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An Analytical Approximation for the Excess Noise
Factor of Avalanche Photodiodes with Dead Space

Majeed M. Hayat,Member, IEEE, Zikuan Chen, and Mohammad A. Karim,Senior Member, IEEE

Abstract—Approximate analytical expressions are derived for
the mean gain and the excess noise factor of avalanche photodi-
odes including the effect of dead space. The analysis is based
on undertaking a characteristic-equation approach to obtain
an approximate analytical solution to the existing system of
recurrence equations which characterize the statistics of the
random multiplication gain. The analytical expressions for the
excess noise factor and the mean gain are shown to be in
good agreement with the exact results obtained from numerical
solutions of the recurrence equations for values of the dead space
reaching up to 20% of the width of the multiplication region.

I. INTRODUCTION

T HERE has been an increased recent interest in avalanche
photodiodes (APD’s) with a thin multiplication region

(MR) for their low avalanche multiplication noise [1]–[6].
Experiments have shown that the excess noise factor, which is
a measure of the avalanche multiplication noise, is reduced as
the width of the MR of the device is decreased [1], [2]. This
observation indicates that the excess noise factor is not only a
function of the mean gain and the hole-to-electron ionization
coefficient ratio but also dependent on the MR width. This
dependence cannot be explained within the context of the
conventional (McIntyre) avalanche multiplication theory [7],
[8] which asserts that the excess noise factor is a function only
of the mean gain and the ionization coefficient ratio.

The dependence of the excess noise factor on the width
of the MR has been attributed, in part, to the nonlocalized
nature of the impact ionization coefficients [2], [4]–[6] which
is based on the physical assumption that a newly generated
carrier must travel a certain distance, called the dead space,
in order to gain sufficient energy before it is capable of
impact ionizing [9]. The dead space is primarily a function of
the electric field and the impact ionization energy associated
with the material. For an APD with a thin MR, the value
of dead space becomes relatively high and the effect of
dead space on the multiplication noise therefore becomes
more significant. Both theoretical [9], [10]–[12] and Monte-
Carlo [5], [6] studies confirm that dead space results in a
reduction in the excess noise factor. Spinelliet al. [13] has
recently developed an approximate expression for the mean
gain by employing a small-perturbation approach to obtain
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an approximate solution to the recurrence equations reported
in the dead-space multiplication theory [10]. However, the
approximation reported in [13] does not address the excess
noise factor.

In this letter, we develop an approximate analytical solution
to the recurrence equations given in [10] using a technique
which involves the characteristic equations corresponding to
the recurrence equations. Approximate analytical expressions
for both the mean gain and the excess noise factor are
determined under conditions of constant ionization coeffi-
cients. To our knowledge, no prior closed-form analytical
expression for the excess noise factor has been reported
for the dead-space model. Our results for the mean gain
and the excess noise factor are in good agreement with
the exact numerical solutions. Furthermore, the accuracy of
the reported approximation of the mean gain is generally
comparable to the perturbation approximation reported in
[13]. The analysis reported in this letter has the potential to
provide a simple alternative tool to simulation and extensive
numerical methods traditionally used to characterize avalanche
multiplication noise in thin APD’s.

II. RESULTS AND DISCUSSION

Consider the multiplication region of a pure-electron in-
jection APD extending from to , where is
the width of the avalanche multiplication region. A parent
electron is injected at and travels under the effect of the
electric field in the -direction. After traveling a fixed dead
space , the electron becomes capable of impact ionizing
with an ionization coefficient . Upon ionizing, the parent
and secondary electrons are required to travel a minimum
distance from the point of generation before they are
capable of further impact ionizations. The hole travels in the

-direction and becomes capable of impact ionizing with an
ionization coefficient only after traveling a dead space.
This process continues until all carriers exit the multiplication
region resulting in a net random gain.

To characterize the statistics of, the random counts
and were introduced in [10] as the total number of
carriers generated as a result of an initial electron or hole,
respectively, located at positionin the multiplication region.
The random gain is then , which can
be further reduced to , since .
Clearly, if the mean, , and the second moment,

, are determined then the mean gain and
excess noise factor can be computed as
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and

where obey the following differential
equations (differential forms of the recurrence equations (14),
(15), (18), and (19) in [10]). For :

(1)

(2)

and for :

(3)

(4)

with the boundary conditions , if
, and , if .

The approach we undertake to approximately solve for
and is based on proposing exponential solutions. The
desired exponents are then found by substituting these assumed
exponential forms in (1) and (3), and obtaining an algebraic
characteristic equation characterizing the exponent that results
in self consistency in (1) and (3). (This approach is similar
to the standard method used to derive the solution of linear
differential equations with constant coefficients where the self
consistency of the proposed exponential solution is represented
by a polynomial characteristic equation whose roots are the
desired exponents.) Specifically, assume a solution of the form

and , and substitute these forms
into (1) and cancel out all the terms that involveto yield a
linear equation in and involving the unknown parameter
. We now follow the same procedure using (3) in place of

(1), and obtain another equation involving and . These
two equations can be written as

(5)

For a nontrivial solution to and in (5), we require that the
matrix above is singular (its determinant must be zero) which
results in the nonlinear characteristic equation characterizing

(6)

For brevity, we consider the case when the electron and hole
ionizations are unequal in which case (6) has two roots: 1)

and 2) . (The exponent is computed
using MATLAB and its built-in functionfzero.) Now by setting

and to a linear combination of the two exponentials
(corresponding to the two roots) and applying the boundary
conditions , we can solve for
and and obtain

where (7)

To find an approximate solution to (2) and (4), first note that
the right-hand side of (2) and (4) is explicitly determined by
substituting the previously calculated approximate expressions
for and , and it consists of a constant plus a weighted
sum of the terms and . We can therefore assume a
solution (a combination of the homogeneous and particular
solutions) to the unknown functions and as the
superposition of terms of the form

and
. The exponent turns out to satisfy the same characteristic

equation as in (6). Upon substituting the proposed forms (with
known but unknown coefficients) into (2) and (4), and
applying the conditions , we obtain
a system of ten linear equations involving the ten unknown
coefficients , and . After some algebra, the
unknown coefficients are determined and the final expression
for the excess noise factor is found to be

(8)

where the parameters , , and , are obtained by
solving the linear system of equations , where

. The
nonzero entries of and are ( refers to the th row and
the th column):

where , and .
Equation (8) is the main contribution of this letter. To our
knowledge, this is the first time that an analytical expression
for the excess noise factor for the dead-space multiplication
model is reported.

We now compare our characteristic-equation method (CM)
approximations for the mean and the excess noise factor [(7)
and (8)] to the exact numerical method (ENM) reported in
[10]. We also compare our expression for the mean gain to
the perturbation-method (PM) approximation reported in [13].
For simplicity, we assume that the electron and hole dead
spaces are equal with a common value. It is seen from
Fig. 1 that both the CM and PM approximations are accurate
for the “small” dead space case of . In the case of

and , the CM approximation outperforms
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Fig. 1. Dependence of the mean gainhGi on the electron ionization parameter�w. Solid lines represent the characteristic-equation method (CM)
approximation, dashed-dotted lines represent the perturbation-method (PM) approximation and the dashed lines correspond to the exact numerical method
(ENM). Two cases for the hole-electronionization coefficient ratiok and two cases for the relative dead space parameterd=w are considered:k = 0:1
and k = 0:5; d=w = 0:05 and d=w = 0:1.

Fig. 2. Excess-noise factorF as a function of the mean gainhGi. Solid lines represent the characteristic-equation method (CM) approximation and the
dashed lines correspond to the exact numerical method (ENM). Three cases for the hole-electron ionization coefficient ratiok and three cases for the relative
dead spaced=w are considered:k = 0:1; k = 0:5, andk = 0:9; d=w = 0:1; d=w = 0:15, andd=w = 0:2. For comparison, theF versushGi characteristics
for the cased=w = 0 are plotted according to the conventional theory (CON) and represented by a dashed-dotted line.

the PM approximation. The main contribution of this letter is
summarized in Fig. 2. It is seen that the CM approximation
of the excess noise factor, as a function of the mean gain,
is in good agreement with the exact results obtained using
the ENM method. Even in the case when , the
CM approximation performs well in capturing the dead space
effect which can be seen by comparing the CM graph to the
graph from the conventional theory (CON) reported in [7] for
which .

In summary, we have developed approximate expressions
for the mean gain and the excess noise factor of APD’s in

a dead-space model which are in good agreement with the
exact results obtained using extensive numerical solutions.
These approximations provide a valuable tool for designing
APD’s with thin multiplication regions which are known to
be sensitive to the dead space effect.
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