystem

...

...

<< kernel >>
<< control component >>

Feature model viewComponent model viewState machine view

Active

Passivating

Passive

Inactive

Waiting for
Acknowledgement

Passivate
[Processing
Transaction]

Reactivate

Passivate
[Waiting for
Neighbor

Response]

Transaction
Started

Transaction
Aborted

Passive Acknowledgement
from all Neighbors

Transaction
Ended *

Transaction
Ended **

* At least one neighbor active
** All neighbors passive

Activate

Figure 5. Gomaa approach

4 Related work and motivation

As shown in Section 2, FM are one of the most used ar-
tifacts for modeling variability. Unfortunately, as shownby
[2], FM are devoted to design variability, and not for run-
time variability. To the best of our knowledge, there exists
two approaches for documenting runtime variability. On
the one hand, J. Boschet al. [4] introduces an extension of
FM for representing runtime variability. Bosch’s notation
syntax is slightly different from FODA’s or FORM’s nota-
tion. It introduces a new kind of feature, calledexternal
feature, represented by dashed rectangles, for representing
features that varies at runtime. Figure 4 depicts an example
of a feature model in this notation that representsFirefox
plugin support. Time instants and conditions or constraints
to enable/disableWebsite Debuggerplugin, as for example
concrete website domains, can not be represented by FM.

On the other hand, H. Gomaaet al. [3][2] propose a
set of models for representing runtime variability based on
evolutionary reconfigurable software architectures. The dif-
ferent versions of an evolutionary system are considered a
software product line, where each version of the system is a
SPL member and the reconfiguration is defined by an state
machine that, for each component, represents the steps that
has to be performed to evolve from a normal operation state
to an inactive state. Once inactive, the component can be
removed and replaced with a different version of the com-
ponent. Figure 5 depicts trigger events in the state machine.

Given this state of art for runtime variability in BDD and
SPL, the motivation of this paper is that there not exists

any approach that provides an appropriate modeling sup-
port for runtime variability for BDD systems. Bosch ap-
proach represents a first step toward enabling runtime vari-
ability support for feature models, but unfortunately it it
does not associate any additional information about when
or how some features can be in use at runtime and some not
(it does not take into accountF∆). Gomaa proposal is a so-
lution to manage the evolution of software systems based on
architectural reconfiguration patterns and SPL ideas, but it
is focused to software components architectures context in-
stead of BDD systems and FM does not represent how en-
able/disable features at runtime (F∆ is partially supported
but it is not associated with any FM). Process engineers
must see processes that are added or removed from their
business design instead of software components reconfigu-
rations at a lower and concrete software development level.
Finally Schnieders proposal, PFE, uses FM for managing
runtime evolution, which are devoted to design time.

5 Conclusions

We propose a new approach for modeling runtime vari-
ability in BDD systems, calledProduct Evolution Model.
The main advantages over current solutions are that our pro-
posal provides to process engineers an enough expressive
set of models which are able to represent and understand:
(i) under which trigger events or business policies a busi-
ness evolves and (ii) how is managed this evolution.

References

[1] BPMI. Business process modeling notation BPMN version
1.0 - may 3, 2004.OMG.

[2] H. Gomaa. Feature dependent coordination and adaptation
of component-based software architectures. InWCAT ’07:
Proceedings of the 4th Workshop on Coordination and Adap-
tation Techniques for Software Entities, 2007.

[3] H. Gomaa and M. Hussein. Model-based software design and
adaptation. InICSEW ’07: Proceedings of the 29th Interna-
tional Conference on Software Engineering Workshops, 2007.

[4] J. V. Gurp, J. Bosch, and M. Svahnberg. On the notion of vari-
ability in software product lines. InWICSA ’01: Proceedings
of the Working IEEE/IFIP Conference on Software Architec-
ture (WICSA’01), 2001.

[5] K. Kang, S. Cohen, J. hess, W. Novak, and S. Peterson.
Feature-oriented domain analysis FODA feasibility study.
CMU/SEI-90-TR-21. Technical report, Carnegie Mellon Uni-
versity. SEI, 1990.

[6] K. Pohl, G. Böckle, and F. van der Linden.Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer, September 2005.

[7] A. Schnieders and F. Puhlmann. Variability mechanisms in
e-business process families. InProceedings of BIS ’06: Busi-
ness Information Systems, 2006.

