
Fuzzy Memoization for Floating-Point
Multimedia Applications

Carlos �AAlvarez, Jesús Corbal, and
Mateo Valero, Fellow, IEEE

Abstract—Instruction memoization is a promising technique to reduce the power

consumption and increase the performance of future low-end/mobile multimedia

systems. Power and performance efficiency can be improved by reusing instances

of an already executed operation. Unfortunately, this technique may not always be

worth the effort due to the power consumption and area impact of the tables

required to leverage an adequate level of reuse. In this paper, we introduce and

evaluate a novel way of understanding multimedia floating-point operations based

on the fuzzy computation paradigm: Performance and power consumption can be

improved at the cost of small precision losses in computation. By exploiting this

implicit characteristic of multimedia applications, we propose a new technique

called tolerant memoization. This technique expands the capabilities of classic

memoization by associating entries with similar inputs to the same output. We

evaluate this new technique by measuring the effect of tolerant memoization for

floating-point operations in a low-power multimedia processor and discuss the

trade-offs between performance and quality of the media outputs. We report

energy improvements of 12 percent for a set of key multimedia applications with

small LUT of 6 Kbytes, compared to 3 percent obtained using previously proposed

techniques.

Index Terms—Low-power design, special-purpose and application-based

systems, real-time and embedded systems.

�

1 INTRODUCTION

MULTIMEDIA applications are one of the driving forces of computer
architecture today, especially in the low-end domain [2], [3], [4].
Hand-held systems keep including better and larger displays/
speakers and more media processing power. Current PDAs are
able to play MP3 audio files or MPEG-1/AVI video files [5] and
commodity hand-held game systems already run 3D engines to
display in-game graphics [4]. Furthermore, with the coming
increase in bandwidth, third generation digital mobile phones
(UMTS) [6] are expected to deal with computational-intensive
media protocols such as MPEG-4 [7], where enough raw power is
required to decode a wide assortment of media sources (audio,
speech, video, and 3D image synthesis).

In order to attain the performance levels required for new

applications, it is unlikely that the embedded processor domain

may adopt the same evolution that characterized general-purpose

processors during the last 15 years. Performance improvements in

conventional processors were partly achieved by increasing the

instruction level parallelism (increasing the number of instructions

fetched and executed per cycle, introducing speculative execution,

and providing out-of-order execution capabilities) [8], [9], [10],

[11]. Unfortunately, these features may provide diminishing

returns from the point of view of performance/power as marginal

performance improvements are provided at the cost of complexity

and, thus, increased power.

A proposed technique for the low-end domain should focus,
hence, on reducing the number of instructions (or the cost of the
operations) since it is one of the most efficient ways of improving,
simultaneously, the execution time and the energy consumption of
a given application.

1.1 Instruction Memoization

Among the techniques focused on reducing instructions or
operations, instruction/region reuse [12], [3], [13], [14], [15] arises
as a very promising technique as it allows the processor to skip the
execution of an instruction/group of instructions by simply
accessing a memorization table, thus providing the potential to
reduce both execution time and power/energy consumption.

In particular, some recent studies [3], [15] have shown that
instruction memoization is a potentially powerful technique to
avoid computation in long latency instructions such as multi-
plication and division. Every time such an operation is invoked, its
operands and its result are stored in a Reuse Table. When there is
another instance of the same operation with the same inputs, then
the computation can be avoided. This technique not only improves
the performance of long latency instructions, but also produces
savings in energy consumption.

Floating-point instructions are important for multimedia
applications because, although a lot of algorithms use fixed-point
computation for multimedia, there is a constantly growing group
of programs that do not. Nowadays, the ITU standards [16] are
written only in floating-point and many current DSPs incorporate
floating-point units [17]. The need for floating-point computation
grows mainly due to the growing complexity of the algorithms. It
is nearly impossible to find any speech recognition software in
fixed-point (due to the wide dynamic range of the data needed to
perform the computation) and the same applies to voice synthesis
and 3D rendering. Furthermore, floating-point algorithms are
generally more efficient than integer ones and applications are
beginning to migrate to them (e.g., wavelet video compression).

The major drawback of reuse techniques, applied to
FP operations, is the need to implement very large reuse tables

to achieve acceptable reuse rates due to the wide range of possible
operands. This variability produces low hit rates with realistic
tables and results in diminishing returns from the point of view of
power consumption.

1.2 Fuzzy Computation

JPEG, MPEG2, or MP3 are examples of broadly extended “lossy”
compression algorithms. All of them offer the possibility of
choosing between output quality and output size: An increase in
the compression ratio implies a reduction in the quality of the
output data.

Fuzzy computation is a novel way to perform computation that,
relying on the inherent tolerance of typical media data, introduce
the processing speed factor into the previously mentioned
compromise (see Fig. 1). That is, it allows faster and cheaper
computation at the cost of some loss in accuracy that human senses
could not distinguish [26]. This is possible by exploiting an
intrinsic characteristic of multimedia algorithms: tolerance. By
tolerance, we mean the robustness of typical media types (such as
image pixels or audio samples) to losses in their precision. This
property can be used to significantly increase the value locality of
floating-point instructions [1] at the cost of modest degradations in
the quality of the outputs.

The concept of tolerance is absolutely intrinsic to media
applications. In sharp contrast to most other kinds of workload
(such as any given SPECint or SPECfp benchmark), media
applications exhibit a high tolerance to the accuracy of the outputs
because the final destinations are human senses, which are tolerant
by definition. The results of 3D, video, image, or audio applications

922 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

. C. �AAlvarez and M. Valero are with the Departament d’Arquitectura de
Computadors, Campus Nord, Edifici D6, Jordi Girona, 1-3, 08034
Barcelona, Spain. E-mail: {calvarez, mateo}@ac.upc.es

. J. Corbal is with BSSAD, VSSAD, Intel Labs Barcelona, Campus Nord,
Edifici Nexus II, Jordi Girona, 29, 08034 Barcelona, Spain.
E-mail: jesusx.corbal@intel.com.

Manuscript received 6 Aug. 2003; revised 17 June 2004; accepted 20 Jan.
2005; published online 16 May 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0120-0803.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

may present differences that are not visually (or audibly)
perceptible and, so, output “errors” are filtered by the human

senses, a property that is actually exploited by most of the audio
and image encoders as MP3 or JPEG [26].

This paper is organized as follows: Section 2 introduces the
methodology used in the paper. Section 3 evaluates the viability of
tolerant memoization in the context of low-end systems. It

discusses the potential and the trade-offs and proposes a specific
implementation. Section 4 is a performance evaluation of this
technique and, finally, Section 5 summarizes the paper.

2 METHODOLOGY

The focus of this paper is to evaluate an instruction memoization
technique for the mobile domain. Our target system would be a
future generation hand-held system able to display audio, image,

and video that, at the same time, addresses key applications such
as 3D rendering and speech recognition. This kind of system could
be representative of what PDAs, videogame hand-helds, pocket

PCs, and even mobile phones will look like.
Although there are other architectures that are being widely

used in the mobile domain (such as the StrongARM, commonly

found in PDAs and videogame hand-held systems), we want to
adopt as a baseline architecture a more aggressive processor also
targeted at low power consumption but with floating-point

support. Our final choice was the Hitachi SH4 [18]. The Hitachi
SH4 is an embedded processor that is targeted at consumer
multimedia applications like home video games (Sega Dreamcast

[19]) and handheld PCs. The basic core consists of a 2-way
superscalar core with in-order issue and three different pipelines:

integer, branch, and floating-point. SH4 at 200 MHz has a reported

power consumption of only 1.2 Watts.
The Simplescalar [20] and Wattch [21] simulators have been

configured to model an SH4-like processor [18] with 0.25 micron

technology, 200 MHz, and 1.8 Voltage supply as our basic
framework. Table 1 shows the hardware parameters of the model.

Our benchmark suite is composed of four different programs

that are representative of four key application domains for future
hand-held media systems: audio/music, image, 3D rendering, and

speech recognition. Lame [22] is an open-source MP3 music

encoder. Epic is an experimental image compression protocol
included in the mediabench suite [2]. Texgen is a Mesa (Open-GL)

application which generates a texture-mapped object, also from the

mediabench suite. Finally, Speech Rec is an experimental speech

recognition application from the Digital Signal Department at the
Universitat Politecnica de Catalunya [23] , which recognizes

numbers from 0 to 9. The programs’ characteristics are summar-

ized in Table 2.

3 MEMOIZATION FRAMEWORK

Fig. 2a shows the scheme under study. We have the conventional
floating-point functional unit together with an LUT (look-up table).

This LUT stores the results of floating-point operations, together

with the values of the source operands and one or two bits

indicating the type of operation. When a floating-point instruction
is going to be executed, the LUT is accessed to determine if there

has been a previous instance of that instruction with the same

source operands. In that case, the result can be directly obtained
from the table. Otherwise, the instruction needs to be executed

and, once it is finished, the LUT is updated with the result.
As we are focusing on the low power domain, the tables have

been implemented sequentially with the FPALU. In other words,

we first consider whether there is a hit or miss in the LUT before

dispatching the instruction to the corresponding functional unit.
Therefore, a miss in the table will increase the operation latency by

one cycle, but a hit will make FPALU not consume any power.

Moreover, this implementation has inherently lower complexity,
thus being more suitable for the low-end domain.

A typical problem when evaluating the potential of memoiza-

tion is that, in fact, a relevant percentage of the operations is trivial,
that is, the result can be easily deduced before executing the

operations (for instance, a multiply operation when one of the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005 923

Fig. 1. Basis for the fuzzy computation paradigm.

TABLE 1
Configuration of the Base Processor

TABLE 2
Benchmarks

source operands is 0). In order to allow a fair evaluation, we have

also implemented the method proposed by Richardson [24] to

catch the trivial operations so that they will not pollute the table.

Power consumed in the LUT has been modeled with Cacti [25] and

the effect of the LUT delayed update in case of a miss (due to the

intrinsic latency of the operation) has been modeled. Leakage

power has also been measured in our simulations.
We have made some preliminary evaluations to determine

which kinds of FP operations to memoize, which is the most cost-

effective configuration table (direct-mapped, n-way set associa-

tive), the hashing mechanism of the source operands to index the

table, and how many independent LUTs it is worth implementing.

An in-depth discussion of these results is out of the scope of this

paper, but the final choices are summarized in Table 3. As can be

observed, we have only implemented one reuse table and

memoized only multiplications and divisions, as we have observed

that memoizing addition and subtraction is not cost-effective

because of the low hit rate and the low latency of these two

operations.

3.1 Tolerant Memoization Implementation

Fig. 2b shows the scheme we used to implement fuzzy computa-

tion. We call it fuzzy or tolerant memoization. Tolerant memoiza-

tion is implemented by taking off the N least significant bits from

the mantissa of every operand before it is used to access the table.

So, not only will identical inputs hit, but also similar ones will hit.

The number of dropped bits, N , is what we call the tolerance level.
As happens with other lossy methods, a practical limitation

exists for fuzzy memoization as very high losses can produce

diminishing results. In the JPEG algorithm, for example, a

compression ratio of near 25 produces quite good quality images,

but an increase in the compression ratio of up to 30 quickly yields
very poor quality images. A similar behavior would be expected in
fuzzy memoization. To measure the error introduced by our
system, we have used the Signal to Noise Ratio (SNR), which is
broadly used in the signal processing environment. The SNR is
defined as:

SNR ¼ 10 log
S

N
;

where S is the Signal power and N is the Noise power. An SNR
above 30 dB means that the error is nearly indistinguishable by the
human senses [26].

Fig. 3 shows the reuse table hit rates compared with the
associated SNR measured for every benchmark as a function of
tolerance level. Results were obtained with a 1,024 entries table
(2-way set associative).

Results from Fig. 3 show two different behaviors of hit rate and
SNR, depending on the tolerance range. From a tolerance level of 0
(or, in other words, classical memoization) to 30, we observe that
there are no distinguishable changes in either the hit rate or the
SNR (i.e., we introduce no error in the output). In this region,
which we call the “redundant region,” tolerant memoization takes
advantage of redundancy in the representation of the data. This is
a secondary effect of performing tolerant memoization and,
although it does not give us benefits (there is no use of tolerance
here), it allows us to use thinner (and thus smaller) tables. As a
result of this, we could wrongly think about achieving the same or
better result by redefining all double data to single data. This is not
possible because:

First of all, some algorithms (such as Lame or Texgen) simply
do not work with simple-precision mantissas. Doing tolerant

924 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

Fig. 2. Hardware configuration of a sequential LUT for (a) classical memoization and (b) tolerant memoization.

TABLE 3
LUT Characteristics

memoization, some results are really computed in high precision
(every operation in which a miss is passed to the FPALU) and, so,
the output is very close to the original. Introducing shorter
FP multipliers will result in every operation adding some error and
this leads to unacceptable quality or even program crashes.
Second, we wanted to study the algorithms as they are because,
as time to market decreases, specific optimizations are less
affordable in a realistic environment. Furthermore, as can be seen
in Fig. 3, dismissing 29 bits of double-precision values (and thus
making them some kind of “double-range simple-precision”
values) does not increase the reuse. So, if it was possible to use
simple-precision floating point, the results obtained with the
original algorithms would not change significantly.

From a tolerance level of 31 to 46� 48 (depending on the
benchmark), we observe the “tolerant region.” In this area, we are
effectively doing fuzzy computation, that is, the system is reusing
different input instances and giving them the same output.
Therefore, both the reuse rate and the error are increased, but we
observe that, at the beginning of this range, the reuse hit rate grows
faster than the degradation of the SNR. Then, the hit rate saturates
while the SNR starts dropping dramatically. This behavior allows
our method to provide great energy savings without introducing
noticeable errors in the output data.

4 EVALUATION

Fig. 4 summarizes the results provided by fuzzy memoization. It
shows the resulting savings in energy, execution time, and energy-
delay product for five different configurations: a trivial operations
mechanism where only the execution of trivial operations is
skipped, a 6 KB table with classical memoization (i.e., no tolerance),
a 24 KB table also with classical memoization and two LUTs (also of
6 KB and 24 KB) with tolerance. The tolerance level for every
benchmark was chosen to keep the SNR above 30 dB.

Results from Fig. 4 show that fuzzy memoization provides very
good energy savings compared with the rest of the techniques:
More than 15 percent of the energy consumption is saved for three
of the benchmarks and 6 percent for the other one. This is
especially significant for Epic, where the conventional memoiza-

tion technique is actually counterproductive. Furthermore, some
performance speed-up is achieved as the average latency of the
floating-point instructions is reduced. Reductions on the execution
time of up to 6 percent are reported for the 6 KB table. This
translates into significant gains in the energy-delay product (up to
25 percent). We should note that reductions in the execution time
can be converted into additional energy savings as the clock
frequency of the processor can be reduced. Since power is
proportional to the square of the working voltage, great gains
may come as a result of this approach.

Another very interesting observation from the results of Fig. 4 is
that the 6 KB fuzzy memoization table achieves gains that are
already very close to those of the more costly 24 KB alternative.
Furthermore, the results of a table with an oracle access method
have been measured. In this table, only the input pairs that are
going to hit are used to access the table. The input pairs that miss
are directly bypassed to the FPALU and, so, no penalty is
introduced. This oracle table gains less than an additional
0.5 percent for fuzzy memoization. Classical memoization is more
than 1 percent away from the oracle.

Fig. 5 shows the energy savings in the FP unit only. In this
figure, it can be seen that, while our proposed scheme presents
gains up to 60 percent in energy (35 percent on average), the
classical memoization scheme only can save 9 percent on average.
All the results presented include the power consumption of the
LUT and the leakage. These results lead us to think about
designing a simple FP ALU that, with the help of tolerant
memoization, performs as fast as the aggressive one studied in
this paper while consuming less power.

Finally, we perform a comparison between the Energy*Delay
savings achieved in serial and parallel configurations. In the serial
configuration, if there is a hit in the table, the FPU is not used and,
so, if there is a miss, an extra latency cycle is used. In the parallel
configuration, the LUT and the FPU are accessed in the same cycle
and, so, although there is a hit, some power is expended in the
FPUs. On the other hand, a miss results in no time penalties.
Results are shown in Fig. 6 and show a compromise effect. When
only a low hit rate is achieved (classical reuse and speech), parallel
configuration works better as it saves some energy but does not

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005 925

Fig. 3. Error versus hit rate in tolerant memoization.

increase the operation latency. When the hit rate grows, serial

configuration arises as the best solution because it only infre-

quently uses one more cycle, but often saves the entire energy of

the FPU, therefore, serial configuration is the best choice for

tolerant reuse.

5 SUMMARY

In this paper, we have performed an extensive evaluation of the

potential of floating-point memoization in the context of hand-held

oriented multimedia processors. In such processors, energy

consumption is the major constraint. We have shown that

conventional memoization may provide diminishing returns in

such architectures due to the intrinsic cost of the tables required to

provide significant reuse rates. Furthermore, we have shown that

simple techniques to detect trivial operations provide very similar

gains with considerably less cost.
We propose applying the concept of fuzzy computation to the

memoization technique. By considering similar instances as

acceptable candidates to reuse, we take advantage of the trade-

off between output quality and energy consumption. The mechan-

ism proposed is simple and could be implemented without either

compiler or ISA support.
Fuzzy computation significantly improves the performance of

FP operations. With tolerant memoization and realistic table sizes,

the reuse hit rate is raised and, as a result, considerable power and

time savings are achieved (up to a 25 percent improvement in the

energy-delay product for some of the benchmarks) at the cost of

introducing some errors in the output data that are negligible in

the context of hand-held devices.

926 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

Fig. 5. Energy savings in the FP unit.

Fig. 4. Results of fuzzy FP memoization.

Fig. 6. Parallel versus serial configurations.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Education of
Spain under contract TIN-2004-07739-C02-01, the HiPEAC Eur-
opean Network of Excellence, and CEPBA. The authors would like
to thank Jose A.R. Fonollosa, Esther Salamı́, and Josh Fisher, who
really helped them in improving the paper.

REFERENCES

[1] D. Goldberg, “What Every Computer Scientist Should Know about
Floating-Point Arithmetic,” ACM Computing Surveys, vol. 23, no. 1, pp. 5-
48, 1991.

[2] C. Lee, M. Potkonjak, and W.H. Magione-Smith, “MediaBench: A Tool for
Evaluating and Synthesizing Multimedia and Communication Systems,”
Proc. 30th Ann. ACM/IEEE Int’l Symp. Microarchitecture (MICRO 97), Dec.
1997.

[3] D. Citron, D. Feitelson, and L. Rudolph, “Accelerating Multi-Media
Processing by Implementing Memoing in Multiplication and Division
Units,” Proc. Eighth Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’95), 1995.

[4] Graphic State, “GBA 3D Engine,” http://www.graphic-state.com/press/
n_engines.htm, 2002.

[5] Casio, “Cassiopea,” http://www.casio.com/personalpcs/product.
cfm?section=19&product=3553&display=15&cid=3949, 2001.

[6] UMTS Forum, “UMTS Forum,” http://www.umts-forum.org/information.
html, 2001.

[7] R. Koenen, “MPEG-4, Multimedia for Our Time,” IEEE Spectrum, pp. 26-34,
Feb. 1999.

[8] M.H. Lipasti and J.P. Shen, “Exceeding the Dataflow Limit,” Proc. 29th Ann.
ACM/IEEE Int’l Symp. Microarchitecture (MICRO ’96), pp 226-237, Dec. 1996.

[9] J.G. Steffan and T.C. Mowry, “The Potential for Using Thread-Level Data
Speculation to Facilitate Automatic Parallelization,” Proc. Fourth Int’l Symp.
High-Performance Computer Architecture (HPCA ’98), Feb. 1998.

[10] H. Akkary and M. Driscoll, “A Dynamic Multithreaded Processor,” Proc.
31st Ann. ACM/IEEE Int’l Symp. Microarchitecture (MICRO ’98), 1998.

[11] A. Roth and G.S. Sohi, “Speculative Data-Driven Multithreading,” Proc.
Seventh Int’l Symp. High-Performance Computer Architecture (HPCA ’01), 2001.

[12] A. Sodani and G.S. Sohi, “Dynamic Instruction Reuse,” Proc. 24th Ann. Int’l
Symp. Computer Architecture (ISCA ’97), 1997.

[13] D.A. Connors and W.M. Hwu, “Compiler-Directed Dynamic Computation
Reuse: Rationale and Initial Results,” Proc. 32nd Ann. ACM/IEEE Int’l Symp.
Microarchitecture (MICRO ’99), 1999.

[14] S.S. Sastry, R. Bodik, and J.E. Smith, “Characterizing Coarse-Grained Reuse
of Computation,” Proc. Third ACM Workshop Feedback-Directed and Dynamic
Optmization, 2000.

[15] M. Azam, P. Franzon, and W. Liu, “Low Power Data Processing by
Elimination of Redundant Computations,” Proc. 1997 Int’l Symp. Low Power
Electronics and Design, pp. 259-264, 1997.

[16] Int’l Telecomm. Union, “Home Page,” http://www.itu.int/, 2004.
[17] Texas Instruments, “DSP Developers’ Village,” http://dspvillage.ti.com/

docs/dspvillagehome.jhtml, 2004.
[18] F. Arakawa, O. Nishii, K. Uchiyama, and N. Nakagawa, “SH4 Risc

Multimedia Processor,” IEEE Micro, Mar./Apr. 1998.
[19] S. Hagiware and I. Oliver, “Sega Dreamcast: Creating a Unified Entertain-

ment World,” IEEE Micro, Nov./Dec. 1999.
[20] D. Burger and T.M. Austin, “The SimpleScalar Tool Set, Version 2.0,”

Technical Report #1342, Computer Science Dept., Univ. of Wisonsin-
Madison, 1997.

[21] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,” Proc. 27th Ann.
Int’l Symp. Computer Architecture (ISCA ’00), 2000.

[22] The LAME Project, “Home Page,” http://www.mp3dev.org/mp3/, 2004.
[23] Dept. of Signal Theory and Comm., “Speech Processing Group,” http://

gps-tsc.upc.es/veu/, Universitat Politecnica de Catalunya, 2004.
[24] S.E. Richardson, “Exploiting Trivial and Redundant Computation,” Proc.

11th IEEE Symp. Computer Arithmetic, 1993.
[25] P. Shivakumar and N.P. Jouppi, “Cacti 3.0: An Integrated Cache Timing,

Power and Area Model,” http://research.compaq.com/wrl/people/
jouppi/CACTI.html, technical report, Compaq Computer Corp., 2001.

[26] E.B. Goldstein, Sensation and Perception, sixth ed. Univ. of Pittsburgh, 2002.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005 927

