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Sparse Representation Based Pansharpening
Using Trained Dictionary

Ming Cheng, Cheng Wang, and Jonathan Li, Senior Member, IEEE

Abstract—Sparse representation has been used to fuse high-
resolution panchromatic (HRP) and low-resolution multispectral
(LRM) images. However, the approach faces the difficulty that
the dictionary is generated from the high-resolution multispectral
(HRM) images, which are unknown. In this letter, a two-step
method is proposed to train the dictionary from the HRP and
LRM images. In the first step, coarse HRM images are obtained
by additive wavelet fusion method. The initial dictionary is
composed of randomly sampled patches from the coarse HRM
images. In the second step, a linear constraint K-SVD method
is designed to train the dictionary to improve its representation
ability. Experimental results using QuickBird and IKONOS data
indicate that the trained dictionary yields comparable fusion
products with raw-patch-dictionary sampled from HRM images.

Index Terms—Image fusion, K-SVD, multispectral image,
panchromatic image, sparse representation.

I. Introduction

SPACEBORNE imagery usually provides separated but
complementary product types due to technological and

physical constraints. Typically, optical satellite sensors pro-
vide high-resolution panchromatic (HRP) and low-resolution
multispectral (LRM) images. In order to benefit from both
spectral and spatial information, image fusion or pansharpen-
ing techniques have been developed to produce high-resolution
multispectral (HRM) image by combining the HRP and LRM
images.

So far, many pansharpening methods have been developed
[1], [2]. Most of the methods take the HRP image as the
source of high-resolution spatial information and induct the
information into the LRM images. Initial efforts are based
on component substitution (intensity-hue-saturation (IHS) [3],
[4], principal component substitution (PCS) [5]). In IHS, the
LRM images are resampled and transformed to IHS domain,
and then the intensity component I is substituted with the
HRP and transformed back to the spectral domain. For most
advanced high resolution imagers such as IKONOS and Quick-
Bird, the spectral responses of the multispectral channels are
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not perfectly overlapped with the bandwidth of PAN, and
component substitution approaches may generate large spectral
distortion [1]. Another family of methods is multiresolution
analysis (MRA) which injects the zero-mean high-pass spatial
details only. In some literatures it is called ARSIS. The spatial
details can be extracted or described by Laplacian pyramids
[6], wavelets [7], contourlets [8], or support value transform
(SVT) [9]. The injection model can be injecting directly into
each LRM band, or injecting through an IHS transform.

In recent years sparse representations (SR) have been widely
used in image processing. The assumption that natural images
admit a sparse decomposition over a redundant dictionary
leads to many efficient algorithms [10]. In [11] this idea is
applied to pansharpening (the authors use the term compressed
sensing (CS) instead of SR). The dictionary is generated by
randomly sampling raw patches from HRM images, and the
sparse coefficients are calculated according to the relations
between HRM, HRP, and LRM images. The fusion results are
the products of the dictionary and the sparse coefficients.

One obstacle to the CS based pansharpening method is that
the dictionary is generated from the HRM images, which are
unknown. In fact they are just what we want to obtain. In
[11] the authors use the decimated PAN and MS images to
demonstrate their method, and the dictionary is generated from
the original LRM images. However, no answer is given on
how to construct the dictionary when fusing the original HRP
and LRM images. One possible way to obtain the true HRM
images is imaging from an airborne platform carrying the same
sensor. But as far as we know, no such work is reported.

In this letter, a method is proposed to generate the dictionary
from the HRP and LRM images. The method includes two
steps. The first step is pansharpening using a simple and fast
method to obtain coarse HRM images. The second step is
dictionary training using patches sampled from the results
of the first step. A dictionary training scheme is designed
based on the well-known K-SVD method [12]. The training
process incorporates information from the HRP image, which
improves the ability of the dictionary to describe spatial
details. Experimental results using QuickBird and IKONOS
data indicate that the trained dictionary produces comparable
fusion results with the method in [11].

II. CS Based Pansharpening

In this section we briefly describe the SR model and the CS
based pansharpening method proposed in [11].
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We consider image patches of size
√

n×√
n pixels, ordered

lexicographically as column vectors {xi, i = 1, 2, · · · }, xi ∈
Rn. SR theory supposes the existence of a matrix D ∈ Rn×K,
each column of which corresponds to a possible image. These
possible images are referred to as atomic images, and the
matrix D as a dictionary of the atomic images. An image patch
x can be represented as x = Dα. For overcomplete D(K � n),
there are many possible α satisfying x = Dα. Our aim is to find
the α with the fewest nonzero elements. Thus, the α is called
the sparse coefficients of x with dictionary D. Formally, this
problem can be obtained by solving the following optimization
problem:

α̃ = arg min ||α||0 subject to ||Dα − x||22 = 0 (1)

where || · ||0 denotes the number of nonzero entries in a vector.
In practice, because of various restrictions, we cannot get x

directly. Instead, only a small set of measurements y of x is
observed. The observation y can be represented as

y = Mx + v (2)

where M ∈ Rm×n with m < n is the measurement matrix
and v is additive noise. The CS theory ensures that under
sparsity regularization [13], we can recover x correctly from
the observation y by solving the problem

α̃ = arg min ||α||0 subject to ||y − MDα||22 ≤ ε (3)

where ε is the reconstruction error depending on noise level
of the source image, and x = Dα̃.

The above optimization is an NP-hard problem. If α is suf-
ficiently sparse, this problem can be replaced with minimizing
the l1-norm problem

α̃ = arg min ‖α‖1 subject to ‖y − MDα‖2
2 ≤ ε. (4)

The proof from (3) to (4) can be found in [14]. The l1-norm
problem (4) can be solved by orthogonal matching pursuit
(OMP) or basis pursuit (BP) algorithm effectively.

In the pansharpening problem, the HRP and LRM images
are referred as the measurements y. The matrix M is con-
structed by the model from HRM images to HRP and LRM
images. We consider a pansharpening case with four spectral
bands: B, G, R, and NIR, and the decimation factor from high
to low spatial resolution is 4. Let

x = {xB
1,1, · · · , xB

1,8, x
B
2,1, · · · , xB

8,8, x
G
1,1, · · · , xNIR

8,8 }T

be the lexicographically ordered HRM image patch of size
8 × 8 × 4 pixels. The measurements y is composed of two
parts

y =

(
yLRM

yPAN

)

where

yLRM = {yB
1,1, y

B
1,2, y

B
2,1, y

B
2,2, y

G
1,1, . . . , yNIR

2,2 }T
yPAN = {yPAN

1,1 , · · · , yPAN
1,8 , yPAN

2,1 , . . . , yPAN
8,8 }T

are the corresponding lexicographically ordered LRM and
HRP image patches respectively.

Each entry in yLRM can be seen as the average of a 4 × 4
image patch in the HRM images, and we can write

yLRM = M1x + v1 (5)

where v1 is the 16 × 1 zero-mean additive noise vector, and
M1 is the decimation matrix of size 16 × 256 given by

M1 =
1

16
I8 ⊗ [1T ⊗ (I2 ⊗ 1T )]

where IN is the N × N identity matrix, 1 is a 4 × 1 vector
with all entries equal to one, and ⊗ is the Kronecker tensor
product.

The HRP image is approximated by a linear combination
of the four bands of the HRM images, and we can write

yPAN = M2x + v2 (6)

where v2 is the 64 × 1 zero-mean additive noise vector, and
M2 = {w1I64, w2I64, w3I64, w4I64} where wp, p = 1, 2, 3, 4, is
the weight of each band.

Finally, we get the relation between y and x given by

y = Mx + v, (7)

where M =

(
M1

M2

)
and v =

(
v1

v2

)
.

The dictionary D is generated by randomly sampling raw
patches from HRM images, then the optimization problem (4)
is solved to get the sparse coefficients α̃. The fused HRM
image patch is obtained by x̃ = Dα̃.

III. Dictionary Training Method

It is difficult to generate the dictionary from the HRM
images directly since they are unknown. We design a two-
step method to train the dictionary from the given HRP and
LRM images. Firstly, coarse HRM images are obtained using
proportional additive wavelet LHS (AWLP) method [7]. Then,
an extended K-SVD method is designed to train the dictionary
sampled from the coarse HRM images.

A. AWLP Method

Any pansharpening method can be used to generate the
coarse HMR images. We select the multiresolution wavelet
based method AWLP to fulfill the task because it can preserve
the spectral signature while the operations are simple and fast.
In this method, the HRP detail injected into each LRM band
is proportional to the LRM band original radiance value. This
method can be summarized as follows.

1) Upsample (resize) the LRM images to the size of the
HRP image, the result of each band is HRM′

i, i =
1, 2, 3, 4.

2) Obtaining the luminance band by L = (1/4)
∑4

i=1 HRM′
i.

3) Perform a histogram matching between the HRP band
and the L band, modifying the former to obtain a new
HRP band, denoted by HRP′.

4) Decompose HRP′ into 2 wavelet planes, i.e., HRP′ =
ω1 + ω2 + c, c being the residual plane.

5) Add proportion of the wavelet planes to each HRM′
i

to obtain the merged HRM band, i.e., HRMi =
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(ni/
∑4

i=1 ni)(ω1 + ω2) + HRM′
i, i = 1, 2, 3, 4, where ni

is the original radiance value of each LRM band.

A shift-invariant discrete wavelet decomposition known as
“à trous” algorithm is used to generate the wavelet planes. The
algorithm performs successive convolutions with a mask, and
the zero-mean wavelet planes are computed as the differences
between the results of two consecutive convolutions.

B. Linear Constraint K-SVD Method

The initial dictionary D = {dj}Kj=1 is constructed by ran-
domly sampling raw patches from the HRM images obtained
by AWLP. Each atom dj is a normalized lexicographically
ordered image patch of size 8 × 8 × 4 pixels. Though we can
use this dictionary directly in the CS based method, we hope
to improve its representation ability by training.

Let yHRM be an arbitrary chosen HRM image patch and
yPAN be the corresponding HRP image patch

yHRM = {yB
1,1, . . . y

B
1,8, y

B
2,1, . . . , yB

8,8, y
G
1,1, . . . , yNIR

8,8 }T

yPAN = {yPAN
1,1 , . . . , yPAN

1,8 , yPAN
2,1 , . . . , yPAN

8,8 }T .

The SR of yHRM and yPAN are formulated by

min ‖α1‖0 subject to ‖yHRM − Dα1‖2
2 � ε1 (8)

min ‖α2‖0 subject to ‖yPAN − M2Dα2‖2
2 � ε2. (9)

Let

y =

(
yHRM

yPAN

)

R =

(
I256

M2

)
=

(
I256

w1I64 w2I64 w3I64 w4I64

)
.

We redefine the SR problems of (8) and (9) in unified form
with a linear constraint R:

min ‖α‖0 subject to ‖y − RDα‖2
2 � ε. (10)

This is the basis for dictionary training. Let Y = {yi}Ni=1
be a collection of training samples, each column yi being the
concatenation of a HRM image patch and the corresponding
HRP image patch, and A = {αi}Ni=1, αi being the sparse
coefficients of yi. Similar to the K-SVD method, we describe
the dictionary training problem as follows:

min
D,A

{‖Y − RDA‖2
F } subject to ∀i, ‖αi‖0 � T0 (11)

where ‖·‖F is the Frobenius norm of matrix, and T0 is the
predefined maximal l0 norm of sparse coefficients.

Expression (11) is a linear constraint training problem [15],
and could be minimized iteratively. Each iteration includes two
stages. The first stage is sparse coding, in which we assume
that D is fixed, and find the best coefficient matrix A. The
problem can be decoupled to N distinct problems of the form

min{‖yi − RDαi‖2
2 } subject to ‖αi‖0 � T0, i = 1, · · · , N.

(12)

If T0 is small enough, this problem can be adequately solved
by any pursuit algorithms.

A second stage is performed to search for a better dictio-
nary. This process updates one atom and the corresponding
coefficients at a time. Allowing changes in the coefficients
while updating the dictionary atoms accelerates convergence,
since the subsequent atom updates will be based on more
relevant coefficients. We put in question one atom dk and the
coefficients that correspond to it, the kth row in A, denoted as
αk

T (a row vector). The penalty term in (11) can be rewritten
as

‖Y − RDA‖2
F =

∥∥∥Y − R
∑K

j=1
djα

j
T

∥∥∥2

F

=
∥∥∥(

Y − R
∑

j 
=k
djα

j
T

)
− Rdkα

k
T

∥∥∥2

F

=
∥∥Ek − Rdkα

k
T

∥∥2

F
. (13)

Considering that αk
T is very likely to be sparse (since each

column of A is sparse), we hope to remain the nonzero indices
of αk

T unchanged during the update. We pick out the nonzero
columns of αk

T to compose a new row vector αk
R, and pick out

the same columns of Ek to compose a new matrix ER
k . Then

we replace the penalty term in (13) by
∥∥ER

k − Rdkα
k
R

∥∥2
F

.
Let the SVD factorization of R be

R = UR�RVT
R (14)

where �R∈ R320×256 includes just 256 nonzero entries on the
main diagonal. Then,

||ER
k − Rdkα

k
R||2F =

∥∥ER
k − UR�RVT

Rdkα
k
R

∥∥2

F

=
∥∥UT

RER
k − �RVT

Rdkα
k
R

∥∥2

F
. (15)

Let F = UT
RER

k =

(
F1

F2

)
such that F1 and F2 include 256

and 64 rows, respectively, and let �σ
R be the top 256 rows of

�R, then

∥∥ER
k − Rdkα

k
R

∥∥2
F

=

∥∥∥∥
(

F1

F2

)
−

(
�σ

R

0

)
VT

Rdkα
k
R

∥∥∥∥
2

F

=
∥∥F1 − �σ

RVT
Rdkα

k
R

∥∥2
F

+ ‖F2‖2
F . (16)

The second term is independent of dk and αk
R. Again we

use the SVD factorization of matrix F1 = UF�F VT
F . The

SVD finds the closest rank-one matrix (in Frobenius norm)
that approximates F1, and this will effectively minimize the
first term. Let �σ

RVT
Rdk be the first column of UF , and αk

R

be the first row of VT
F multiplied by �F (1, 1), we obtain the

update formulas of dk and αk
R given by

dk =
(
�σ

RVT
R

)−1
U{1}

F = VR(�σ
R)−1U{1}

F (17)

αk
R = �F (1, 1)

{
V{1}

F

}T

. (18)

The superscript {1} represents the first column of a matrix.
The inverse of �σ

R is easy to obtain since it is a diagonal
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matrix. The updated αk
R is used to replace the nonzero entries

in αk
T . A final normalization of the atom dk in addition to a

respective change in αk
T might also be needed.

An important question is whether the training process
converges. When T0 is small enough relative to K, the OMP or
BP methods are known to perform very well to solve (12), and
a good approximation to each yi can be retrieved. In this case
the sparse coding step decreases the total representation error
‖Y − RDA‖2

F . Moreover, when updating dk, an additional
reduction or no change (when αk

T = 0) in the representation
error can be expected. Executing a series of such steps ensures
a convergence to a local minimum. Practically, we saw in our
experiments that a convergence can always be reached.

IV. Experimental Results

Experiments have been conducted to evaluate the perfor-
mance of the trained dictionary using images of QuickBird and
IKONOS. Four methods were selected for comparison: AWLP,
generalized IHS with genetic algorithm (GIHS-GA) [16],
Gram-Schmidt adaptive-context adaptive (GSA-CA) [17], and
local correlation based gradient field optimization (LC-GFO)
[18]. The original HRP and LRM images were fused by
each method and the results were assessed by observations.
Then, quantitative assessments were carried out using spatially
degraded images and the original LRM images were used as
the reference images. The following quality indicators were
calculated: correlation coefficients (CC) of each band, root
mean squared error (RMSE) of each band, spectral angle
mapper (SAM), ERGAS, and Q48×8.

The initial dictionary D included 2500 patches randomly
sampled from the coarse HRM images. Another 10 000 HRM
image patches together with the corresponding HRP image
patches were randomly selected to construct the training
samples Y. The maximal l0 norm T0 in (11) was set to 60,
and the maximum number of iterations was 80. The weight
values in M2 were set to the same values in [11]. The
optimization problem (12) was solved by OMP algorithm. In
the quantitative evaluation, two types of dictionary were used
for the CS based method. The first type was composed of
randomly sampled raw patches from the original LRM images
(denoted as CS1). The second type was the dictionary trained
using the method proposed in this letter (denoted as CS2).

A. Fusion Results of QuickBird Data

QuickBird provides PAN image at 0.7 m resolution and MS
images at 2.8 m resolution. Some datasets were downloaded
from the website http://glcf.umiacs.umd.edu/data/quickbird/,
other datasets were bought from DigitalGlobe, Inc. directly.
Four datasets were used to train the dictionary, which cover
buildings, roads, vegetation, and water.

The original images and the fusion results of four methods
are shown in Fig. 1 (to save space, results of AWLP are
not shown). The size of the HRP image is 400 × 400 pixels.
All methods can fuse the data effectively. The edges of the
buildings are all sharp enough. However, Fig. 1(f) can provide
more spatial details (e.g., the cars in the lower left corner
and the bushes in the center are more distinguishable). The

Fig. 1. Original QuickBird images and fusion results using different meth-
ods. (a) HRP image (0.7 m, 400 × 400). (b) LRM images (2.8 m). (c) GIHS-
GA fused image. (d) GSA-CA fused image. (e) LC-GFO fused image.
(f) CS fused image using trained dictionary. For all MS images, RGB bands
are shown.

TABLE I

Quality Measurements of Fused Images for QuickBird Data

AWLP GIHS-GA GSA-CA LC-GFO CS1 CS2
B 0.981 0.983 0.914 0.885 0.976 0.981

CC
G 0.971 0.969 0.907 0.869 0.964 0.970
R 0.931 0.931 0.895 0.920 0.931 0.938

NIR 0.926 0.966 0.964 0.921 0.971 0.972
B 7.711 7.536 6.655 10.066 8.821 7.854

RMSE
G 14.118 14.703 14.557 17.669 15.972 14.459
R 16.899 16.840 15.227 19.058 17.552 16.544

NIR 34.052 30.961 32.233 34.945 27.090 26.605
SAM 2.882 2.619 2.729 3.293 2.606 2.437

ERGAS 2.159 2.052 1.900 2.411 1.986 1.896
Q4 0.778 0.842 0.829 0.768 0.835 0.850

spectral distortion of Fig. 1(e) is a little large. For the other
three results, the spectral distortions are not obvious.

In the quantitative evaluation, the size of the decimated PAN
image was 1600 × 1600 pixels. The quality indicators of the
fused images of each method are listed in Table I. The best
value of each indicator is labeled in bold. From the table we
can see CS2 wins in two bands for CC and one band for
RMSE, and gives the lowest ERGAS. CS2 also gives the best
SAM and Q4.

B. Fusion Results of IKONOS Data

IKONOS provides PAN and MS images at 1.0 and 4.0 m
resolutions, respectively. The datasets were downloaded from
the website http://glcf.umiacs.umd.edu/data/ikonos/index. Two
datasets were used to train the dictionary.

The original images and the fusion results of four methods
are shown in Fig. 2. The size of the HRP image is 400 × 400
pixels. Fig. 2(e) is blurred and the spectral distortion is
obvious. The other three results do not show great differences
in spatial details. However, Fig. 2(f) seems to have the lowest
spectral distortion.
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Fig. 2. Original IKONOS images and fusion results using different methods.
(a) HRP image (1.0 m, 400 × 400). (b) LRM images (4.0 m). (c) GIHS-GA
fused image. (d) GSA-CA fused image. (e) LC-GFO fused image. (f) CS fused
image using trained dictionary. For all MS images, RGB bands are shown.

TABLE II

Quality Measurements of Fused Images for IKONOS Data

AWLP GIHS-GA GSA-CA LC-GFO CS1 CS2
B 0.891 0.935 0.910 0.873 0.896 0.915

CC
G 0.867 0.864 0.919 0.848 0.910 0.921
R 0.848 0.878 0.921 0.838 0.924 0.924

NIR 0.842 0.904 0.917 0.849 0.922 0.927
B 18.858 9.367 10.844 21.425 12.375 11.757

RMSE
G 25.657 25.377 23.475 31.293 22.046 23.397
R 25.462 27.451 24.014 35.462 22.816 22.785

NIR 55.665 57.974 54.524 56.136 54.512 52.540
SAM 4.528 5.155 4.495 4.633 4.218 4.251

ERGAS 3.981 4.160 3.825 4.532 3.748 3.685
Q4 0.646 0.686 0.681 0.641 0.697 0.699

In the quantitative evaluation, the size of the decimated
PAN image was 1600 × 1600 pixels. The quality indicators
are listed in Table II. CS2 wins in three bands for CC and
two bands for RMSE, and also gives the best ERGAS and
Q4. CS1 is better than CS2 in SAM but the difference is not
significant.

To sum up, for all quality indicators CS2 is comparable with
CS1, which suggests that in CS based pansharpening method,
the trained dictionary can be used to replace the dictionary
composed of raw patches sampled from HRM images. The
trained dictionary is derived from the results of AWLP. Though
the fusion quality of AWLP is moderate, a following training
step incorporates spatial information from the HRP image and
improves the representation ability of the dictionary.

V. Conclusion

CS technique has been used in pansharpening while it faces
the difficulty that the dictionary is generated from the unknown
HRM images. In this letter we proposed a dictionary training
method to obtain the dictionary from HRP and LRM images.
The method generates the initial dictionary from fused HRM
images, and then improves the representation ability of the
dictionary by training. The training process incorporates in-
formation from the HRP image, which improves the ability of

the dictionary to describe spatial details. Experimental results
using QuickBird and IKONOS data indicate that the trained
dictionary can be used to replace the raw-patch-dictionary
sampled from HRM images.

The CS approach takes more time than traditional methods.
In future work, the time-consuming OMP can be speeded up
by parallelization since it is done independently on each patch.
Another research direction is to design multiscale dictionaries,
which may be used to handle larger image patches. In addition,
the linear relationship used in the letter is only an approximate
model, and may not be applied to all sensors.
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