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Abstract: A formulation based on scalar potentials for the numerical solution of three-dimensional nonlinear static 
electromagnetic field problems is presented. The resulting equations are solved using finite elements, based on a 
Galerkin procedure. A general-purpose package called TOSCA has been developed, implemented and tested. Results are 
presented for three cases and compared with measured values. 

 
 
 List of principal symbols 
 
  B = magnetic flux density 
 H = magnetic field intensity 
  J = current density 
  He      = coercive field intensity 
  µ = permeability 
  ψ = magnetic scalar potential 
  φ = reduced magnetic scalar potential 
     n̂  = unit outward normal vector 
  t̂  = unit surface tangent vector 
   
1 Introduction 
 

      Electromagnetic fields are important in industrial and 
scientific applications. The scale of production of 
particular devices varies tremendously, but in all cases, 
computer solutions for the fields play an essential part in 
their design. Very accurate results can be obtained if the 
fields are essentially two-dimensional, 1 but the same is not 
true when the fields are three-dimensional. 

            Three-dimensional solutions have been obtained by 
solving either integral2 or differential equations.3 The 
integral operator formulation has many advantages for 
magnetostatic computations: only the iron and coils are 
specified, there is no mesh in the air; in addition, the 
solution is naturally bounded at infinity rather than at the 
mesh boundary, as would be true of a differential operator 
method. However, there are also disadvantages: 
complicated geometry causes a tremendous escalation in 
the cost; recovering flux densities from the solution is 
expensive; flux densities close to the surface of magnetic 
materials are strongly affected by the discretisation. 
       In general, the solution of integral equations has given 
the best results when the problem geometry was simple. 
For the linear case, i.e. a problem for which the material 
permeability is independent of field, the domain of the 
integral equation reduces from volumes to surfaces, thus 
simplifying the mesh and decreasing the cost considerably. 
Some of the disadvantages of the integral approach can be 
avoided by solving the corresponding partial differential 
equation; however, algorithms based on differential 
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operators have none of the advantages mentioned above. 
For these reasons, both approaches, separately and in 
combination, will continue to excite interest and be used in 
the computer solution of field problems; however, the 
method presented in this paper is based on the differential 
operator. 

Partial differential equations can be solved by 
discretising the domain of the operator into finite elements. 
However, it is not obvious which formulation of the three 
dimensional magnetostatic problem will lead to an efficient 
computer algorithm. For the calculation of two-dimensional 
fields, the magnetic vector potential has been widely used 4, 

5.The extension of this approach to three-dimensional fields 
leads to unnecessary complications. The potential has three 
components, and its gauge must be specified, either by 
using penalty functions or putting the gauge information 
into the operator - which provides a difficult interface 
boundary condition. It is only the electric currents that 
make it necessary to use a potential that can specify a 
rotational field. 

A scalar potential can be used, provided that special 
provision is made for the fields from electric currents. The 
methods proposed 6,7 have involved expressing the 
total field as the sum of two parts; the first from electric 
currents being obtained by direct integration from the 
known currents; the second resulting from the interaction 
of the current fields with magnetic materials, and this can 
be represented as the gradient of a scalar potential (the 
reduced potential). It has been shown8 that this approach 
gives rise to a severe loss of precision caused by 
cancellation between the separately-computed parts of the 
total field. The solution to this problem8 is the coupling 
together of differently-defined scalar potentials; where 
necessary (e.g. inside conductors), the reduced scalar 
potential is used, and elsewhere a scalar potential whose 
gradient is the total field. This has been shown to be 
effective in two dimensions.8 In this paper, the method is 
extended to three dimensions and its efficiency is 
demonstrated by comparison of measurements with 
computed results obtained by the TOSCA code. The code 
is based on the total scalar potential formulation presented 
in this paper and can be used for a wide class of static 
problems 

The use of a total field scalar potential is also of 
interest for integral equation formulations.9 It gives a more 
stable and accurate solution than that obtained by other 
approaches. However, for nonlinear problems, the 
disadvantages of integral methods still apply. 
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2 Formulation of the defining equations 

2. 1 Basic equations of nonlinear magnetostatics lO 
The following subset of Maxwell's equation describes the 
nonlinear magnetostatic field 
                    Div   0=B                                           (1) 
                    Curl =H J                                                   (2)  
where B is the magnetic induction, H the field intensity 
and J the current density, which is a known function. The 
magnetic induction and the field intensity are related by a 
constitutive equation of the form        
                      ( )( )µ= − cB H H H            (3) 
 
where µ is the material permeability. 
       For  nonlinear   problems,  µ is a function  of   H   and, 
in general, it may be a tensor. Hc is the material's coercive 
field. In 'soft' magnetic materials, the coercive field 
intensity is normally assumed to be zero; 'hard' magnetic 
materials, e.g. permanent magnets, have nonzero coercive 
field intensity. 

2.2 Derivation of the magnetic scalar potential  
If, in a region of space Ω 
                   Curl =0H                  
then  H can be represented as the gradient of a scalar 
potential 
                  ψ= −∇H                                                       (4)                                   
The scalar potential ψ whose gradient gives the total field 
will be called the total scalar potential. 
      If, in a region of space Ωj             
                    Curl 0≠H  
 
i.e. Ωj contains electric currents, but not necessarily 
everywhere, the H can be separated into two parts      
                   m s= +H H H                                                (5) 
 
where Hs is the field produced by all the currents contained 
in Ωj and Hm is the rest of the field. With this partitioning 
of the field 
 
               Curl =0mH  
and Hm can be represented as the gradient of a scalar 
potential (the reduced scalar potential) 
 
                   m φ= −∇H  
 
The field Hs can be found for any prescribed currents by 
evaluation 
 

                   1 1
4

j

s d
Rπ Ω

⎛ ⎞= ×∇ Ω⎜ ⎟
⎝ ⎠∫H J                    (6) 

 
where J is the current density and ′= −R r r  is the 
distance from the source point r' and the field point r 11. 
In some cases, this can be integrated to give a closed form 
expression for Hs; for complicated current paths, the 
expression can be evaluated by a combination of analytic 
integration and numerical quadrature. 
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2.3 The reduced scalar potential approach 

Separating the magnetostatic field into two parts, as shown 
in eqn. 5, immediately gives an attractive formulation, and 
this has been used to obtain solutions by solving 
                      0sµ φ µ−∇ ∇ +∇ =H                               (7) 
for the unknown φ , by the finite-element method7. Here 
Hs is computed directly from eqn. 6. 

However, in magnetic materials, the two parts of the 
field Hm and Hs tend to be of similar magnitude but 
opposite direction. Therefore cancellation occurs in com-
puting the field intensity H, which gives a loss in 
accuracy.8 The effect of this is that the results can become 
very inaccurate when µ is large. It is clear that the total 
scalar potential should be used to avoid the cancellation, 
but this cannot be used to solve the whole problem, since it 
cannot fully describe the fields produced by electric 
currents. 
2.4 The two-potential approach 

Both total scalar potentials and reduced scalar potentials 
must be combined to avoid the cancellation associated with 
reduced potentials and yet allow the inclusion of electric 
currents8. In regions Ωj that contain currents, the reduced 
scalar potential must be used, and elsewhere the total 
scalar potential. The solutions must be coupled at the 
interfaces of the regions. Consider a two-region problem as 
shown in Fig. 1; in region Ωj there are currents and the 
permeability is constant; in region Ωk there are volumes of 
magnetic material and no currents. 

In Ωk   

                     0sµ φ µ−∇ ∇ +∇ =H       (8) 
In Ωk 

                     0cµ φ µ−∇ ∇ −∇ =H  (10) 

At the interface Τkj between regions Ωj and Ωk the normal 
component of the magnetic induction (B) and the 
tangential components of the field intensity (ll) must be 
continuous. If n̂  is the outward normal from Ωk, and t̂  a 
tangent direction to Τkj then 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Potential domains and topology 

Ωk:  iron ( 0µ ψ∇ ∇ = ) 
Ωj :  free space ( 2

0φ∇ = ) 
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or 
              ( ) ( )ˆ ˆk c k j s kH n H nµ ψ µ φ−∇ − = −∇ +  (10) 
and 
 
              ˆ ˆ( )k s mH t H H t= +  
or 
           ( )ˆ ˆ

st H tψ φ−∇ = −∇ +        (11) 
 
Equation 11 can be integrated over any path on ΤJk to give 
an integral relationship between the potentials at two 
points (A and B) 
 

 ˆ
B

A B A B s
A

H tdsψ ψ φ φ− = − + ∫  (12) 

 
where Hs is obtained explicitly from eqn. 6. 
 
2.5 Other approachess 

There are several alternative approaches to the formulation 
of three-dimensional electromagnetic fields using scalar 
potentials. In both of the above methods, the fields from 
prescribed currents are taken out of the partial differential 
equation, and included directly by evaluating eqn. 6. 

This has advantages for solutions obtained using finite 
elements, since the conductors become independent of the 
mesh. However, it is possible to devise methods that 
require the conductors to be included in the mesh, thus 
avoiding evaluating eqn. 6. The T-Ω method18 is perhaps 
the most well known of these. In this method,   T is found 
by solving a partial differential equation, whose limits are 
the conductor volumes. T and Hs only differ by the 
gradient of scalar potential, but they are evaluated in very 
different ways. 

3 Finite-element method 

3.1 Weighted residuals 

For a complete derivation of weighted residual methods 
and the Galerkin method in particular, see Reference 12. 
The problem is as follows: it is required to solve a partial 
differential equation of the general form 
 
            ( ) ( )   : u r Q r rα∇ ∇ = ∈Ω  
subject to 
 

       ( ) ( ) 10   :      u r p r r
n

α ∂
− = ∈Τ

∂
 (13) 

and 
                 ( ) 0 20   :      u r u r− = ∈Τ  

where the surfaces T1 and T2 form the boundary of n, and u 
is to be approximated by a set of basis functions 
                 ˆ i iu u N u= = ∑                (14) 
 
The ui are a set of parameters that determine the approximate 
solution and the Nj are a set of prescribed functions. In the finite 
element method, the space Ω is discretised into elements, the Ni 
are simple polynomials spanning the elements and the ui are nodal 
parameters. 
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A solution to the problem can be obtained by con-

structing a set of weighted residuals: 
 

 
( )

( )
1

2

0

ˆˆ

0

i i i

i

uR W u Q d W p d
n

W u u d

α α
Ω Τ

Τ

∂⎛ ⎞= ∇ ∇ − Ω+ − Τ⎜ ⎟∂⎝ ⎠

+ − Τ =

∫ ∫

∫
 (15) 

 

where the  , ,  and i i iW W W   are an arbitrary set of weighting 
functions. It is convenient to use integration by parts to 
reduce the order of continuity required for the functions û . 
In this case, integration by parts of the first term in the 
above equation gives 
 

( ) ˆˆ ˆ

0

i i i

i

uW u Q d W ud W d
n

WQ d

α α α
Ω Ω Τ

Τ

∂
∇ ∇ − Ω = − ∇ ∇ Ω+ Τ

∂

− Τ =

∫ ∫ ∫

∫
  (16) 

  
and choosing i iW W= −  eliminates the normal gradient 
term along the boundary T1. Thus eqn. 15 becomes      

( )

1

1 2

0

ˆ

ˆ
0

i i i i

i i

R W ud W Qd W pd

uW d W u u d
n

α

α

Ω Ω Τ

Τ Τ

= − ∇ ∇ ∇ Ω− Ω+ Τ

∂⎛ ⎞+ Τ+ − Τ =⎜ ⎟∂⎝ ⎠

∫ ∫ ∫

∫ ∫
             (17) 

 
The Galerkin method requires the Wj to be identified with 
the basis functions. 

That is 
     i iW N=                                                                      (18) 
 
As a consequence of this, since the Ni are functions local to 
elements containing the nodal parameter ui, eqn. 17 defines a set 
of algebraic equations based on the weighting functions (Ni) and 
hence on the nodes. The boundary condition on T2 is usually 
enforced and therefore the appropriate residuals are eliminated. 

The problem has been reduced to the solution of a set of linear 
equations of the form 
 
      iAu C=                                                                     (19) 
with 
 
       ij i jA N dα

Ω

= ∇ ∇ Ω∫                                                   (20) 

 
The matrix A is sparse, symmetric and positive definite for 
this particular choice of weighting functions. 
 
        i iC N Qd

Ω

= Ω∫                                                         (21) 

3.2 The two-scalar potential (ψφ) formulation 

Here the problem is divided into two regions, Ωk and Ωj (Fig. 1). 
In each region, a finite element subdivision is made; however, 
the problem is not completely defined, 
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for on the boundary Τjk, interface conditions for the 



potential and its normal derivatives are available (eqns. 10 
and 11), rather than boundary conditions as described in 
Section 3.1. This gives a more general result for integration 
by parts (eqn. 16) which must include another term for the 
interface Τjk. 
 

That is:  
ˆ

i
uW d
nΤ

∂
Τ

∂∫  

  
Applying the Galerkin method to each region independently, 
 

      1

1

0
k k

k

k
i i i

i i c
k

R W d W d
n

W pd W d

ψµ ψ µ

µ

Ω Τ

Τ Ω

∂⎛ ⎞= − ∇ ∇ Ω+ Τ⎜ ⎟∂⎝ ⎠

+ Τ− ∇ Ω =

∫ ∫

∫ ∫ H
         (22) 

 
and 
 

    1

1

0
j k

j
i i i

i
j

R W d W d
n

W pd

φφψ µ
Ω Τ

Τ

∂⎛ ⎞= − ∇ ∇ Ω+ Τ⎜ ⎟∂⎝ ⎠

+ Τ =

∫ ∫

∫
             (23) 

where µj has been removed, since it is assumed constant in 
the region Ωj. 

Furthermore, requiring 0j k
i iR R+ = , using the interface 

conditions (eqns. 10 and 12) and continuity of the weight 
functions between Ωj and Ωk gives (T1j and T1k are the 
portions of Tj on which normal derivative boundary 
conditions are imposed): 

 

  ( )

1 1

ˆ
k j

jk

k j k

i i

i s

i c i i

W d W d

W H n d

W d W pd W pd

µ ψ φ

µ

Ω Ω

Τ

Ω Τ Τ

∇ ∇ Ω+ ∇ ∇ Ω =

− Τ

− ∇ Ω+ Τ+ Τ

∫ ∫

∫

∫ ∫ ∫H

            (24) 

 
After applying the Galerkin method to eqn. 24 with a 
finite-element discretisation, the coefficient matrix is 
identical to eqn, 20 with appropriate permeability. At the 
interface Tjk, either φi or ψi can be eliminated by eqn. 12. 
Eliminating φ results in a right-hand side term for a node 
on the interface that is given by 
 
       i i iC Ag h= −                                                            (25) 
 
where 
 

       
0

it

i sg dt= ∫H                                                              (26) 

 
       ˆ

jk

i i k
T

h N n d= Τ∫ sH                      (27) 
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3.3 Numerical methods used in the program 

In each region, a finite-element subdivision is made and a 
standard assembly procedure is followed. The contribution 
to the matrix A from an element is of the form (c.f. eqn. 20) 
      

  
e

j j ji i i
ij

N N NN N N
a d

x x y y z z
µ

Ω

∂ ∂ ∂⎛ ⎞∂ ∂ ∂
= + + Ω⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∫            (28) 

  
where Ωe is the volume of the element. The contribution to 
the right-hand sides from an element with a node (l) on the 
interface Tjk is 
     i li lc a g=                                                                     (29) 
where g is given by eqn. 26. 
 If the element possesses a facet that forms part of Tjk, 
its contribution to the right-hand side will include 
 
     ˆi i s

facet

c N nd= Τ∫ H                                                      (30) 

The TOSCA program uses 8-, or 20-node isoparameteric 
brick elements. The element coefficients are evaluated by 
Gaussian quadrature. An absolute relationship between φ 
and ψ must be specified at least at one point on the 
interface to ensure uniqueness. This was normally done by 
setting both to zero on a plane of symmetry, but a single 
point was used if the interface surface did not meet a plane 
of symmetry. The relationship between φ and ψ at other 
points on an interface was then found from eqn. 12 by 
Gaussian quadrature along paths in the interface. This was 
done incrementally, moving from a node to its neighbour 
on the interface, in the same facet. A wide range of 
conductor geometries were available 13. 

The resulting system of linear equations were solved 
using a preconditioned conjugate gradient method34. 
Nonlinear permeabilities were included by updating the 
permeabilities after each solution and solving again. This 
process was repeated until convergence was achieved. 

3.4 Forces 

Many problems require the evaluation of forces obtained 
by integrating the 'Maxwell stress' 2

0/ 2B µ over defined 
surfaces in free space. If the force on a particular region 
of iron is required, then the most convenient procedure is 
to integrate the three force components over each surface 
element of the region of interest. The condition defining 
the direction of the force is given by 
 
         n.B = (B.F)/ F                                                  (31) 
 
where the coplanar vectors n, B and F are the normal, total 
field and total force vectors, respectively, at a surface 
point. The vector B is obtained from the finite element 
shape functions and the forces are then integrated 
numerically by Gaussian quadrature in the usual way. 

In general, the element size can never be reduced such 
that variations in the potential of higher order than the 
element shape function can be neglected. This is important 
with nonrectangular 8-node isoparametric brick elements if 
the shape-function derivatives are used to compute field 
values. The cross terms in the shape functions (e.g. xy) 
give a strong coupling between the element distortion, the 
higher-order potential variations and the field values. 
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Higher-order elements avoid this difficulty. Rectangular 
elements are essential on the surfaces where Maxwell 
stress integrations are carried out if 8-node brick elements 
are used. 

4 Results 

The first release of the TOSCA program runs as a 'batch 
job'; interactive data preparation and result retrieval are not 
possible, although some data checking via 'batch graphics' 
has been provided. The finite-element mesh is developed 
by automatically subdividing hexahedra into elements. If a 
problem consists of rectangular geometry, the whole 
process has been made automatic and only the leading 
dimensions have to be supplied - a regular topology 
rectangular mesh is produced. More complex geometries 
can be handled by another mesh generation macro that 
allows an irregular topology mesh in one plane, regular in 
the third dimension. As well as solving magnetostatic 
problems with hard or soft magnetic materials, the code 
can also be used for electrostatic solutions, including 
volume charges. 

4. 1 Type 1 bending magnet 

For this test a magnet showing large nonlinear effects was 
used. The Rutherford Laboratory type 1 bending magnet 
shows a 17% departure from linearity of its central field 
for a current of 450 A*. The magnet is made of two 
different types of steel, and the geometry is shown in Fig. 
2. Fig. 3 shows the variation in field along the axis of the 
magnet, measured and computed, and Fig. 4 the error in 
the computed solution as a percentage of the central field. 

4.2 Vernier linear motor 

This problem was posed by J.W. Finch†. The motor has a 
small air gap and its fields are strongly influenced by 
saturation of the iron yoke. The geometry is shown in Fig. 
5. An integral equation solution has been used to compute 
the force on the movable 'rotor' as a function of 
displacement out of the yoke gap. Poor results were 
obtained because 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

Fig. 2 Geometry of type I bending magnet   .NEWMAN, M.J.: Private communication. RITCHIE, P.J.S., and LOACH. B.G.: 
'Nimrod beam line equipment data handbook' (Rutherford Laboratory. 1968) 

 † FINCH. J.W.: Department of Electrical Engineering, University of 
 Newcastle, Private communication 
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the fields in the airgap were strongly affected by the 
problem discretisation. The same problem was solved 
using the TOSCA program; measured and computed 
forces as function of displacement are shown in Fig. 6. A 
refined mesh in the region of the airgap and rotor had to 
be used to achieve this accuracy. Approximately 8000 
nodes were required and the solution time was of the 
order of 25 min, (IBM 360/195) 

4.3 Stepping motor 

The geometry of the stepping motor is shown in Fig. 7. 
Inductance calculations on a two-dimensional computer 
program had shown good agreement with measurement for 
some rotor positions, but very poor agreement for other 
positions ‡. Good agreement was obtained when the rotor 
teeth were aligned with the poles of the stator that carry 
coils. In this case the airgap is very small. When the rotor 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 

Fig. 3     Flux density as a function of axial position for type 1 
          bending magnet (using 5200 8-node brick elements) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Error in computed solution for type 1 bending magnet 

 
 
 
 
* STEPHENSON, M.: Department of Electrical Engineering, 
 University of Leeds. Private communication 
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slots were aligned with the same poles, values for 
computed and measured inductances disagreed. In this 
case the airgap of the motor was large compared to its 
length and the errors were thought to be caused by this. 
An analysis of a three-dimensional model of this motor 
was carried out using the TOSCA program. The results 
are shown in Table 1; the agreement for the case when 
the slots are aligned is much better. Each case took 15 
nun c.p.u. time. 
 

Table 1: Computed and measured inductances for the 
stepping motor 

 

A Rotor teeth aligned with stator poles 
Computed inductance, mH Current 

Amps 
Measured 
inductance, mH 2Dmodel 3D (TOSCA) 

4 111 111 116 
8 66 66.5 68 
B Rotor slots aligned with stator poles 

Computed inductance, mH Current 
Amps 

Measured 
inductance, mH 20 model 3D (TOSCA) 

4 19.8 13.2 20.6 
8 19.8 13.2 20.5 
 

5 Conclusions 
 

A three-dimensional finite-element program (TOSCA) has 
been developed in order to examine the effectiveness of the 
two-scalar potential solution for magnetostatic field 
problems. The results shown in this paper clearly demon-
strate that the method is effective for a wide range of cases. 
The method appears most efficient for the calculation of 
forces and inductances, which are areas where integral 
equation solutions often prove to be intractable. There is a 
problem when accurate field values or gradients are 
required; and here, differentiating the finite-element shape 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5   Vernier linear motor 
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functions to obtain fields gives results that display element 
structure. This is particularly true with low-order elements 
(e.g. the 8-node isoparametric brick) but the use of higher -
order elements does provide a solution, albeit an expensive 
one. 

 Further development of the code will include provision 
for more accurate field calculations in specified volumes, 
either by allowing a mixture of high - and low-order 
elements, or simply by refining the solutions in these areas 
using high-order elements. An improved restart option has 
been added to the computer program and this has improved 
the efficiency by   up to   60%   for multiple   displacements  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
- Experimental 
o Computed by TOSCA. Measurements not available beyond 28.2 mm 

 
Fig. 6 Computed and measured forces as a function of displacement 

for the vernier linear motor 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7    Geometry of stepping motor (rotor displaced) 
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or current calculations. The main problem with the present 
code is preparing data. Some form of interactive pre-
processor will be provided to ease this difficulty, but this 
must always remain a problem area. The meshing of free 
space makes electromagnetics rather special when 
compared with other problems solved by the finite-
element method. Some improvement in efficiency may be 
obtained by using infinite elements to extend the far field 
boundary. 
 

6 Acknowledgments 

The authors 'are especially indebted to Dr. John Finch, 
formerly of UCNW, Bangor, and now at the University of 
Newcastle, for the experimental results from the vernier 
linear motor, and also to Dr. M. Stephenson and Dr. N. 
Fulton of the University of Leeds for experimental results 
in the stepping motor. They would like to thank Mrs P. 
Morgan for help in preparing the manuscript. 

 

7 References 
 

[1] ARMSTRONG, A.G.A.M., COLLIE, C.J., DISERENS, N.J., 
                  NEWMAN, M.J., SIMKIN, J., and TROWBRIDGE, C.W.: 
                  'New developments in the magnet design program GFUN'. 
                  Rutherford Laboratory, RL-75-066, 1975 

[2] TROWBRIDGE, C.W.: 'Applications of integral equation 
methods for the numerical solution of magnetostatic and eddy 
current problems'. Proceedings of International Conference on 
numerical methods in electrical and magnetic field problems, 
Santa Margherita, Italy, 1976. (Also RL-76{)71, 1976) 

[3] WOLFF, W., and MULLER, W.: 'General numerical solution 
                  of the magnetostatic equations', Wiss, Ber. AEG.Te1efuliken 
                  1976,49,(3),pp.77-86 

 

 
 

[4] WINSLOW, A.M.: 'Numerical solution of the quasi-linear 
Poisson equation in a non-uniform triangular mesh', J. 
Comput. Phys., 1967,2, pp. 149-172 

[5] CHARI, M.W.K., and SILVESTER, P.: 'Finite element 
analysis of magnetically saturated de machines', IEEE 
Trails., 1971, PAS-90, pp. 2362-2372 

[6] SIMIKIN, J., and TROWBRIDGE, C.W.: 'Magnetostatic 
fields computed using an integral equation derived from 
Green's theorems'. Rutherford Laboratory, RL-76-041,1976  

[7]  ZIENKIEWICZ, O.C., LYNESS, J., and OWEN, D.J.R.: 
'Three dimensional magnetic field determination using a 
scalar potential', IEEE Trans., 1977, MAG-13, pp. 1649-
1656 

[8] SIMKIN, J., and TROWBRIDGE, C.W.: 'On the use of the 
total scalar potential in the numerical solution of field 
problems in electromagnetics', Int. J. Numer. Methods. Eng., 
1979, 14, pp.423-440 

[9] ARMSTRONG, A.G.A.M., COLLIE, CJ., SIMKIN, J., and 
TROWBRIDGE, C.W.: 'The solution of 3D magnetostatic 
problems using scalar potentials'. Proceedings of 
COMPUMAG conference, Grenoble, 1978. (Also RL-78-
080, 1978)  

[10] SMYTHE, W.R.: 'Static and dynamic electricity' (McGraw-
Hill, 1968, 3rd edn.) 

[11] COLLIE, C.J.: 'Magnetic fields and potential of linearly 
varying current or magnetisation in a plane bounded region'. 
Proceedings of COMPUMAG conference, Oxford,1976 

[12] ZIENKIEWICZ, O.C.: 'The finite element method in 
engineering science', (McGraw-Hill, 1978, 3rd edn.) 

[13] ARMSTRONG, A.G.A.M., COLLIE, C.J.. DIFERENS. 
N.J.,NEWMAN, M.J., SIMKIN, J., and TROWBRIDGE, 
C.W., 'GFUN3D user guide', RL-76{)29 (Rutherford 
Laboratory, 2nd edn., 1979) 

[14] 14 MEIJERINK, J.A., and VAN DER VORST, H.A.: 'An 
iterative solution method for linear systems of which the 
coefficient matrix is a symmetric M-matrix, Math. Comput.. 
January 1977 IS  

[15] CARPENTER, C.J., and LOCKE, D.H.: 'Numerical models 
of three dimensional end winding arrays'. Proceedings of 
COMPUMAG conference, Oxford, 1976 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374 

 
lEE PROC.. Vol. 127, Pt. B, No.6, NOVEMBER 1980 


