
TIDE: A User-Centric Tool for Identifying Energy Hungry
Applications on Smartphones

Tuan Dao⇤, Indrajeet Singh⇤, Harsha V. Madhyastha?,
Srikanth V. Krishnamurthy⇤, Guohong Cao†, Prasant Mohapatra‡

⇤UC Riverside ?University of Michigan †The Penn State University ‡UC Davis

Abstract—Today, many smartphone users are unaware of
what applications (apps) they should stop using to prevent their
battery from running out quickly. The problem is identifying
such apps is hard due to the fact that there exist hundreds of
thousands of apps and their impact on the battery is not well
understood. We show via extensive measurement studies that
the impact of an app on battery consumption depends on both
environmental (wireless) factors and usage patterns. Based on
this, we argue that there exists a critical need for a tool that
allows a user to (a) identify apps that are energy hungry, and
(b) understand why an app is consuming energy, on her phone.
Towards addressing this need, we present TIDE, a tool to detect
high energy apps on any particular smartphone. TIDE’s key
characteristic is that it accounts for usage-centric information
while identifying energy hungry apps from among a multitude of
apps that run simultaneously on a user’s phone. Our evaluation of
TIDE on a testbed of Android-based smartphones, using week-
long smartphone usage traces from 17 real users, shows that
TIDE correctly identifies over 94% of energy-hungry apps and
has a false positive rate of < 6%.

I. INTRODUCTION
While smartphones are evolving with richer capabilities

and more powerful hardware, their batteries are not keeping
up. Coupled with the explosion in the number of apps for
smartphones, this trend has left users distressed about how
long their phone’s battery lasts even after a full recharge.
A report in 2012 [1] says that ”Despite activities such as
web browsing, watching videos, and using downloadable apps
have become (sic) an everyday part of smartphone use, their
impact on battery performance is largely excluded from the
data published by manufacturers.” While there exist tools
that try to quantify the energy consumption of smartphone
apps, they primarily target software developers who want to
check for power inefficiencies in their products before release.
These tools either require the use of external equipment (e.g.,
a power meter), or need modifications to the smartphone’s
operating system (OS). In addition, these tools need to be run
continuously to track an app’s operations, and hence consume
significant energy themselves.

It is desirable to have an efficient tool, capable of report-
ing which apps on a specific user’s phone dominate battery
consumption. This tool should not simply focus on detecting
apps with energy bugs [2] or ignore user-specific factors that
influence battery drain (e.g., as in [3]); for each user, it
should identify apps that consume a disproportionate amount
of energy on that user’s phone. When run on a specific user’s
phone, one could envision this tool as roughly categorizing
apps as energy-hungry or energy-thrifty based on how an app
is used by the user and the environment in which it is used.
Once energy hungry apps are identified, a user can reduce or
cease to use such apps when needed.

Challenges: Unfortunately, developing such a user-centric
tool is hard. Since normal users will be reluctant to install

modifications to the smartphone OS (this voids the phone’s
warranty), the tool must only use information exported by
the OS to the application layer. This information is however
insufficient for measuring the precise amount of resources, and
hence energy, consumed by any specific app. First, the OS only
reports aggregate resource usage metrics to the application
layer. Second, at the application layer, one can only measure
the durations between instances when the residual battery life
decreases by 1%. During any one such interval, there are
typically several apps running simultaneously on the phone.

On the other hand, offline calibration of an app’s energy
consumption is insufficient, since the determination as to
whether a specific app is energy hungry critically depends on
how and in what setting the app is used. First, battery drain
is affected by many factors, including the device features, the
processing invoked by each app, and network conditions. Thus,
the power consumed by the same app can significantly vary
across different settings. In addition, different users may inter-
act with an app in different ways (e.g., the energy consumed
by a video sharing app can differ based on whether the videos
are of high or low quality). Therefore, an app that is energy
hungry on one user’s phone may not be so on another’s.

Due to all of the above factors, it is a significant challenge
to tease out the apps that are the real culprits with respect to
energy drainage on a particular user’s phone.

Our contributions: In this paper, we first conduct an
extensive measurement study on our 22 Android phone testbed,
which shows how differing network conditions, device fea-
tures, and usage patterns affect the energy consumed by apps.
Our study also highlights the challenges in building a user-
centric tool as discussed above viz., the need to (a) efficiently
sample the information exported by the OS, and (b) filter noisy
data due to the co-existence of multiple active apps on a smart-
phone. Next, we design, implement, and evaluate TIDE (Tool
for Identifying Dominant Energy apps), a user-centric tool that
can be readily installed and used by real users for identifying
the energy hungry apps specific to their usage profiles. TIDE
is itself implemented as a smartphone app, which continually
performs lightweight monitoring of a user’s usage of apps
and the resources that these apps consume. This information
is then fed to a classifier which efficiently categorizes apps
as high, moderate, or low consumers of the phone’s battery.
Our evaluation of TIDE, based on a detailed emulation of
traces of usage patterns from 17 volunteer users, shows that it
correctly estimates the level of energy consumption for 225 out
of 238 apps. Further, TIDE delivers this level of accuracy while
imposing only 0.5% of overhead on the average consumption
of the phone’s battery per hour.

II. RELATED WORK
Android provides a battery manager tool [4], Fuel Gauge,

which estimates the percentage of battery consumed by each
app. However, in Section III, we show that the tool does not

account for several user-specific factors that can significantly
influence the energy consumption of an app (e.g., the network
link quality when data is transferred). Other prior efforts on
estimating application-specific energy/power consumption can
be broadly classified into three major classes.

Tools: Current tools that try to characterize the power
consumed by apps use offline tests and/or fail to account
for one or more factors affecting the battery drain due to an
app. PowerTutor [5] estimates an app’s power consumption
due to its interactions with hardware components (e.g., LCD,
3G interface) based on a regression model. Unlike TIDE, a)
PowerTutor itself consumes high power since it queries the
OS at a high sampling rate, b) it requires per-app resource
consumption information, which is not readily available in
newer versions of Android, and c) it needs offline calibration
for each device type. Carat [3] uses crowdsourcing to estimate
the energy impact of an app; it compares battery drainage
statistics with and without the app. This approach however fails
to account for both user-specific app usage and user-specific
network conditions, which can affect battery behavior, as we
show later. Further, unlike Carat, TIDE only runs on user’s
devices and performs all analyses locally on any particular
device (there is no need for either offline calibration or server-
side aggregation). Falaki et al. [6] also suggest that diversity
across users in terms of their app interactions can affect battery
drainage rates. However, they do not develop a tool such as
TIDE for user-specific estimation of app energy consumptions.

Identifying energy bugs: There exist tools for detecting
energy bugs in apps (e.g., [2]). However, they require an
external power meter for energy measurements and/or the
modification of the underlying OS. eDoctor [7] identifies
abnormal drain issues on phones by comparing app behaviors
with well known good versions; however, user-centric factors
are not accounted for.

Characterizing energy consumption by individual com-
ponents: Finally, there are efforts that try to assess the
power consumed by smartphone components (as opposed to
apps). Shye et al. [8] build a model to estimate the power
consumption in different hardware components, based on a
set of apps. However, the model does not work for new apps
outside this set. WattsOn [9] is an emulator that uses power
models developed offline for individual smartphone compo-
nents. However, to emulate an app’s usage pattern on WattsOn,
we would need to capture a user’s interactions with the apps
on her phone, and this would require rooting the phone;
most users are unlikely to permit this. Most smartphones
use battery models to provide the user with coarse-grained
battery usage statistics; Sesame [10] argues that such models
must be generated based on measurements using individual
smartphones, rather than offline in a lab. Carroll et al. [11]
perform offline measurements of the power consumed by
Android components while running various benchmarks. The
energy consumed on different wireless networks is studied
in [12]. None of these efforts develop a user-centric tool for
identifying energy hungry apps.

III. SHOWCASING USER-CENTRIC APP BEHAVIORS
In this section, we present a measurement study to demon-

strate that user behaviors, network conditions, and even phone
features impact the energy consumption of apps.

Impact of network type and signal strength: First, we
show that the network types and link qualities significantly

affect the energy consumed by an app. We experiment with
four HTC Touch 4G phones, each of which uses a different
network with different qualities. All the phones use the same
email account and we write a script to send emails to the
logged in accounts. Emails are sent at high (every 30 seconds),
moderate (every 5 minutes rate) or low (every 10 minutes)
rates. We turn off the display and all background activities
to make sure that the network I/O is the only contributor to
battery drain. The phones are notified of new emails via push
notification messages. These messages wake up the phones
if they are in the sleep state. A pair of phones use 3G
connections, while another pair uses WiFi. For the pair of
phones on the same network, we put one phone at a location
with good signal strength (between -69 and -55 dBm) and the
other at a location with poor signal strength (between -103 and
-97 dBm). We fully charge the phones before the experiment
and measure the energy consumed after 1 hour.

Results: Fig. 1 shows the battery drain with each phone in
our experiment. We see that transferring data over 3G costs
more than a transfer via WiFi, by a factor of 1.5 to 2.5. With
the same network type, in poor signal conditions, as one might
expect, there are many packet retransmissions, and thus, the
energy consumption is much higher; for example, with a high
volume of data, in 1 hour, the phone with the poor 3G signal
consumes more than 8% of the battery, while the phone with
the good 3G signal consumes only around 5%. In summary,
these experiments show that the energy consumption of an
app not only depends on the amount of network traffic that
it sends and receives, but also on the type and quality of the
network connection that the user experiences. We repeated the
experiments with different phone models and different network
providers and still observed qualitatively similar results. These
results are deferred to [13] due to space limitations.

Impact of user behaviors and phone features: Different
users can potentially use the same application quite differently
and this affects that app’s energy consumption.

An example with YouTube: To demonstrate the impact
of user-specific workloads on energy consumption, we experi-
ment with YouTube. We play different videos on a smartphone
Samsung Galaxy SII (referred as Dev 1). Videos 1 and 2 are
full screen; however, video 1 is of high quality (480p) whereas
video 2 is of default (360p) quality. Videos 3 and 4 cover 3

4

th

of the screen when playing; again, the former is of high (480p)
quality and the latter is of normal (360p) quality. We play these
videos on Dev1 when the video files are (a) stored locally on
the smartphone’s memory card, (b) downloaded over WiFi, or
(c) downloaded over 3G. Finally, we repeat case (a) with a
HTC MyTouch 4G smartphone (referred as Dev2).

Results: Our results, shown in Fig. 2, first re-affirm the dif-
ferences in the consumed energy when the user is on different
networks. Second, we see significant differences in the energy
consumed when playing different videos (on the same device);
between the two videos, we see a difference of as much as
20% in the time taken to deplete the battery by 1%. Thus,
depending on the video itself (rate of motion, black and white
versus color, etc.), its resolution (high versus low quality), and
the display size, the YouTube app’s energy consumption may
vary. These choices depend on user preferences, i.e., the user’s
behavior influences the energy consumed with YouTube.

We also observe differences in the energy consumptions (as
much as 49 %) across devices when playing the same video file
(from local memory). This is primarily due to the differences in

Strong WiFi
Weak WiFi
Strong 3G
Weak 3G

En
erg

y C
on

su
me

d (
kJ

)

0

2

4

High Fair Low

Fig. 1: Network impact
on energy

Dev1 Local Dev1 WiFi Dev1 3G Dev2 Local

E
n

e
rg

y
 C

o
n

s
u

m
e

d
 (

k
J
)

0

0.5

1.0

Clip1 Clip2 Clip3 Clip4

Fig. 2: YouTube’s energy consump-
tion when playing different videos

En
er

gy
 C

on
su

m
ed

 (k
J)

0

0.1

0.2

0.3

Full bright 50% bright Screen off

Fig. 3: MusicFolderPlayer’s
energy consumption

1: <device name=“Android”>
2: <item name=“screen.full”>211.6</item>
3: <item name=“WiFi.on”>1.38</item>
4: <item name=“WiFi.active”>62.09</item>
5: <item name=“WiFi.scan”>52.1</item>
6: <item name=“radio.active”>185.6</item>
(... file content is shortened for clarity...)

TABLE I: Android power profile.xml

the hardware on the two phones and shows that device features
affect battery consumption. Dev1 uses a Super AMOLED Plus
display, which does not require a backlight and is thus, more
energy-thrifty as compared to the LCD display on Dev2.

Other examples: Next, we show that a few other apps also
exhibit such multi-modal energy consumption patterns.

MusicFolderPlayer: The MusicFolderPlayer app allows a
user to either keep the screen on or off when playing music.
Depending on which option a user chooses to use, the energy
consumed by this app can vary. Fig. 3 shows the energy
consumed by this app in 5 minutes in three different modes.
As one might expect, if the screen is on, this app is a high
energy app; else, it behaves as a low energy app.

Angry Birds: We next consider a game app and observe
varied energy consumption depending on the expertise of the
player. Specifically, we have two users play the Angry Birds
game for 10 minutes each. One user, well-versed with the
game, plays the game constantly and moves to higher levels
of play. The other novice user progresses through the game
at a slower pace as he takes time figuring out how to play
at each level. On a Galaxy SII phone, we observe that the
novice user’s usage of the game consumes 0.72 kJ of energy
as compared to the 0.91 kJ consumed by the expert user. This
amounts to a difference of 26.39 % (⇡ 4.8 % in terms of the
battery percentage consumed) per hour of play.

The Android system tool does not account for user-
centric factors: Fuel Gauge, the Android system tool, at-
tributes energy to an app based on its usage of specific
resources. For each app, the tool records the number of units
of each hardware component used by the app. This number
is multiplied with the average energy consumption of the
corresponding component to estimate the energy consumed
by the app from using that component. The sum of these
values across all components is the energy attributed to the
app. In an Android device, the average power consumption
values of the various components (in mAh) are stored in the
power_profile.xml file, a partial view of which is shown
in Table I. We see the average energy used by the WiFi and
cellular interfaces in one time unit on lines 4 and 6. It is evident
that network quality is not accounted for by the tool.

Further, from the source code of the tool [4], we see that
when computing the energy consumed from network activities,
the tool only considers the amount of data transfers due to
the app. It does not differentiate between the app’s use of
WiFi and cellular networks. If the (total) data transferred
by all apps over 3G and WiFi are 3GData and wifiData
respectively, the Android OS computes the average energy
consumed per byte as (3GEnergyPerByte ⇤ 3GData +
wifiEnergyPerByte ⇤wifiData)/(3GData+wifiData),
where 3GEnergyPerByte and wifiEnergyPerByte are
obtained from the power model (Table I). For each app, the
OS computes the energy consumed from network activities by

multiplying the average energy per byte with the total amount
of data transferred by the app over all interfaces.

Since network conditions are not taken into account, the
tool may not always yield accurate outputs; in fact, as shown
in the earlier experiments in this section, the energy consumed
due to network activities depend on both the network type
and the link qualities experienced. We have validated via
experiments that Fuel Guage in many cases, does not provide
accurate battery drain values (by comparing the results with
measurements using a power meter). The differences in the
results are large and could lead to a mis-classification of apps.
We do not provide more details here due to space limitations.

Solutions such as Carat [3] cannot be easily extended
to account for user-centric behaviors: By its very nature,
crowdsourcing (the basis for Carat [3]) ignores user-specific
characteristics of apps. We downloaded and tested Carat on our
own Android phones for a week. Carat classified two of our
apps—Google Maps and Skype—as energy hogs. However, we
had only used Google Maps for a very short time during the
study and it barely consumed any energy. Further, we used
Skype with audio only and over WiFi, because of which it
consumed little energy; Carat classified it as a energy hog
since most users used it with video. Other users of Carat have
experienced similar issues [14].

IV. CHALLENGES IN DESIGNING TIDE
Next, we describe the challenges in building a user-centric

battery management tool on Android. Based on some prelim-
inary studies, we believe that iOS poses similar challenges.

Lack of OS support: Developing TIDE would be easy if
smartphone OSes monitored all the activities or resource usage
of every app and exported this information to all other apps.
However, they either do not record these details for energy
efficiency or hide this information due to security concerns.

Lack of precise energy usage information: In prior work,
researchers have either used devices such as the Monsoon me-
ter [15], or plugged special sense resistors into hardware com-
ponents on the phone to measure the energy consumed [11]
by a single app in isolation, or towards building power models
of individual hardware components. In contrast, for our goal
of developing the TIDE app, smartphone OSes do not provide
such precise measurements of energy consumption. The only
energy-related information exported by the OS is the battery
level, which is reported with a 1% granularity. Thus, TIDE’s
estimation of energy consumption by apps has to be based
on when the phone’s battery level changes, i.e., drops by 1%.
Hereafter, we refer to each period in which the battery drains
by 1% as simply an interval. In Section V-B, we elaborate on
how this information is captured on the Android platform.

Lack of app-specific resource usage information: To side-
step the above limitation one could think of the following
approach. For each type of phone, one can construct an ac-
curate power model for every hardware component (e.g., LCD

0.50%

1.07%

1.60%

3.20%
En

erg
y C

on
su

me
d (

kJ
)

0
1
2
3
4
5
6
7
8

30s 10s 5s 1s

Fig. 4: TIDE’s energy consumption
vs. sampling rates

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of applications in an Interval

C
D

F

20 ticks
50 ticks
100 ticks
150 ticks

Number of Applications in an Interval

Fig. 5: Number of active apps

Apps

Operating System

Uses System Reads usage info
for Network & CPU

Process
Monitor

Storage
App Classifier

T
I
D
E

Device Hardware

Notified of
Battery
and LCD info

User Interface

Fig. 6: TIDE architecture

display, CPU) in every environment (e.g., power consumed
by LCD as a function of brightness or, 3G based on signal
strength). Discounting the fact that building such models will
be cumbersome, TIDE can then estimate the energy consumed
by each app by 1) monitoring the environment of usage and the
app’s usage of each of the phone’s components, 2) for every
component, multiplying the app’s usage of that component
with the power coefficient value of the component, and 3)
summing up this value across all components. Unfortunately,
such an approach is hard to implement on today’s smartphone
OSes since, for many of the phone’s hardware components
(e.g., display, GPS), the OS only provides aggregate resource
usage across apps (and not for each individual app). For
example, Android permits an app to be notified when the
screen is turned on or off. While this would enable TIDE to
know the time for which the phone’s display was on, it cannot
determine how long each individual app uses the screen when
multiple apps are simultaneously run by the user.

We point out that while the OS tracks and exports per-app
usage of some resources, there are complications involved even
in their use. For example, Android maintains two files—/p

roc/uid_stat/[uid]/tcp_snd and /proc/uid_sta
t/[uid]/tcp_rcv—which list the amount of TCP traffic
sent and received over the network (both 3G and WiFi) by
an app; here uid is the unique identifier of the app on the
device. However, this feature is optional and is disabled in
some phone models (e.g., Galaxy Nexus and Sony Ericsson
Xperia X10 Mini Pro).

The only resource whose usage TIDE can track on a per-
app basis is the CPU. On Android, the CPU usage of an app
with process ID pid, is provided in the file /proc/[pid]/
stat. The CPU usage time is measured in ‘system ticks’. The
number of ticks per second is usually set to 100 [16].

Overhead of querying information: To cope with the
availability of only aggregate resource usage information TIDE
can query the OS frequently (e.g., every second). It can then
attribute all the resource consumption in the last second to the
app actively used (in the foreground) in that period. On the
Android OS, TIDE can query the OS for the foreground app.
However, frequently querying the OS for both the foreground
app and the usage of all resources can itself consume high
energy. Fig. 4 shows the power consumed over an hour when
querying Android on a Galaxy Nexus phone at different
rates; we perform this measurement on a phone where only
our querying application was active and all other apps were
disabled. Upon querying every second, TIDE itself consumed
3.2% of the battery in an hour. Consuming over 3% of the
phone’s battery every hour makes TIDE prohibitive for use.
On the other hand, if we query every 30 seconds, the querying
application only consumes 0.5% of the battery in an hour;
however, this leads to the challenges discussed next.

Extracting app-specific energy consumption: It is dif-
ficult to tease out app-specific energy consumption from the
inherently noisy data that the OS provides when queried less
frequently (e.g., once every 30 seconds). To show this, we
not only perform select experiments on our smartphones, but
also rely on measurements from the smartphones of real users.
Specifically, we distributed an Android app to 17 volunteer
users with IRB approval (details later).

Co-existence of multiple active applications: A major
obstacle in attributing the energy consumed to a specific
(say target) app is that there are many co-existing active
apps when the target app is running; in our measurements,
almost all intervals contain multiple concurrently active apps.
There are several reasons for this. First, there are background
processes (including system processes) that continuously run
on a phone. Second, users often switch between multiple
apps; for example, a user may switch between checking email,
posting on Facebook, and listening to music within a short
time. Finally, to reduce load times for recently used apps,
Android keeps an app in memory even after use; it kills the
app only when the phone’s memory has to be devoted for other
apps. Thus, many recently used apps are included in the list
of active apps reported by the Android OS.

To determine the apps in the active list that actually
contribute to energy consumption, we need to estimate their
activity levels. One way to estimate this is based on an app’s
CPU usage (the OS can be queried for this information);
note that an app consumes a non-trivial number of CPU ticks
even when it sends/receives data over the network. Simply
eliminating all apps that have consumed zero CPU ticks in an
interval is insufficient because some apps may use a little CPU
only to periodically poll for updates; these apps are unlikely
to contribute much to battery drain in that interval. Hence, we
need a threshold to filter out apps that were largely dormant.
However, determining a good threshold for CPU ticks is hard;
it will depend on the smartphone architecture and on an app’s
implementation. In Fig. 5, we plot the CDF of the number of
simultaneous apps (for one user from our study) with different
thresholds for CPU ticks. We see that if a low threshold is
used, we cannot filter out apps that run for short periods (e.g.,
with a threshold of 20 ticks, 60% of the intervals have >
5 simultaneously active apps). However, if the threshold is
too high, a majority of apps are filtered out, some of which
may be energy hungry. Note that this profile (the number of
simultaneous active apps in an interval) is user-specific.

Work delegation between apps: Another major hurdle in
attributing energy consumption to apps is that the functions of
one app are sometimes delegated to another app on Android
devices. An app that receives many such delegated functions is
the Mediaserver app. Every media app delegates data retrieval
operations to Mediaserver; once Mediaserver has received data

over the network, the data is exported to the appropriate app.
For example, when a user is viewing a video with YouTube, the
video streaming is delegated to the Mediaserver app. A naive
energy monitoring tool would hold Mediaserver responsible
for the energy consumed due to network transfers. Based on
this information, since Mediaserver is a system application
that cannot be completely disabled, the user may continue to
use YouTube as normal and drain her phone’s battery. To be
accurate, TIDE must identify YouTube as the main culprit for
energy drainage in this case.

Multi-modality of apps: Finally, the determination of
energy hungry apps is complicated by the various modes in
which a single app can function. There are several apps that
consume high energy only when they use a high amount of
a specific resource(s). As we show later in Section VI-C,
YouTube and Pandora are two examples of multi-modal apps.
YouTube’s classification as an energy hungry app depends on
the network quality, whereas the Pandora app consumes high
energy only while the display is on. Therefore, TIDE must have
the capability to classify apps under different usage scenarios.

V. TIDE: ARCHITECTURE AND IMPLEMENTATION
We next describe the architecture of TIDE and provide the

details of our implementation. Since TIDE seeks to capture
user-centric attributes, it runs on every user’s own smartphone.
It inspects the correlation of apps’ occurrences and high
energy/resource usage periods on the phone. TIDE seeks to
identify the energy-hungry apps by long term profiling; thus,
the more the user invokes an app, the higher the accuracy of
TIDE’s classification of the app. Note that we focus on the
energy consumption due to the CPU, the network interfaces,
and the display. However, TIDE is extensible to account for
energy consumed while using other resources. For example,
TIDE can identify an app’s energy consumption due to the
use of GPS by correlating periods when the GPS is turned
on with intervals in which the app either has significant CPU
activity or is in the foreground.

A. System architecture
Fig. 6 depicts the architecture of TIDE; it consists of two

main components: Process Monitor and App Classifier.
1) Process Monitor: The Process Monitor runs in the

background and keeps track of intervals (durations between
instances when the battery level drops by 1 %). After each
interval, it queries the OS for the resource usage information
in that interval. Specifically, it obtains (i) the time for which
the screen was on and, (ii) the aggregate network usage (in
bytes), during that interval. Within each interval, the Process
Monitor also queries the OS once every ⌧ seconds, for a list
of the running apps and the CPU usage of each app in those
preceding ⌧ seconds. This information is stored in the phone’s
SD card and is later processed by the App Classifier.

Adaptive sampling: There is an inherent trade-off in choos-
ing a value for ⌧ . On one hand, the larger the value of ⌧ ,
the more coarse grained the information obtained from the
OS. As a result, the query returns co-existing apps more often
than not. Further, it cannot accurately map resource usage to
apps; this makes it especially difficult to capture multi-modal
behaviors. On the other hand, Process Monitor can query the
OS more often (e.g., ⌧ = 1 second), but this increases the
energy overhead imposed by TIDE. Note that the number of
co-existing apps with ⌧ = 1 sec ⌧ when ⌧ = 30 secs, but apps
may still co-exist. To address this trade-off in TIDE, we use

Algorithm 1 TIDE’s algorithm for app classification

//Phase 1
for all app x do

s := Fraction of intervals containing only x that are short
l := Fraction of intervals with x that are long
if s � fH then

Mark x as HIGH
else if l � fL then

Mark x as LOW
end if

end for
//Phase 2
8 unclassified app x, calculate conf(x)
while 9 unclassified app x with conf(x) � � do

Find app x that has the highest confidence
Mark x as HIGH
Remove all short intervals that contain app x
Recalculate confidence values of unclassified apps

end while
//Phase 3
Multi-mode candidates = apps classified in phase 1 [all unclassified apps
for all multi-mode candidate app x do

Calculate conf(x, r) for app x and resource r
end for
while 9 tuple (x, r) with conf(x, r) � � do

Find tuple (x, r) that has the highest confidence
Mark app x as HIGH when it intensively uses resource r
Remove short intervals with app x and high utilization of r
Recalculate confidence values of remaining tuples

end while
Mark all unclassified apps as MODERATE

an adaptive sampling approach. Specifically, Process Monitor
queries the OS more often when the battery drainage is heavy
(i.e., in short intervals) and less often when battery drainage
is minimal (long intervals). The basis for this is that, in order
to identify energy hungry apps, fine grained information is
required only when the rate of energy consumption is high.
After a high-drainage interval is seen, the Process Monitor
switches to fine-grained sampling, and ⌧ is set to 1 second.
Typically, during high usage periods, short intervals appear in
bursts (we observe this in our experiments) and thus, the next
interval is also likely to be a short one. On the other hand, after
k long (low drainage) intervals, the Process Monitor returns
to coarse-grained sampling; in our implementation (described
later), we find that k = 1 works well and we set ⌧ to 30
seconds for coarse-grained sampling. We evaluate the overhead
and efficiency with adaptive sampling in Section VI.

2) App Classifier: The output of the Process Monitor
contains the set of co-existing apps detected with each query,
as well as the resource usage (e.g., screen,network) during an
interval. The App Classifier takes this as an input and tries to
identify the high-energy apps from this noisy data. It performs
this classification in 3 phases (summarized in Algorithm 1).

Phase 1: Using interval lengths to categorize apps:
First, since long intervals correspond to low battery drain,
all of the active apps in that interval must have consumed
low energy during the interval. If any of the active apps in
a specific interval consumed high energy, then that interval is
short. Second, if a single app was active in a short interval,
then that app was definitely the cause for the high battery
drain in that interval. Based on these, our first phase of app
classification works as follows. For any app X , we consider
all the intervals in which this app is active (details in section
V-B). Among these intervals, if the fraction of intervals that
are short and have no other concurrent app with X is greater
than a threshold fH , then we mark X as an energy hungry app.
Similarly, among the intervals in which an app Y occurs, if

the fraction of long intervals is greater than a second threshold
fL, then we consider Y to be a battery-thrifty app. However,
the above procedure by itself cannot classify all apps. This
is because, as discussed in Section IV, many intervals may
include multiple active apps; if a short interval includes many
active apps, we cannot attribute the high energy consumption
in that interval to any one app with certainty.

Phase 2: Handling co-existing apps: To account for mul-
tiple active apps in short intervals, we use a greedy algorithm.
In short, the larger the fraction of short intervals among the
intervals in which an app is active, we have greater confidence
in declaring the app as energy hungry. The algorithm identifies
energy hungry apps in the decreasing order of associated
confidence. Once an app is marked as energy hungry, we
greedily attribute all the energy consumed in all the short
intervals in which the app is active, to this app.

In more detail, let the confidence value for an app X being
energy hungry, conf(X), be the probability that an interval
which contains X is short. An app X is deemed energy hungry
if conf(X) is > than a threshold (say �). Once X is marked
energy hungry, the classifier discards all high battery drainage
(short) intervals that contain X from future consideration; this
essentially attributes the high battery drain in these intervals
to X . The classifier then repeats the process to find the app
with the next highest confidence value (� �), based on the
intervals yet to be discarded. The process is repeated until no
apps with a confidence value � � remain.

With the above algorithm, there may be cases where a high
energy app Y is filtered out because it appears with another
high energy app X in a some of the short intervals. To handle
such cases, we could compare the lengths of the intervals when
X is present by itself with the lengths of those intervals when
X co-occurs with Y . If the length of intervals where Y and X
simultaneously appear are much shorter than when X appears
alone, this is potentially evidence of Y being a high-energy
app. We however defer such optimizations to future work.

Phase 3: Dealing with multi-modal apps: Multi-modal
apps that exhibit different energy consumption rates in differ-
ent execution modes may end up with low confidence values,
since intervals containing an app X combine data from all of
X’s modes. To handle such cases, we define the confidence
value for a tuple of app X and resource R, conf(X,R), to be
the probability that an interval which contains X and has high
utilization of R is a high battery drain (short) interval. Using
conf(X,R), TIDE detects apps that are energy hungry only
in execution modes where a specific resource (e.g., network,
screen) is intensively used. This information allows a user to
decide how to (or rather how not to) use certain apps (e.g.,
the user may decide against uploading videos to Facebook if
TIDE determines that Facebook’s high energy consumption is
correlated with heavy network usage).

B. Implementation details
Next, we describe our Java-based implementation of TIDE

for Android phones1.
Process Monitor: TIDE captures a phone’s battery usage

by monitoring system events broadcasted by the Android OS.
It registers to receive the ACTION BATTERY CHANGED
event, using which it track periods where 1% of the battery is
depleted. The Android OS also notifies user-space apps (such

1We are working towards releasing TIDE on the Google Play store; a
rudimentary version can be found at http://bit.ly/1lEWgzD.

as TIDE) when the display is turned on and off; using this
TIDE learns the display usage in each interval. To capture
other resource usage information in an interval, TIDE queries
appropriate system files. For example, /sys/class/net/w
lan0/statistics/tx_bytes and /sys/class/net

/wlan0/statistics/rx_bytes, which are updated by
the underlying Linux kernel, provide aggregate information
about the number of bytes sent or received by all the apps via
the WiFi interface. Due to space constraints, we defer specifics
of the other system files that TIDE checks to [13].

App Classifier: The App Classifier first filters out inactive
apps or apps that are not heavy contributors to the energy drain
in each interval. It primarily considers an app to be active if
it consumes more CPU ticks than a preset threshold. In some
outlier cases, an app may use the LCD but not the CPU; to
account for such cases, TIDE checks whether the app is a
foreground app in high energy intervals. If so, the app’s energy
consumption due to the display is directly computed and thus,
TIDE determines if it is energy hungry in this mode.

Choosing a CPU threshold: We classify an app as active
if it uses more than a threshold number of CPU ticks; even
if the app uses other resources (e.g. to render graphics on the
screen, to stream data, etc.), it requires a significant number of
CPU cycles. To establish the right threshold, we installed many
popular apps from the Android market on a Galaxy SII phone
and monitored their CPU usage with a real user’s usage pattern
(described in section VI-A). With this, we determined when
the apps were actually being executed and when they were idle
in memory. We considered two types of apps: one set which
have high CPU usage (e.g., Skype, Angry Birds), and another
set with low CPU usage (e.g., MusicFolderPlayer, Advanced
Task Manager). We found that a threshold of 150 CPU ticks
when ⌧ = 30, works well to ensure that we do not filter active
periods of low CPU usage apps but do filter dormant periods
of high CPU usage apps. For ⌧ = 1, a threshold of 5 CPU
ticks accurately assigns the resource usage to an active app.
We repeated the experiment with three other users’ traces and
obtained almost identical results. This leads us to believe that
these thresholds on the Galaxy SII phone are appropriate for
use in TIDE to identify active apps. When TIDE is used on
other phone models, we apply a linear scaling between the
CPU frequency of the new model and the reference model
(Galaxy SII) to determine the CPU ticks threshold for the
new model. We find that this approximation works well in
practice. We also observe that minor variations in the CPU
ticks threshold do not significantly affect TIDE’s accuracy.

Detecting app LCD usage: To determine high energy apps
that keep the screen on without using the CPU, we use adaptive
sampling in high energy intervals to find the foreground app
in each second. The LCD usage is attributed to that app.
In longer low energy intervals, TIDE can only capture the
foreground app once every ⌧=30 secs; thus, we miss the apps
that use the display at times in between. However, this is not
of consequence since, whether or not the app uses the display
it consumes low energy in such intervals.

Once the active apps are determined, the App Classifier
runs the classification algorithm in Section V-A2. Here, we
need to choose appropriate thresholds for 1) the long and
short intervals in which an app has to appear, in order to be
classified as a low or high consumer of energy (recall fL and
fH in Section V-A2), and 2) the conf(X) or conf(X,R) values
associated with any app X . We experiment with different

values for these thresholds with different user workloads and
on different types of phones. To keep the false positive rate
low, we find that fL = fH = 1

4 and � = 0.66 works well.
With lower thresholds, false positive rates are high; higher
thresholds do not significantly reduce the false positive rate
further, without also increasing the false negative rate.

Accounting for work delegation: Finally, whenever an app
X (e.g., YouTube) appears in the same interval as another app
Y (e.g., Mediaserver) to which X delegates work, we simply
attribute all of Y ’s resource usage in that interval to X . If
two apps that delegate work to Y simultaneously appear in
an interval, we attribute each app with half of Y ’s resource
usage. A similar approach can be applied to cases with more
than two apps. However, in our user traces, we never observed
any interval wherein more than two different apps delegated
work to the same app within an interval.

Defining high and low drainage intervals: TIDE allows
the user to choose the thresholds that define HIGH and LOW
drainage intervals based on her preferences. For evaluation
purposes, we define intervals in which 1% of the battery is
drained in < 2 minutes as HIGH and intervals in which 1%
of battery is drained in > 6 minutes as LOW. This is based on
running known high energy (e.g., Skype) and low energy apps
(e.g., MusicFolderPlayer) on our phones and noting how long
they take to consume 1% of the battery (e.g., Skype takes 1.8
minutes and MusicFolderPlayer takes around 6.5 to 9 minutes).

When is resource usage high? To account for multi-
modal apps, we need to construct tuples of the form {X, R}
to represent the presence of an app X in a high battery drain
interval in which resource R is also heavily utilized. Thus, we
need to determine “when should the usage of resource R be
considered high?” To answer this, we perform measurements
using known resource hungry applications with respect to each
resource. For network usage, we measure the traffic from
YouTube while watching 20 random video clips of HD quality,
and from Skype during a video conference. We choose these
apps as they are known to manifest high network usage.
We measure the traffic while the apps are executed on 4
different devices and in different network conditions. In all
our experiments, the apps generate � 2.5 MB of traffic per
minute; hence, we set this to be the threshold for high network
usage. Similarly, we consider 5 different 3D games (known to
be CPU intensive) to set the benchmark for high CPU activity.
We find that all of these games consumed more than 1000
CPU ticks per minute. Thus, we set this to be the threshold
for high CPU activity. Like with the CPU ticks threshold we
use to identify active apps in an interval, we linearly scale this
threshold for high CPU usage based on the CPU frequency
of the phone. As discussed earlier, with adaptive sampling we
can capture LCD usage of apps in high energy intervals.

VI. EVALUATION
Next, we evaluate TIDE based on experiments conducted

on a testbed of Android phones, driven by traces gathered from
the phones of several users. We use a Monsoon power meter
for all energy measurements on our testbed.

A. Collection of real user workloads
To capture user-centric behaviors, we collect data from

17 volunteer users from their daily phone usage for a week.
Our study is IRB approved by UCR. Since a phone has to
be rooted in order to gather the data that we need (note
that using TIDE itself does not need the rooting of phones),

we handed out rooted smartphones to our volunteers after
swapping the phones’ SIM cards with the SIM cards from
the users’ own phones. To ensure consistency, we matched the
model of the phone handed out to a user to the user’s own
phone. The collected user traces are used to generate realistic
workloads on our Android testbed for establishing the ground
truth (discussed in Section VI-B). We also run TIDE on these
phones to get its output assessments.

1) Capturing user interactions: On each phone handed out,
we installed a background process that captures all of the user’s
interactions with her phone. Capturing these interactions such
that accurate replay is possible is a significant challenge. For
example, a user’s interaction with a web page is hard to replay
since the page’s content varies over time. Some apps (e.g.,
Facebook) may require the user to be logged in, which we
cannot emulate during trace replay. To capture interactions in
a manner that enables high fidelity trace replay, we adapt the
technique proposed by Gomez et al. [17] to capture user input
events with low overhead by polling the phone’s system files.

Apart from storing user input events, we also need to
associate these events to apps. Unfortunately, the phone’s
system files do not provide this information. Thus, for each
interaction, we also capture the foreground app by querying
the ActivityManager class. Since the number of user input
events is large (e.g., a simple swipe event on the phone can
generate more than 10 records in the /dev/input/event2
file), in order to minimize overhead, we query the OS for the
foreground app only on “key released” records; these records
are generated when the user releases her fingers from the
screen or from a button. Note that, in order to gather the above
information, root privilege on the phone is necessary. Hence,
collection of such information is possible only for our purpose
of gathering user traces and not as part of TIDE’s operation.
We store all of this information in a file for the purposes of a
later replay on our testbed. By emulating different network
conditions during replay, we build the ground truth with
regards to the “user-centric” energy consumed by each app.

2) Capturing user-centric resource usage patterns: For pri-
vacy reasons, many users were wary of their interactions being
captured; in fact only two of our volunteers allowed us to log
these interactions. Thus, we seek a different way to estimate
the app-specific energy consumption on such users’ phones.
For this, we capture the resource usage on the phone when
an app is running and mimic these utilizations on the same
phone to represent the app’s execution. To determine the CPU
usage of an app, we read the file /proc/[pid]/stat (pid
is the process ID of the app). We run tcpdump on the phone
to capture all packets going through all network interfaces.
Periodically, we run a modified version of netstat (provided
by the Busybox tool set [18]) to record all the ports used by
each app. We then correlate tcpdump’s output with the app to
port mapping in order to map every packet to the corresponding
app. To measure the time for which an app uses the screen, we
access the system logcat information to estimate how long an
app stays in the foreground. Again, note that these methods for
capturing app-specific usage of the network/display is possible
only with root privileges and thus they cannot be used in TIDE.

B. Building the ground truth
To evaluate the effectiveness of TIDE, for every app used

by a specific user we need to know whether or not the app is
indeed energy hungry “for that user.” Generating this ground

High Apps
False Negative

False Positive
Moderate Apps

N
um

be
r

of
 A

pp
lic

at
io

ns

Dataset
0

2

4

6

8

10

12

1 2 3 4 5 6

Fig. 7: TIDE’s accuracy with user inter-
action based ground truth

High Apps
False Negative
False Positive
Moderate Apps

Nu
mb

er
 of

 A
pp

lic
ati

on
s

Dataset
0

10

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fig. 8: TIDE’s accuracy with resource
usage based ground truth

High Apps
False Negative
False Positive
Moderate Apps

N
um

be
r o

f A
pp

lic
at

io
ns

Dataset

0

5

10

15

12hrs 1day 3days

Fig. 9: TIDE’s accuracy with different amounts
of data

truth is non-trivial in itself. In reality, apps do not run in
isolation. Further, user-centric factors such as the 3G signal
strength at different times, are not known. Thus, to generate the
ground truth, for each app used by each user, we run the app
in isolation as per that user’s usage pattern of that app (other
apps are turned off), and emulate different network conditions.

We assign the labels HIGH, MODERATE/LOW to each
app based on how long it takes the app to consume 1% of
the battery. While thresholds for determining these labels can
be defined by user preferences, we use what we believe are
reasonable here. Based on our discussions in section V-B, when
replaying apps on a specific phone, we label any app that
consumes 1% of the battery in < 2 minutes as HIGH; else, we
mark the app as MODERATE/LOW. From conversations with
our volunteer users, we believe that users are likely to treat
MODERATE and LOW apps the same (they do not believe
that it is vital to distinguish between them). Thus, we combine
these into one category and label them as MODERATE.

Replaying user interactions: As discussed, only two
volunteer users let us collect their fine-grained interactions
with their phones. We replay these interactions with each app
in isolation to quantify the real energy consumed by that app.

Replaying app behaviors based on resource usage: For
all volunteer users in our study, we replay the resource usage of
each app in isolation, to estimate its energy consumption. For
replaying the network usage of an app, we run a server which
generates the same network traffic as identified by tcpdump

in the user trace. We emulate varying network conditions to
generate the ground truth in different scenarios. We also record
the number of CPU ticks associated with these activities. When
replaying the CPU usage of an app, we subtract this number
of CPU ticks to preclude network activities.

For replaying display usage, we keep the screen on for the
same amount of time and with the same brightness level as
from the user-trace. Since we do not know the exact content on
the screen at specific times, we use a static background while
replaying an app (the brightness is as per the user’s behavior).
We try two extreme settings: (i) a dark and (ii) a relatively
white background. Note that this limitation with respect to
accounting for the impact of the displayed content on energy
consumption is inherent in most of the energy models derived
based on resource usage (e.g., [5], [10]).

C. Evaluating TIDE
App classification accuracy: We determine the accuracy

of TIDE’s App Classifier first based on ground truth obtained
by replaying fine-grained user interactions, and second, with
that based on resource usage information. Note that, on each of
our volunteers’ phones, TIDE was concurrently running while
we were capturing logs later used for trace replay (towards
determining the ground truth).

Accuracy as compared to ground truth based on user
interactions: Both volunteers, for whom we could capture
input events, used Galaxy SII phones. We separated the col-
lected data into 3 sets for each user based on their interactions
and network usage; each set contained information spanning
at least six hours. Fig. 7 shows TIDE’s accuracy on these
datasets, in comparison with the ground truth. Each bar shows
the total number of active apps in the respective dataset. The
top and bottom parts of each bar show the number of high
energy apps and the number of low/moderate energy apps,
which TIDE’s App Classifier was able to correctly classify. The
middle parts of each bar depict false positive results, wherein
LOW or MODERATE apps are mis-labeled as HIGH, and false
negative results, where HIGH apps are mis-labeled as LOW
or MODERATE.

False positives typically occur when a low energy app co-
exists in many of its intervals with other high-energy apps.
This can happen for apps that are not frequently used by the
user. For example, the one false positive in Fig. 7 corresponds
to the case where one of the users was using a music player
app for 10 minutes while simultaneously surfing the web. In
this case, we associate the music player with a high confidence
value due to the web browser’s high energy consumption. If
TIDE monitors this user’s phone over a longer period, there
are likely to be intervals where the user uses the music player
in isolation or only with other LOW apps. TIDE can then be
expected to classify the app correctly.

False negatives occur when a high-energy app X coexists
only with other high-energy apps; when we discard intervals
attributing them to these other apps (with higher confidence
values), app X gets filtered out. TIDE then labels X as
MODERATE. As users use apps for extended periods and
increased numbers of times, the coexistence pattern of other
apps will vary. As a consequence, the false positive and
negative rates can be expected to be lowered over time. We
show experimentally that this is the case in Section VI-C.

Accuracy with respect to ground truth based on resource
usage: Next, we use the datasets from our 17 volunteer users
as the basis for ground truth. Fig. 8 shows TIDE’s accuracy
in those 17 datasets, with the results amortized over different
network conditions. The results are presented in the same form
as in the previous case; each bar represents results from a
different user’s data. For 7 users, TIDE was able to classify
all the apps correctly. In almost every other case, we only
saw either one false positive or one false negative. Users 10
and 17 are the only exceptions where we had two and three
false positives respectively; however, all the high energy apps
were correctly labeled in these cases. In summary, TIDE was
able to correctly identify 66 out of 70 HIGH energy apps,
and incorrectly classified 9 MODERATE apps as HIGH, from
among a total of 168 MODERATE and LOW energy apps.

2-minute threshold 3-minute threshold
Application Condition GT Result GT Result

Skype

Strong WiFi H H H H
Weak WiFi H H H H
Strong 3G/4G H H H H
Weak 3G/4G H H H H

Web browser

Strong WiFi M M M M
Weak WiFi M M H H
Strong 3G/4G H H H H
Weak 3G/4G H H H H

Pandora

Strong WiFi M M M M
Weak WiFi M M M M
Strong 3G/4G M M M M
Weak 3G/4G M M H H

YouTube

Strong WiFi M M M M
Weak WiFi M M M M
Strong 3G/4G H H H H
Weak 3G/4G H H H H

Angry Birds

Strong WiFi M M H H
Weak WiFi M M H H
Strong 3G/4G H H H H
Weak 3G/4G H H H H

Note: GT - Ground Truth; H - HIGH ; M - MODERATE

TABLE II: Energy usage varies with network conditions

In the above analysis, we find several cases wherein TIDE
correctly identifies the same app as HIGH for one user
and LOW/MODERATE for another user. For example, TIDE
identifies the YouTube app as HIGH for a user who always
uses the 3G network on his phone. For another user who
typically uses WiFi, TIDE correctly identifies YouTube as a
MODERATE app from that user’s perspective. Thus, TIDE is
able to accurately account for user-centric factors that cause
differences in an app’s energy consumption across users.

Capturing user-centric app behaviors: Next, we consider
apps that change their behaviors from HIGH to MODERATE
or vice versa, depending on network conditions. We conduct in
house experiments with five popular apps—Skype, YouTube,
the default Android web browser, Angry Birds, and Pandora—
on a Galaxy SII smartphone. First, we use each app for at
least 15 minutes and capture all of the user’s interactions.
Thereafter, we replay all those apps jointly under 4 different
network conditions: strong WiFi, weak WiFi, strong 3G/4G,
and weak 3G/4G. The reported signal strength from the phone
was between -105 and -97 dBm under weak signal conditions,
and between -69 and -55 dBm under good signal conditions.

Table II shows the ground truth information and the results
with TIDE. The ground truth labels are built by replaying the
input events under the appropriate network conditions. Note
that here we also experiment with two different thresholds to
label an app as HIGH; an app is labeled HIGH if it consumes
1% of the battery (i) in less than 2 minutes or, (ii) in less
than 3 minutes. The stable results confirm the low sensitivity
of TIDE to the threshold.

In our experiments, Skype is always labeled HIGH, regard-
less of network conditions. Other apps, such as YouTube and
the web browser, change their energy consumption profiles
under different conditions. TIDE is able to capture these
behaviors. In this experiment, we account for work delegation,
and assign the resource usage by Mediaserver to YouTube (or
Pandora) when they co-exist in the same interval. Without this,
YouTube will always be labeled LOW.

Capturing multi-modal apps: We next evaluate TIDE’s
ability to classify multi-modal apps. We first play Pandora for
1 hour using the 3G network while keeping the screen off. Sub-
sequently, we set the screen at the highest brightness level and
continue playing Pandora for the next 30 minutes. After this,

we use YouTube for an hour using WiFi (Pandora is now off).
Finally, we continue with YouTube but switch to 3G for the
last 30 minutes. We keep the screen at the highest brightness
level while using YouTube. During the entire experiment, we
have other auxiliary apps that run simultaneously with Pandora
and YouTube. With Pandora, we run an app that executes in
the foreground and simply turns on the display while Pandora
runs in the background; here our goal is to see if Pandora is
correctly identified as a low energy app. With YouTube, we
run an app that receives updates from a Twitter account; our
goal is to see if TIDE can accurately capture YouTube’s high
energy when the network usage is high. The auxiliary apps are
turned on and off at random. When turned on they remain on
for a uniform random period between 3 and 5 minutes; when
turned off, they remain in that state for a uniformly chosen
period between 7 and 10 minutes. Both of these auxiliary apps
continue to run for 2 hours after the Pandora and YouTube apps
are terminated. We find that TIDE accurately classifies all of
the apps above. Specifically, it finds that: (i) Pandora consumes
high energy only when the screen is turned on, (ii) YouTube
consumes high energy only if 3G is used, and (iii) both our
auxiliary apps consume low energy.

In more detail, the confidence value of Pandora without
considering its different usage patterns, is quite low (20% out
of 16 intervals). Thus, TIDE classifies Pandora as a MOD-
ERATE app. However, when TIDE considers Pandora only in
intervals where the LCD is intensively used, the confidence
value of the tuple (Pandora, LCD) is high (80%) and TIDE
classifies Pandora as energy hungry. As for YouTube, the
confidence value in general is low (33% out of 24 intervals).
However, considered only when the 3G network is used, its
confidence value is 100%; TIDE thus identifies YouTube as a
high energy app under high 3G utilization.

Accuracy versus dataset size: The longer the monitoring
period with TIDE, the better is its accuracy. Fig. 9 shows the
impact of the number of observed intervals on the accuracy
of TIDE with one of our datasets (results with other sets
are similar). With the data collected for 12 hours, there was
only one high energy app invoked by the user, and TIDE
produced one false positive result. This is primarily because
of the limited volume of data used to build the profile. With
the data collected for a day, the user used four high energy
apps and TIDE was able to detect all four of them. The
earlier, wrongly classified app is now correctly labeled as
MODERATE; however, a new (previously unseen) app is mis-
labeled as HIGH. With the data collected for 3 days, no
more new high energy apps were detected. Importantly, the
mis-labeled app is now correctly labeled as MODERATE. To
ensure that the periods are long, but are not influenced by
stale behaviors, we set the monitoring period to one week by
default. However, the user can choose the period over which
TIDE should use data to classify apps.

Overheads: We examine TIDE’s overhead along three
dimensions: 1) energy consumed due to TIDE’s querying of
the OS, 2) the execution time of TIDE’s greedy algorithm, and
3) the storage space consumed by TIDE’s logs.

Energy overhead: We earlier showed in Fig. 4 that with a
sampling rate of 30 seconds, TIDE consumes about 0.5% of the
battery per hour. The power consumed by the App Classifier is
negligible (especially if the processing is done when the phone
is being charged). Even otherwise, app classification using data
over 700 intervals consumes ⇡ 192 Joules (⇡ 0.78% of the

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

50 80 100 200 300 700

Pr
oc

es
si

ng
 t

im
e

(s
ec

on
ds

)

Number of intervals

Galaxy S2
Galaxy Note1

HTC MyTouch 4G

Fig. 10: App Classifier’s pro-
cessing times

30 secs
5 secs
Adaptive rate

Sp
ac

e
U

sa
ge

 (k
B)

Number of Intervals
0

1000

2000

3000

4000

5000

6000

7000

50 100 150 200 300 700

Fig. 11: Space used to store
Process Monitor’s logs

battery capacity on a Galaxy SII phone).
Overhead with adaptive sampling: Next, we quantify the

energy costs with adaptive sampling. We use the data from one
of our volunteers with a Galaxy Nexus phone. For each day,
we pick the period from 9 AM to 5 PM (this is when the user
uses her phone the most). We consider energy-heavy intervals
to be 2 minutes or less; in such periods, we query the OS every
second. For other intervals (considered low energy periods),
we sample once every 30 seconds. We measure the energy
consumed with three different sampling schemes: (a) sampling
periodically every second, (b) sampling periodically every 30
seconds, and (c) adaptive sampling as above. The mean values
of the energy consumed by the three schemes (based on a 5
day user activity) are 3.20%, 0.50%, and 0.76% of the phone’s
battery per hour, respectively. It is apparent that while adaptive
sampling does increase TIDE’s energy overhead, the increase
is not exorbitant and thus, the approach is viable.

One can claim adaptive sampling makes the phone con-
sume more energy when the battery drain is already high,
and this will affect user experience. To show otherwise, we
measure the energy overhead with adaptive sampling during
a video conference using energy hungry Skype. The phone
consumes 1% of the battery on average in 108 seconds without
any sampling. With adaptive sampling enabled, the phone
consumes 1% in 101 seconds. Thus, the penalty is < 7%;
this indicates that adaptive sampling is unlikely to significantly
degrade user experience during high activity periods.

Processing time of the greedy algorithm: Fig. 10 shows
the execution times of the App Classifier with data collected
over different numbers of intervals. We see that, even if the
data in the input file spans 700 intervals (⇡ a week of data),
the processing time is 7 minutes. This processing can be
done offline when the user is charging the phone at night.

Storage space: Fig. 11 shows the average storage space
used to store the input data collected by the Process Monitor,
for different sampling rates. We see that, even when the input
data spans 700 intervals, TIDE uses < 6.5MB. Old data is
purged as new data is accumulated, and hence, TIDE’s storage
overhead does not continuously grow over time.

VII. DISCUSSION
Determining usage thresholds: As discussed earlier,

TIDE uses a few thresholds for classification purposes; these
thresholds are determined by measurements from the usage
traces of several users. We observed that minor variations in
these thresholds do not affect TIDE’s accuracy in classifying
apps. While an alternative approach based on machine learning
could be used to learn the appropriate values for these thresh-
olds, the training process required by such an approach can
potentially consume high energy. This requires more careful

consideration in the future. In contrast, our simple approach
offers high classification accuracy while being energy thrifty.

Coping with evolution of Android: As the information
exported by Android evolves in the future, TIDE may have
either less or more information that it can use. On one hand,
Android may reduce the information exported to the user-level
(e.g., due to security concerns). However, many inputs that
TIDE relies on (e.g., when the battery level drops by 1% and
the aggregate network consumption) are useful to users, and
hence, Android is likely to continue to export this information.
Moreover, TIDE’s techniques can be folded into the OS itself,
e.g., into Android’s Fuel Gauge tool. On the other hand, if the
information available to TIDE increases, TIDE’s classification
can potentially be made more efficient.

VIII. CONCLUSIONS
In this paper, we argue that there is a need for a user-centric

tool to identify energy hungry apps on a user’s smartphone. We
design and implement such a tool, TIDE. The key challenges
addressed in TIDE are (a) it provides a lightweight way to
determine active apps based on adaptive sampling and (b) it
uses a novel greedy algorithm to filter out the real energy
hungry apps from multiple simultaneously running apps on the
user’s phone. It also effectively captures multi-modal energy
behaviors. We show via both in house experiments and user-
trace driven emulations that TIDE classifies apps as energy
hungry (or not) with very high accuracy and low overhead.

REFERENCES
[1] Battery life complaints causing operator headaches. http://bit.ly/PI5Fnj.
[2] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha. AppScope:

Application energy metering framework for Android smartphones using
kernel activity monitoring. In USENIX ATC, 2012.

[3] A. Oliner, A. Iyer, I. Stoica, E. Lagerspetz, and S. Tarkoma. Carat:
Collaborative energy diagnosis for mobile devices. In SenSys, 2013.

[4] Android battery tool source code. http://bit.ly/1i5cRKB.
[5] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. M. Mao, and

L. Yang. Accurate online power estimation and automatic battery be-
havior based power model generation for smartphones. In CODES/ISSS,
2010.

[6] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan,
and D. Estrin. Diversity in smartphone usage. In MobiSys, 2010.

[7] X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen, Y. Zhou, L. Saul,
and G. Voelker. eDoctor: Automatically diagnosing abnormal battery
drain issues on smartphones. In NSDI, 2013.

[8] A. Shye, B. Scholbrock, and G. Memik. Into the wild: Studying real user
activity patterns to guide power optimizations for mobile architectures.
In MICRO, 2009.

[9] R. Mittal, A Kansal, and R. Chandra. Empowering developers to
estimate app energy consumption. In Mobicom, 2012.

[10] M. Dong and L. Zhong. Self-constructive high-rate system energy
modeling for battery-powered mobile systems. In MobiSys, 2011.

[11] A. Carroll and G Heiser. An analysis of power consumption in a
smartphone. In USENIX ATC, 2010.

[12] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani.
Energy consumption in mobile phones: A measurement study and
implications for network applications. In IMC, 2009.

[13] Tide system - technical report. https://www.dropbox.com/s/3d1ilxwy4n
hivmb/main.pdf.

[14] Carat - Android version. http://bit.ly/1h5EYGS.
[15] Monsoon power monitor. http://bit.ly/p6qNfY.
[16] Android source code. http://bit.ly/1lOR2Ci.
[17] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. RERAN: timing- and

touch-sensitive record and replay for Android. In ICSE, 2013.
[18] Busybox tool set. http://www.busybox.net/.

