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Abstract

In order to improve the prediction capability of spring-back in the computational analysis of sheet metal forming processes, a

stress–strain constitutive formulation of non-linear combined hardening rule has been proposed in this paper according to non-linear

kinematic hardening theory of Lemaitre and Chaboche and Hill’s 1948 anisotropic yielding function. Traditionally, Young’s modulus is

considered as a constant in engineering application and numerical simulation. In fact, it decreases with plastic deformation. So the effect

of the change of Young’s modulus with plastic strain on spring-back is considered in the constitutive model. The algorithm of stress

update is elastic prediction, plastic correcting and radial returning. Numerical results and experimental results show that the proposed

constitutive model significantly improves the prediction accuracy of spring-back.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, the high strength steels and aluminum
alloys, which have higher ratios of yield strength to elastic
modulus, are increasingly used for sheet metal parts in
automotive industry to reduce mass [1]. Hence, spring-back
is one of the most important problem faced in sheet metal
forming processes. Introducing computational methods
based on the finite element method in the design stage is
one way to reduce the try-error correct, especially utilizing
proper mechanical properties of sheets [2].

Lems [3] revealed that Young’s modulus decreases with
plastic deformation. Due to the change of Young’s
modulus with plastic deformation, actual spring-back is
larger than that computed with a constant Young’s
modulus. However, the most commercial FEM codes do
not provide non-linear elastic and plastic constitutive
model. To improve the spring-back prediction capability,
e front matter r 2007 Elsevier Ltd. All rights reserved.
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the relationship of plastic deformation and Young’s
modulus should be considered in numerical simulation.
A variety of theoretical and experimental researches on the
phenomenon of the change of Young’s modulus with
plastic deformation and elasto-plastic constitutive model
have been investigated. Vin [4] gave a simple mathematical
model describing the relationship between plastic deforma-
tion and Young’s modulus based on experiment results.
Morestin [5,6] formulated an elasto-plastic model using
kinematic hardening model for spring-back analysis in
sheet metal forming. In his calculations the change of
the Young’s modulus versus plastic strain was taken
into account. Yan [7] addressed the effect of non-linear
elastic unloading on spring-back prediction of V-shape
bend.
Accurate spring-back prediction based on FEM also

strongly depends on the hardening rule [1,8,9]. Isotropic
hardening (IH) may not be so effective when the material
points experience cyclic loads; for example, bending–un-
bending on the die shoulder and reverse bending–unbend-
ing at the punch [10]. The linear kinematic hardening
proposed by Prager [11] and Ziegler [12] underestimates the
spring-back because of the assumption of yield stress
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surface without changing its shape and size. The Chaboche
[13,14] model has gained some popularity because a recall
term is introduced to realize the smooth elastic–plastic
transition behavior in recent years. The combined iso-
tropic-kinematic hardening law is considered suitable in
predicting the spring-back [2,10].

The objective of the present study was to formulate an
elasto-plastic constitutive equation based on the Chaboche
non-linear kinematic (NLK) hardening rule and Hill’s
1948 anisotropic yielding function. The Young’s modulus
has a significant influence on sheet spring-back. Usually,
Young’s modulus is considered as a constant in engineering
application and numerical simulation, but it decreases
with plastic deformation. So the change of Young’s
modulus with plastic strain is considered in the suggested
constitutive model. A backward-Euler method with
r-residual algorithm is utilized to update the stress
increment. The constitutive equation for isotropic-kine-
matic hardening behaviors was implemented into the
ABAQUS codes using the implicit user subroutine UMAT.
The influences of hardening rules on the sheet spring-back
are also discussed.

2. Constitutive model

The NLK hardening component of Chaboche combined
hardening rule is adopted, with the exception that the
steady-state evolution of a is given by Ziegler [12]:

daij ¼
C

se
ðsij � aijÞd�̄

p � gaij d�̄
p, (1)

where C and g are NLK hardening material parameters. sij

is flow stress, and aij is back stress. se, d�̄p, daij are the
equivalent stress, equivalent plastic strain increment and
back stress increment, respectively.

The single component form of IH rule is expressed by the
following equation:

s0 ¼ s0 þQð1� e�b�̄p Þ, (2)

where Q and b are IH material parameters, s0 is the current
yield stress, s0 is the initial yielding stress and �̄p is the
equivalent plastic strain.

The associated flow rule with Hill’s 1948 anisotropic
yield criterion is used in this investigation. The flow
potential f ðsij ; aijÞ considering the Bauschinger effect can
be written as

f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðsij � aijÞKijklðskl � aklÞ

q
¼ se (3)

for plane stress problem the fourth-order tensor Kijkl can
be reformulated by a symmetric matrix P given in vector
Voigt notation as

P ¼

1 �b12 0

�b12 b22 0

0 0 b66

2
64

3
75; r ¼

s11
s22
s12

2
64

3
75; a ¼

a11
a22
a12

2
64

3
75,

(4)
where the components of P can be related to the R-values
as [10,15,16]

b12 ¼
R0

1þ R0
,

b22 ¼
R0ð1þ R90Þ

R90ð1þ R0Þ
,

b66 ¼
ðR0 þ R90Þð1þ 2R45Þ

R90ð1þ R0Þ
. ð5Þ

According to associated flow rule, plastic strain incre-
ment is

d�pij ¼ dl
qf

qsij

, (6)

where dl is plastic multiplier.
The plastic work increment is shown in Eq. (7) as

dwp ¼ ðsij � aijÞd�
p
ij ¼ se d�̄p. (7)

Using Euler’s theorem for homogeneous function
f ðsij ; aijÞ, then

ðsij � aijÞ
qf

qsij

¼ se. (8)

Substituting from Eq. (6) into Eq. (7), and combination
with Eq. (8), the equivalent plastic strain increment can be
written as

d�̄p ¼ dl. (9)

Decomposition of the strain increment d�ij into elastic
component d�eij and plastic component d�pij ,

d�ij ¼ d�eij þ d�pij. (10)

Based on elastic Hooke’s law,

dsij ¼ Ce
ijkl d�

e
kl ¼ Ce

ijklðd�kl � d�pklÞ, (11)

where Ce
ijkl is elastic matrix, which can be written as

Ce
ijkl ¼

Eð�̄pAÞ

1þ n
dikdjl þ

n
1� 2n

dijdkl

� �

¼ 2Gdikdjl þ ldijdkl , ð12Þ

where Eð�̄pAÞ and n are Young’s modulus and Poisson ratio,
G and l are Lamé constants. dij is Kronecker symbol.
Since, the change of Young’s modulus with plastic
deformation is considered in the proposed constitutive
model, the Young’s modulus E in Eq. (12) is a function of
equivalent plastic strain. �̄pA is a known value during the
incremental procedure.
The consistency condition can be stated as

qf

qsij

ðdsij � daijÞ ¼ Hd�̄p, (13)

where H is ds0=d�̄p.
Substituting from Eqs. (1), (6), (9) and (11) into Eq. (13):

dl ¼
ðqf =qsijÞC

e
ijkl d�kl

ðqf =qsijÞC
e
ijklðqf =qsklÞ þ C � gðqf =qsijÞaij þH

.

(14)
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The standard tangent modular can be obtained by
substitution of Eq. (14) back into Eq. (11):

dsij ¼ C
ep
ijkl d�kl , (15)

where C
ep
ijkl is standard tangent modular, which can be

written as

C
ep
ijkl ¼ Ce

ijkl

�
Ce

ijklðqf =qsklÞC
e
rsklðqf =qsrsÞ

ðqf =qsijÞC
e
ijklðqf =qsklÞ þ C � gðqf =qsijÞaij þH

.

ð16Þ

3. Numerical implementation

The numerical scheme to solve non-linear boundary
value problems of sheet metal forming processes using
FEM is to iteratively try out the discrete displacement
increments at the discretized material space and process
time until the trial values ultimately satisfy the equilibrium
condition. Usually, the scheme consists of three steps.
Firstly, the discrete strain increments are calculated from
trial displacement increments and secondly, according to
all constitutive variables at step (n) and Denþ1, to solve
rnþ1, anþ1 and other variables at current step nþ 1 using
elasto-plastic constitutive equation. Finally, the tolerance is
checked whether the equilibrium condition is satisfied. In
the second step, the stresses update algorithm of elastic
predicting, plastic correcting and radical returning is
applied to adjust the stress and strain to satisfy the
constitutive relation and yielding condition. The detailed
update scheme is described as follows:

(1) The updated stress is initially assumed to be elastic
for a given ðnÞth step discrete strain increment Denþ1.
Therefore,

rT
nþ1 ¼ rn þ C e

ð�̄pnÞDenþ1, (17)

where the superscript ‘T’ stands for a trial state and the
subscript denotes the process time step. In certain time
step, Young’s modulus is fixed, which value is determined
by �̄pn , so the elastic matrix is C e

ð�̄pnÞ. Also, preserving the
plastic quantities as the previous values,

�̄pðTÞnþ1 ¼ �̄
p
n ; aTnþ1 ¼ an. (18)

If the following yield condition is satisfied with the trial
values for a prescribed elastic tolerance Tole,

f ðrT
nþ1; a

T
nþ1Þ � s0ð�̄pðTÞnþ1 ÞoTole (19)

the process at the step nþ 1 is considered elastic.
(2) If the above condition on yielding is violated, the step

is considered as elasto-plastic and the trial elastic stress is
taken as an initial value for the solution of the plastic
corrector problem. The plastic strain increments are
obtained such that the following new trial stress stays on
the new yield surface:

r ¼ rn þ Ce
ð�̄pnÞðDenþ1 � DepÞ. (20)
The new back stress can be written as

a ¼ an þ C
D�̄p

se
ðr� aÞ � gaD�̄p. (21)

The ðnþ 1Þth step Cauchy stress, back stress and other
constitutive variables should make the following yielding
condition hold:

f ðr; aÞ � s0 ¼ 0. (22)

Eqs. (20)–(22) are non-linear equations, and generally it
could not obtain the solutions directly. Here, Newton–
Raphson’s iterative method is used to solve Dl. In order to
derive such an iterative loop, r residuals are defined to
represent the differences between the current constitutive
variables and the backward-Euler ones, i.e.

rs ¼ r� rn � Ce
ð�̄pnÞðDenþ1 � DepÞ, (23)

ra ¼ a� an �
CD�̄p

se
ðr� aÞ þ gaD�̄p, (24)

rf ¼ f ðr; aÞ � s0. (25)

Eqs. (23)–(25) together with the plastic potential
Eqs. (1), (6) and (9) define the complete set of equa-
tions which must be satisfied implicitly. Fixing Denþ1, a
truncated Taylor expansion can be applied to the above
equations,

rts ¼ rs þ _rþ _lC eaþ DlC e qa

qr
_r� DlC e qa

qr
_a, (26)

rta ¼ ra þ _a�
CD _̄�p

se
r̄�

CD�̄p

se
ð _r� _aÞ þ

CD�̄p _se
s2e

r̄

þ D_̄�pgaþ D�̄pg_a, ð27Þ

rtf ¼ rf þ _se � AiD_̄�
p
¼ rf þ aT _r� aT _a� AiD_̄�

p
, (28)

where the superscript ‘t’ is used to denote the Taylor
expansion, _r is the iterative change in r, _a is the iterative
change in a, D_̄�p is the iterative change in D�̄p and _l is the
iterative change in Dl, a is qf =qr, r̄ is equal to r� a, Ai is
equal to H.
From Eq. (9), we must have

D�̄p ¼ Dl, (29)

D_̄�p ¼ _l. (30)

By setting the left-hand sides of Eqs. (26)–(28) to
zero, we can provide the basis for a Newton–Raphson
iteration. In particular, substituting into Eq. (27) from
Eq. (28) for _se,

_a ¼ �D1ra þD2r̄þD3r̄_l�D1ga_lþ ð1�D4Þ _r, (31)
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where

Dl0 ¼
Dl
se
; d ¼ CDl0; D1 ¼

1

1þ d þ Dlg
,

D2 ¼
rf d

ð1þ d þ DlgÞse
; D3 ¼

Cð1� Dl0AiÞ

ð1þ d þ DlgÞse
,

D4 ¼
1þ Dlg

1þ d þ Dlg
. ð32Þ

Substitution from Eq. (31) into Eq. (26) then leads to

_r ¼ �H�1r̄�H�1Cea_lþH�1C_l, (33)

where

H ¼ I þD4DlC e qa

qr
, (34)

r̄ ¼ rs þD1DlC e qa

qr
ra �D2DlCe qa

qr
r̄, (35)

C ¼ D3DlC e qa

qr
r̄�D1DlgCe qa

qr
a. (36)

In Eq. (34) I is fourth-order identity matrix.
Substituting from Eqs. (31) and (33) into Eq. (28), _l can

be expressed as

_l ¼
rf � ~q

D4aTH�1C eaþ Ak þ Ai

, (37)

where

~q ¼ D4a
TH�1r̄þD2se �D1a

Tra, (38)

Ak ¼ D3se �D1gaTa�D4a
TH�1C. (39)

Once the increment of consistent parameter _l is set with
Eq. (37), then the _r, _a are determined by Eqs. (31) and (33).
The increments of constitutive state variables are

r ¼ rþ _r, (40)

a ¼ aþ _a, (41)

Dl ¼ Dlþ _l, (42)

D�̄p ¼ Dl. (43)

Check yield criterion with updated constitutive values,

F ¼ f ðr; aÞ � s0 (44)

if it returns greater than tolerance Tole, repeat the iteration.
If it returns less than or equal to the tolerance, then
transfer the last iterative values to next step values and quit
the iteration loop.

(3) Update the constitutive variables and calculate the
tangent modulus matrix

rnþ1 ¼ r, (45)

anþ1 ¼ a. (46)

D�̄pnþ1 can be determined by Eq. (9), thus

�̄pnþ1 ¼ �̄
p
n þ D�̄pnþ1 ¼ �̄

p
n þ Dl. (47)
The consistent tangent modular matrix significantly
improves the convergence characteristics of the overall
equilibrium iterations if a Newton–Raphson scheme is
used. Standard techniques would use the modular of
Eq. (16) which is ‘inconsistent’ with the backward-Euler
integrations scheme and hence destroys the ‘quadratic
convergence’ inherent in the Newton–Raphson method
[17,18]. Here, the consistent tangent modular is derived by
the consistent linearization of the update scheme.
The equilibrium state ‘b’ is known, the new state ‘c’ at

the end of increment will be calculated. The tangent
modular can be defined as

Cep
¼

q _r
q_e

����
c

, (48)

where ‘�’ stand for time derivative.
Considering Eqs. (20) and (21), the standard backward-

Euler algorithm can be written as

r ¼ rT � DlC ea, (49)

a ¼ ab þ
CDl
se
ðr� aÞ � gaDl, (50)

f ¼ f ðr; aÞ � s0 ¼ 0 (51)

for the convenient, we dropped the suffix ‘c’ relating to the
current configuration.
Differentiation of Eqs. (49)–(51) gives

_r ¼ C e_e� _lC ea� DlCe qa

qr
_rþ DlC e qa

qr
_a, (52)

_a ¼
C _l
se

r̄þ
CDl
se
ð _r� _aÞ �

CDl
s2e

_ser̄� _lga� Dlg_a, (53)

_f ¼ _se � Ai
_l ¼ aTð _r� _aÞ � Ai

_l ¼ 0. (54)

Substituting into Eq. (53) from Eq. (54) for _se,

_a ¼ D3r̄_lþ ð1�D4Þ _r�D1g_la. (55)

Substituting from Eq. (55) into Eq. (52),

_r ¼ R_e� Ra_l�H�1C_l, (56)

where R is H�1Ce.
Substitution from Eqs. (55) and (56) into Eq. (54), thus

_l ¼
D4a

TH�1Ce_e

D4aTH�1C eaþ Ak þ Ai

¼
aTH�1Ce_e

aTH�1Ceaþ A0k þ A0i
. ð57Þ

In the first relationship in Eq. (57) D4 are from Eq. (32).
The final relationship, which is obtained after some
algebraic manipulation is of an identical form.
Substitution from Eq. (57) into Eq. (56) then leads to the

consistent tangential relationship whereby

Cep
¼ R�

KaTR

aTRaþ A0k þ A0i
, (58)

slzang
Pencil
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where

K ¼ Ra�H�1C. (59)

4. Results and discussion

The draw-bead simulator provides important informa-
tion about the deformation of metal sheet under multiple
bending and stretching processes. The 3-D plane stress
draw-bead problem as shown in Fig. 1 is a case studied in
the current paper. And the spring-back parameters of h and
y studied by this research are shown in Fig. 2. The sheet
blank dimension is 250mm in length, 50mm in width, and
1.3mm in thickness. After clamping the blank between the
upper and lower die, the sheet is pulled 50mm to the right
Fig. 1. Die shape and dimensions for the draw-bead test.

Fig. 2. Spring-back definition for the draw-bead test.

Table 1

Material parameters of AA2024-T3

Material models C (MPa) g r0 r45 r90 s0 (M

IH N/A N/A 0.790 1.014 0.797 325.7

NLK 2104.13 9.05 0.790 1.014 0.797 325.7

INLH 924.8 8.9 0.790 1.014 0.797 325.7

Tensile test N/A N/A 0.790 1.014 0.797 325.7
at a constant drawing speed of 5mm/s. The clamping force
is 6.8 kN, and the friction coefficient between the sheet and
tools is 0.15. The material is AA2024-T3 aluminum alloy
and the material parameters are summarized in Table 1.
Since the change of Young’s modulus with plastic
deformation is considered, the Young’s modulus is
approximated by a piecewise linear function of equivalent
plastic strain, which can be described as

Eð�̄pÞ ¼
Einit �

ðEinit � EstabÞ�̄p

�̄p�
; 0p�̄pp�̄p�;

Estab; �̄p�p�̄p;

8><
>:

(60)

where Einit, Estab and �̄p� are material parameters, respec-
tively. The details on piecewise linear function and
experiment method can be found in Ref. [5] and authors’
work [19].
The material models were implemented via the UMAT

interface of ABAQUS utilizing a backward-Euler algo-
rithm for integration of the incremental plasticity equations
and a consistent tangent matrix derived from this
algorithm for Newton–Raphson iteration. Quadrilateral
shell element (S4R, a uniform mesh of 150 elements in the
length direction and 5 in the width direction) are used with
15 Simpson integration points through the thickness. Three
hardening rules, which are IH model, NLK hardening
model and isotropic/non-linear kinematic (INLK) hard-
ening model of Chaboche type, are utilized in the paper.
Pa) Q (MPa) b Einit (GPa) Estab (GPa) �̄p� n

232.5 9.05 70 56 0.04 0.33

N/A N/A 70 56 0.04 0.33

128.9 9.2 70 56 0.04 0.33

N/A N/A 70 56 0.04 0.33
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Fig. 3. Comparison of simulation drawing force of different hardening

rules with measured data.
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The effect of different hardening rules on the drawing
force is shown in Fig. 3. The predicted drawing force from
the IH model is higher than the experimental data because
the Bauschinger effect at reversal loading is ignored. The
NLK model predicted lower drawing force since the
overestimated Bauschinger effect is modeled. The simu-
lated results considered the change of Young’s modulus
with plastic deformation are slightly lower than those with
constant Young’s modulus. The simulation results ob-
tained with INLK model agree well with experiments for
drawing force.
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Table 2

The effect of hardening rules on sheet spring-back

IH IH NLK

E Eð�̄pÞ E

h ðmmÞ 15.56 19.26 11.90

y (deg) 26.62 35.87 16.14
Because spring-back is proportional to moment and
inverse to modulus, an accurate stress distribution is
essential in the prediction of the amount of spring-back.
The tangential stresses of Simpson integral points near the
top surface and bottom surface are traced during the
deformation in Figs. 4 and 5, respectively. A cyclic bending
and unbending are observed during the drawing stage for
all models. However, the INLK model predict a suitable
drop in the stress when the monitored material point pass
the draw-bead region due to the Bauschinger effect is
correctly modeled. A conclusion can be drawn from Figs. 4
and 5 that the tangential stress for INLK hardening rule is
less than that for IH model, but larger than that for NLK
model. Although the differences of simulation results with
a constant Young’s modulus and with a variable Young’s
modulus are not distinct for all three hardening models, we
cannot extend this to a more complicated forming process.
The stress distribution is based on suitable constitutive
model in the numerical simulation.
For the Hill’s 1948 anisotropy yield function and shell

element S4R, the influences of different hardening rules on
sheet spring-back are shown in Table 2. And Fig. 6
presents the simulation results for corresponding location
of nodes on the middle surface after sheet spring-back.
Fig. 7 shows experiment spring-back of the blank when the
punch is removed and inserts of draw-bead test device. It
can be seen from Table 2 and Fig. 6 that the numerical
simulation spring-back with variable Young’s modulus is
larger than that with constant Young’s modulus for all
three hardening models. Since the stresses distribution
obtained from the same hardening model are similar as
mentioned above, then the spring-back is mainly inverse to
Young’s modulus. The sheet spring-back is the least for
NLK hardening model, then for INLK hardening model,
and is the largest for IH model. The simulation results,
especially the sheet spring-back obtained with the INLK
hardening, in which the change of Young’s modulus with
plastic deformation is considered, agree well with experi-
ments.

5. Conclusion

In this paper, an elasto-plastic constitutive model based
on INLK rule and Hill’s 1948 anisotropic yield function,
where the change of Young’s modulus with plastic strain is
considered, is proposed. The backward-Euler method with
R-residual algorithm is used in this study to integrate the
rate form of constitutive equation. The effect of different
NLK INLK INLK Experiment

Eð�̄pÞ E Eð�̄pÞ data

14.28 13.91 16.91 15.0–18.6

21.48 21.41 29.39 27.0–33.5
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hardening models on sheet spring-back has been discussed.
The study indicates that the IH law overestimate the
Bauschinger effect, when the NLK is used, the spring-back
amount is considerably underestimated, suggesting that
kinematic hardening is not adequate to predict the spring-
back. Numerical results and experimental results show that
an accurate modeling of Bauschinger effect and the change
of Young’s modulus with plastic deformation appear to be
more important when multiple cycles of bending–reverse
bending loading conditions are expected.

Although the current constitutive model with a variable
Young’s modulus was only verified for draw-bead forming,
its application to more complex parts is expected also to
yield accurate results.
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