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An Analytical Approximation for the Excess Noise
Factor of Avalanche Photodiodes with Dead Space

Majeed M. HayatMember, IEEE Zikuan Chen, and Mohammad A. Karir8enior Member, IEEE

Abstract—Approximate analytical expressions are derived for an approximate solution to the recurrence equations reported
the mean gain and the excess noise factor of avalanche photodi-in the dead-space multiplication theory [10]. However, the

odes including the effect of dead space. The analysis is basedy 5 rgximation reported in [13] does not address the excess
on undertaking a characteristic-equation approach to obtain noise factor
f .

an approximate analytical solution to the existing system o . . . .
recurrence equations which characterize the statistics of the [N this letter, we develop an approximate analytical solution
random multiplication gain. The analytical expressions for the to the recurrence equations given in [10] using a technique

excess noise factor and the mean gain are shown to be inwhich involves the characteristic equations corresponding to
good agreement with the exact results obtained from numerical 1hq recyrrence equations. Approximate analytical expressions
solutions of the recurrence equations for values of the dead space both th . d th ise fact
reaching up to 20% of the width of the multiplication region. or 0_ € mean galh_ an e excess_ no_'se_ actor a_re
determined under conditions of constant ionization coeffi-
cients. To our knowledge, no prior closed-form analytical
l. INTRODUCTION expression for the excess noise factor has been reported

HERE has been an increased recent interest in avalané®le the dead-space model. Our results for the mean gain
photodiodes (APD's) with a thin multiplication regionand the excess noise factor are in good agreement with
(MR) for their low avalanche multiplication noise [1]-[6].the exact numerical solutions. Furthermore, the accuracy of
Experiments have shown that the excess noise factor, whicting reported approximation of the mean gain is generally
a measure of the avalanche multiplication noise, is reducedé@nparable to the perturbation approximation reported in
the width of the MR of the device is decreased [1], [2]. ThikL3]. The analysis reported in this letter has the potential to
observation indicates that the excess noise factor is not onlprgvide a simple alternative tool to simulation and extensive
function of the mean gain and the hole-to-electron ionizatigh!merical methods traditionally used to characterize avalanche
coefficient ratio but also dependent on the MR width. Thigultiplication noise in thin APD's.
dependence cannot be explained within the context of the
conventional (Mclintyre) avalanche multiplication theory [7],
[8] which asserts that the excess noise factor is a function only [l. RESULTS AND DISCUSSION

of the mean gain and the ionization coefficient ratio. Consider the multiplication region of a pure-electron in-
The dependence of the excess noise factor on the wig#dtion APD extending fromx = 0 to z = w, wherew is
of the MR has been attributed, in part, to the nonlocalizfle width of the avalanche multiplication region. A parent
nature of the impact ionization coefficients [2], [4]-[6] whichelectron is injected at = 0 and travels under the effect of the
is based on the physical assumption that a newly generagéctric field in thex-direction. After traveling a fixed dead
carrier must travel a certain distance, called the dead spaggaced,, the electron becomes capable of impact ionizing
in order to gain sufficient energy before it is capable qfith an ionization coefficient. Upon ionizing, the parent
impact ionizing [9]. The dead space is primarily a function oind secondary electrons are required to travel a minimum
the electric field and the impact ionization energy associatgftance d. from the point of generation before they are
with the material. For an APD with a thin MR, the valu&apable of further impact ionizations. The hole travels in the
of dead space becomes relatively high and the effect of.direction and becomes capable of impact ionizing with an
dead space on the multiplication noise therefore becomggization coefficients only after traveling a dead spadg.
more significant. Both theoretical [9], [10]-[12] and MonteThijs process continues until all carriers exit the multiplication
Carlo [5], [6] studies confirm that dead space results in ragion resulting in a net random gad.
reduction in the excess noise.factor. Spinetl.ial. [13] has  To characterize the statistics 6f the random count& ()
recently developed an approximate expression for the megfy v (+) were introduced in [10] as the total number of
gain by employing a small-perturbation approach to obtaiiyrriers generated as a result of an initial electron or hole,

. . . respectively, located at positianin the multiplication region.
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an o find an approximate solution to (2) and (4), first note that
d To find an approxi lution to (2) and (4), f h
(G?) 1 the right-hand side of (2) and (4) is explicitly determined by
R W(ZQ(O) +4G) - 1) substituting the previously calculated approximate expressions

) ) ~ for 2(x) andy(z), and it consists of a constant plus a weighted
wherez(x), y(x), z2(x), y2(x) obey the following differential g,m of the terms:* and ¢2"*. We can therefore assume a

equations (differentia}I forms of the recurrence equations (14}h|ution (a combination of the homogeneous and particular

(15), (18), and (19) in [10]). FOb < z < w — d.: solutions) to the unknown functions(z) and () as the
#(x) — afx(z) — 22(x + de) —y(x +do)] =0 (1) Superposition of terms of the formy(z) = p1e™ + p2e?® +

psze™ +pyr+ps andyx(x) = e +qae? T +gzze’ +qur+

gs. The exponent turns out to satisfy the same characteristic

equation as in (6). Upon substituting the proposed forms (with

known r but unknown coefficients) into (2) and (4), and

() — aleale) — 22a( + o) — ol + )]
= —2az(x +d.)2y(x + d.) + 2(x + d.)) 2)

and ford;, < z < w: applying the conditiong.(w — d.) = y2(dy,) = 1, we obtain
p _ a system of ten linear equations involving the ten unknown
V(@) + Plu(z) = 2y(x — dp) — 2(z — )] =0 (3) coefficientspy , ..., ps, andqu, . . . , ¢s. After some algebra, the

, unknown coefficients are determined and the final expression
va(@) + Blya(®) — 2v2(z — dn) — 22(z — di)] for the excess noise factor is found to be
= 20y(x — dp)(22(x — dp,) + y(xz — dp)) 4 . 1 . o
= —(wi +ws +ws +4(G) — 1
with the boundary conditiong(z) = z(x) = 1, if w — 4G)? (wn + w3+ w (@ -1 ®

de < & < w, andy(z) = go(r) = 1, if 0 < 2 < du. yhere the parameterss;, ws, and ws, are obtained by
The approach we undertake to approximately solvezfar) q\ying the linear system of equations — Pv, where
and_y(a:) is based on proposing exponer_ma_l solutions. The _ [1,1,b1,b2,0,bs, a1, a2,a3]", v = [wy,...,we]%. The
desired e>_(ponents are then found by substltgt!ng these assu'ﬁ'&qzero entries oP andq are ;; refers to theith row and
exponential forms in (1) and (3), and obtaining an algebrafﬁe jth column):
characteristic equation characterizing the exponent that results
in self consistency in (1) and (3). (This approach is similar p11 =ps =1, p2=w-—de, piz=c
to the standard method used to derive the solution of linear ,, , — (w — de)er(wfde% pis = e2(w—de),
differential equations with constant coefficients where the self _ oy _ rds,
: : I paz = —dp, par=e" ", pag = dpe”,
consistency of the proposed exponential solution is represented ord,
by a polynomial characteristic equation whose roots are the P20 =¢ " P31t =pss =&, ps2 =1+ ad,
desired exponents.) Specifically, assume a solution of the form p43 = pse =7 —a + 20e™ | pyy =1+ 2ad.e",
z(z) = c1e™® andy(z) = c2¢™®, and substitute these forms .. = p.o = qe™
into (1) and cancel out all the terms that involvdo yield a
linear equation irc; ande, involving the unknown parameter
7. We now follow the same procedure using (3) in place of P71 = P76 = =B, pr2 = —(14fdy),

r(w—de.)
;

rde
, Pag = adee ;

Pes = 2r — o+ 20€®™% | pgo = e e,

(1), and obtain another equation involviag and c;. These pss = —feTT . pes = 1+ 2Bdp e,
two equations can be written as pgr =14+ 0 — 28" pey = Bdpe "
7 —a+ 2ac"de aerde } |:Cl:| _ [0} (5) pos = —fBe Y pog = 2r + B — 2Be7
—fe e r 4 f-2pe7 o] T 0] by =2073, by =dapyime,

For a nontrivial solution te; ande, in (5), we require that the by = —2ap(p +2)73e? e ay = —2p342,
matrix z_;lbove is S|_ngular (its dete_rm_lnant m_ust be zero) WhICh as = 4Bpyvee " a3 = 28(2p + 1)yRe 2
results in the nonlinear characteristic equation characterizing
— r(w—de) rd;, d =1 rd;,
L rdong o —rds r(de—dy) _ where ~; 2/(pe’ + "), and v, yre" %,
(r =+ 2ae™)(r + 3 — 2f3e )+ afe 0- Equation (8) is the main contribution of this letter. To our
(6) knowledge, this is the first time that an analytical expression

For brevity, we consider the case when the electron and héms the excess noise factor for the dead-space multiplication

ionizations are unequal in which case (6) has two roots: Ti°del is reported. o _
ri. = 0and 2)r, = r # 0. (The exponent is computed We now compare our characteristic-equation method (CM)

using MATLAB and its built-in functiorfzera) Now by setting approximations for the mean.and the excess noise factor [(7)
#(x) andy(x) to a linear combination of the two exponential@"d (8)] to the exact numerical method (ENM) reported in

(corresponding to the two roots) and applying the boundat}0l- We also compare our expression for the mean gain to
conditions z(w — d.) = y(dy) = 1, we can solve forz(x) the perturbation-method (PM) approximation reported in [13].

and y(z) and obtain For simplicity, we assume that the electror_1 and hole dead
vl spaces are equal with a common valdelt is seen from

(G) = pte Fig. 1 that both the CM and PM approximations are accurate
per(w=de) 4 erdn” for the “small” dead space case @fw = 0.05. In the case of

wherep = —ae™ /(r — a +2ac™). (7) k= 0.1 andd/w = 0.1, the CM approximation outperforms
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Fig. 1. Dependence of the mean g&j’) on the electron ionization parametenc. Solid lines represent the characteristic-equation method (CM)
approximation, dashed-dotted lines represent the perturbation-method (PM) approximation and the dashed lines correspond to the exactatlhotkerical m
(ENM). Two cases for the hole-electronionization coefficient rdtiand two cases for the relative dead space paranagter are consideredk = 0.1

and k = 0.5; d/w = 0.05 and d/w = 0.1.
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Fig. 2. Excess-noise factdr as a function of the mean gaifG). Solid lines represent the characteristic-equation method (CM) approximation and the
dashed lines correspond to the exact numerical method (ENM). Three cases for the hole-electron ionization coeffidiesnidatioee cases for the relative
dead spacé/w are consideredt = 0.1, k = 0.5, andk = 0.9; d/w = 0.1, d/w = 0.15, andd/w = 0.2. For comparison, th& versus(G) characteristics

for the cased/w = 0 are plotted according to the conventional theory (CON) and represented by a dashed-dotted line.

the PM approximation. The main contribution of this letter ia dead-space model which are in good agreement with the
summarized in Fig. 2. It is seen that the CM approximatioexact results obtained using extensive numerical solutions.
of the excess noise factor, as a function of the mean gaifjese approximations provide a valuable tool for designing
is in good agreement with the exact results obtained usiddyD’s with thin multiplication regions which are known to
the ENM method. Even in the case whejiw = 0.2, the be sensitive to the dead space effect.

CM approximation performs well in capturing the dead space
effect which can be seen by comparing the CM graph to the

graph from the conventional theory (CON) reported in [7] for[1] c. Hu, K. A. Anselm, B. G. Streetman, and J. C. Campbell, “Noise
which d/w = 0. characteristics of thin multiplication region avalanche photodiodes,”

. . Appl. Phys. Lett.vol. 69, no. 24, pp. 3734-3736, 1996.
In summary, we have developed approximate expressionsy kA" anseim, P. Yuan, C. Hu. C. Lenox, H. Nie, G. Kinsey, J. C.

for the mean gain and the excess noise factor of APD’s in  Campbell, and B. G. Streetman, “Characteristics of GaAs and AlGaAs
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