Tree-chromatic number

Paul Seymour ${ }^{1}$
Princeton University, Princeton, NJ 08544

November 2, 2014; revised June 25, 2015
${ }^{1}$ Supported by ONR grant N00014-10-1-0680 and NSF grant DMS-1265563.

Abstract

Let us say a graph G has "tree-chromatic number" at most k if it admits a tree-decomposition $\left(T,\left(X_{t}: t \in V(T)\right)\right)$ such that $G\left[X_{t}\right]$ has chromatic number at most k for each $t \in V(T)$. This seems to be a new concept, and this paper is a collection of observations on the topic. In particular we show that there are graphs with tree-chromatic number two and with arbitrarily large chromatic number; and for all $\ell \geq 4$, every graph with no triangle and with no induced cycle of length more than ℓ has tree-chromatic number at most $\ell-2$.

1 Introduction

All graphs in this paper are finite, and have no loops or parallel edges. If G is a graph and $X \subseteq V(G)$, we denote by $G[X]$ the subgraph of G induced on X. The chromatic number of G is denoted by $\chi(G)$, and for $X \subseteq V(G)$, we write $\chi(X)$ for $\chi(G[X])$ when there is no danger of ambiguity.

A tree-decomposition of a graph G is a pair $\left(T,\left(X_{t}: t \in V(T)\right)\right.$), where T is a tree and $\left(X_{t}: t \in\right.$ $V(T))$ is a family of subsets of $V(G)$, satisfying:

- for each $v \in V(G)$ there exists $t \in V(T)$ with $v \in X_{t}$; and for every edge $u v$ of G there exists $t \in V(T)$ with $u, v \in X_{t}$
- for each $v \in V(G)$, if $v \in X_{t} \cap X_{t^{\prime \prime}}$ for some $t, t^{\prime \prime} \in V(T)$, and t^{\prime} belongs to the path of T between $t, t^{\prime \prime}$ then $v \in X_{t^{\prime}}$.

The width of a tree-decomposition $\left(T,\left(X_{t}: t \in V(T)\right)\right)$ is the maximum of $\left|X_{t}\right|-1$ over all $t \in$ $V(T)$, and the tree-width of G is the minimum width of a tree-decomposition of G. Tree-width was introduced in [4] (and independently discovered in [7]), and has been the subject of a great deal of study.

In this paper, we focus on a different aspect of tree-decompositions. Let us say the chromatic number of a tree-decomposition $\left(T,\left(X_{t}: t \in V(T)\right)\right)$ is the maximum of $\chi\left(X_{t}\right)$ over all $t \in V(T)$; and G has tree-chromatic number at most k if it admits a tree-decomposition with chromatic number at most k. Let us denote the tree-chromatic number of G by $\Upsilon(G)$. This seems to be a new concept, and we begin with some easy observations.

Evidently $\Upsilon(G) \leq \chi(G)$, and if $\omega(G)$ denotes the size of the largest clique of G, then $\omega(G) \leq \Upsilon(G)$ (because if Z is a clique of G and $\left(T,\left(X_{t}: t \in V(T)\right)\right.$) is a tree-decomposition of G, then there exists $t \in V(T)$ with $Z \subseteq X_{t}$, as is easily seen.) If H is an induced subgraph of G then $\Upsilon(H) \leq \Upsilon(G)$, but unlike tree-width, tree-chromatic number may increase when taking minors. For instance, let G be the graph obtained from the complete graph K_{n} by subdividing every edge once; then $\chi(G)=2$, and so $\Upsilon(G)=2$ (take the tree-decomposition using a one-vertex tree), and yet G contains K_{n} as a minor, and $\Upsilon\left(K_{n}\right)=n$.

For a graph G, how can we prove that $\Upsilon(G)$ is large? Here is one way. A separation of G is a pair (A, B) of subsets of $V(G)$ such that $A \cup B=V(G)$ and there is no edge between $A \backslash B$ and $B \backslash A$.
1.1 For every graph G, there is a separation (A, B) of G such that $\chi(A \cap B) \leq \Upsilon(G)$ and

$$
\chi(A \backslash B), \chi(B \backslash A) \geq \chi(G)-\Upsilon(G)
$$

Proof. Let $\left(T,\left(X_{t}: t \in V(T)\right)\right)$ be a tree-decomposition of G with chromatic number $\Upsilon(G)$. For any subtree T^{\prime} of T we denote the union of the sets $X_{t}\left(t \in V\left(T^{\prime}\right)\right)$ by $X\left(T^{\prime}\right)$. Let $t_{0} \in V(T)$, let t_{1}, \ldots, t_{k} be the vertices of T adjacent to t_{0}, and let T_{1}, \ldots, T_{k} be the components of $T \backslash t_{0}$ containing t_{1}, \ldots, t_{k} respectively. For $1 \leq i \leq k$ let $Y_{i}=X\left(T_{i}\right) \backslash X_{t_{0}}$. Since there are no edges between Y_{i} and Y_{j} for $1 \leq i<j \leq k$, it follows that $\chi\left(Y_{1} \cup \cdots \cup Y_{k}\right)$ is the maximum of the numbers $\chi\left(Y_{1}\right), \ldots, \chi\left(Y_{k}\right)$; and since $\chi(G) \leq \chi\left(X_{t_{0}}\right)+\chi\left(Y_{1} \cup \cdots \cup Y_{k}\right)$, we deduce that there exists i with $1 \leq i \leq k$ such that $\chi\left(Y_{i}\right) \geq \chi(G)-\chi\left(X_{t_{0}}\right) \geq \chi(G)-\Upsilon(G)$.

Suppose that there are two such values of i, say $i=1$ and $i=2$. Then $\left(Y_{1} \cup X_{t_{0}}, Y_{2} \cup \cdots \cup Y_{k} \cup X_{t_{0}}\right)$ is a separation of G satisfying the theorem. So we may assume that for each choice of $t_{0} \in V(T)$
there is a unique component T^{\prime} of $T \backslash t_{0}$ with $\chi\left(X\left(T^{\prime}\right) \backslash X_{t_{0}}\right) \geq \chi(G)-\Upsilon(G)$. For each t_{0}, let $f\left(t_{0}\right)$ be the neighbour of t_{0} that belongs to the component T^{\prime} of $T \backslash t_{0}$ just described. Since T has more vertices than edges, there exist adjacent $s, t \in V(T)$ such that $f(s)=t$ and $f(t)=s$. Let S^{\prime}, T^{\prime} be the components of $T \backslash e$ (where e is the edge $s t$). Then $\left(X\left(S^{\prime}\right), X\left(T^{\prime}\right)\right.$) is a separation satisfying the theorem. This proves 1.1.

It follows from 1.1 that the graphs from Erdős's random construction [2] of graphs with large chromatic number and large girth also have large tree-chromatic number (with high probability). It does not seem obvious that there is any graph with large chromatic number and small tree-chromatic number, but here is a construction to show that (apply it to a graph G with large chromatic number).
1.2 Let G be a graph with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ say, and make a graph H as follows. The vertex set of H is $E(G)$, and an edge $v_{i} v_{j}$ of G (where $i<j$) and an edge $v_{h} v_{k}$ of G (where $h<k$) are adjacent in H if either $h=j$ or $i=k$. Then

- H is triangle-free;
- H admits a tree-decomposition $\left(T,\left(X_{t}: t \in V(T)\right)\right)$ of chromatic number two, such that T is a path;
- $\chi(H) \geq \log (\chi(G))$; and
- $\binom{\chi(H)}{\left[\frac{\chi(H)}{2}\right\rfloor} \leq \chi(G)$, and so $\chi(H) \leq \log (\chi(G))+\frac{1}{2} \log \log (\chi(G))+\frac{1}{2} \log (\pi / 2)+o(1)$.

Proof. For the first claim, let $v_{a} v_{b}, v_{c} v_{d}, v_{e} v_{f}$ be edges of G, where $a<b$ and $c<d$ and $e<f$, and suppose that these three edges are pairwise adjacent vertices of H. We may assume that $a \leq c, e$, and so $a \neq d, f$; and since $v_{a} v_{b}$ is adjacent to $v_{c} v_{d}$ in H, it follows that $c=b$, and similarly $e=b$. But then $v_{c} v_{d}$ and $v_{e} v_{f}$ are not adjacent in H. This proves the first claim.

For the second claim, let T be a path with vertices t_{1}, \ldots, t_{n} in order, and for $1 \leq i \leq n$ let X_{i} be the set of all edges $v_{a} v_{b}$ of G with $a \leq i \leq b$. We claim that $\left(T,\left(X_{t}: t \in V(T)\right)\right)$ is a tree-decomposition of H. To see this, observe that if $p q$ is an edge of H then there exist $a<b<c$ such that $p=v_{a} v_{b}$ and $q=v_{b} v_{c}$ (or vice versa), and then $p, q \in X_{b}$. Also, if $h<i<j$ and $v_{a} v_{b}$ belongs to both X_{h}, X_{j} then $a \leq h \leq i$ and $i \leq j \leq b$, and so $v_{a} v_{b} \in X_{i}$. Thus $\left(T,\left(X_{t}: t \in V(T)\right)\right)$ is a tree-decomposition. For its chromatic number, let $1 \leq i \leq n$; then X_{i} is the union of two sets that are stable in H, namely $\left\{v_{a} v_{b}: a<i \leq b\right\}$ and $\left\{v_{a} v_{b}: a \leq i<b\right\}$, and so $\chi\left(X_{i}\right) \leq 2$. This proves the second claim.

For the third, let $k=\chi(H)$ and take a k-colouring ϕ of H; we must show that $\chi(G) \leq 2^{k}$. For each vertex v_{i} of G, there is no edge $v_{h} v_{i}$ of G with $h<i$ which has the same colour as an edge $v_{i} v_{j}$ of G with $j>i$ (since these two edges would be adjacent in H), and consequently there is a partition $\left(A_{i}, B_{i}\right)$ of $\{1, \ldots, k\}$ such that $\phi\left(v_{h} v_{i}\right) \in B_{i}$ for every edge $v_{h} v_{i}$ with $h<i$, and $\phi\left(v_{i} v_{j}\right) \in A_{i}$ for every edge $v_{i} v_{j}$ of G with $j>i$. For each $A \subseteq\{1, \ldots, k\}$, let F_{A} be the set of all v_{i} with $1 \leq i \leq n$ such that $A_{i}=A$. It follows that each F_{A} is a stable set of G; because if $v_{i}, v_{j} \in F_{A}$ are adjacent in G and $i<j$, then $\phi\left(v_{i} v_{j}\right) \in A_{i}=A$ and $\phi\left(v_{i} v_{j}\right) \in B_{j}=\{1, \ldots, k\} \backslash A$, a contradiction. This proves that $V(G)$ is the union of 2^{k} stable sets, and so $\chi(H) \geq \log (\chi(G))$.

For the fourth assertion (thanks to Alex Scott for this argument), let $k=\chi(G)$, take a k-colouring ϕ of G, and choose an integer s minimum such that

$$
\binom{s}{\left\lfloor\frac{s}{2}\right\rfloor} \geq k .
$$

Spencer [9] observed that

$$
s=\log (k)+\frac{1}{2} \log \log (k)+\frac{1}{2} \log (\pi / 2)+o(1),
$$

and proved that there is a collection $\left(A_{1}, B_{1}\right), \ldots,\left(A_{s}, B_{s}\right)$ of partitions of $\{1, \ldots, k\}$ such that for all distinct $x, y \in\{1, \ldots, k\}$, there exists i with $1 \leq i \leq s$ such that $x \in A_{i}$ and $y \in B_{i}$. For $1 \leq i \leq s$, let F_{i} be the set of all edges $v_{a} v_{b}$ of G with $a<b$ such that $\phi\left(v_{a}\right) \in A_{i}$ and $\phi\left(v_{b}\right) \in B_{i}$. Then $F_{1} \cup \cdots \cup F_{s}=E(G)$, because for every edge $v_{a} v_{b}$ of G with $a<b, \phi\left(v_{a}\right) \neq \phi\left(v_{b}\right)$, and so there exists $i \in\{1, \ldots, s\}$ with $\phi\left(v_{a}\right) \in A_{i}$ and $\phi\left(v_{b}\right) \in B_{i}$ and hence with $v_{a} v_{b} \in F_{i}$. Moreover each F_{i} is a stable set of H; because if $v_{a} v_{b}$ and $v_{c} v_{d}$ both belong to F_{i}, where $a<b$ and $c<d$, then $\phi\left(v_{a}\right), \phi\left(v_{c}\right) \in A_{i}$ and $\phi\left(v_{b}\right), \phi\left(v_{d}\right) \in B_{i}$, and so $a, c \neq b, d$, and consequently $v_{a} v_{b}$ and $v_{c} v_{d}$ are not adjacent in H. This proves that $\chi(H) \leq s$. This proves the fourth assertion, and so completes the proof of 1.2.

A tree-decomposition $\left(T,\left(X_{t}: t \in V(T)\right)\right)$ is a path-decomposition if T is a path. Let us say that G has path-chromatic number at most k if it admits a path-decomposition with chromatic number at most k. The construction of 1.2 yields a graph with large χ and with small path-chromatic number. To complete the picture, we should try to find an example with arbitrarily large path-chromatic number and bounded tree-chromatic number, but so far I have not been able to do this. Here is an example that I think works, but I am unable to prove it.

Take a uniform binary tree T of depth d, with root t_{0}. If $s, t \in V(T), s, t$ are incomparable if neither is an ancestor of the other. If $s, t \in V(T)$, the three paths of T between s and t, between s and t_{0}, and between t and t_{0}, have a unique common vertex, denoted by $\sup (s, t)$. Let H be the graph with vertex set all incomparable pairs (s, t) of vertices of T, and we say (s, t) and (p, q) are adjacent in H if either $\sup (s, t)$ is one of $p, q, \operatorname{or} \sup (p, q)$ is one of s, t. It is easy to check that for d large, this graph H has large chromatic number, and tree-chromatic number two, and I suspect that it has large path-chromatic number, but have not found a proof. Indeed, in an earlier version of this paper I asked whether for all G the path-chromatic number and tree-chromatic number of G are equal; but this has now been disproved by Huynh and Kim [5].

2 Uncle trees

The remainder of the paper is directed to proving that graphs with no long induced cycle and no triangle have bounded tree-chromatic number, but for that we use a lemma that might be of interest in its own right. We prove the lemma in this section.

Let T be a tree, and let $t_{0} \in V(T)$ be a distinguished vertex, called the root. If $s, t \in V(T), t$ is an ancestor of s if t lies in the path of T between s and t_{0}; and t is a parent of s if t is an ancestor of s and s, t are adjacent; and in this case, s is a child of t. Thus every vertex has a unique parent except t_{0}. For each vertex t of T, choose a linear order of its children; if s, s^{\prime} are children of t, and s precedes s^{\prime} in the selected linear order, we say that s is older than s^{\prime}. We call T, together with t_{0}
and all the linear orders, an ordered tree. The elder line P of an ordered tree is the maximal path of T with one end t_{0} with the property that if a vertex v of P has a child, then the eldest child of v also belongs to P. (In other words, we start with t_{0}, and keep choosing the eldest child until the process stops.) Given an ordered tree, and $u, v \in V(T)$, we say that u is an uncle of v if $u \neq t_{0}$, and there is a child u^{\prime} of the parent of u that is older than u and that is an ancestor of v.

Now let G be a graph. An uncle tree in G is an ordered tree T, such that T is a spanning tree of G, and for every edge $u v$ of G that is not an edge of T, one of u, v is an uncle of the other. Thus, if T is an uncle tree in G, then every path of T with one end t_{0} is an induced path of G. We need:

2.1 For every connected graph G and vertex t_{0}, there is an uncle tree in G with root t_{0}.

Proof. For inductive purposes, it is helpful to prove a somewhat stronger statement: that for every induced path P of G with one end t_{0}, there is an uncle tree such that P is a subpath of its elder line. We prove this by induction on $2|V(G)|-|V(P)|$. Let P have vertices $p_{1} \cdots-p_{k}$ say, where $p_{1}=t_{0}$. If some neighbour v of p_{k} not in $V(P)$ is nonadjacent to p_{1}, \ldots, p_{k-1}, then we add v to P, and the result follows from the inductive hypothesis applied to G and this longer path. Thus we may assume that:
(1) Every neighbour of p_{k} not in $V(P)$ is adjacent to one of p_{1}, \ldots, p_{k-1}.

If $k=1$ then (1) implies that t_{0} has degree zero, and so $V(G)=\left\{t_{0}\right\}$ and the result is trivial. Thus we may assume that $k \geq 2$.
(2) $G \backslash p_{k}$ is connected.

For if not, let C_{1}, C_{2} be distinct components of $G \backslash p_{k}$, where $p_{1} \in V\left(C_{1}\right)$. It follows that $p_{1}, \ldots, p_{k-1} \in$ $V\left(C_{1}\right)$, and so by (1), every neighbour of p_{k} belongs to C_{1}. Since G is connected, p_{k} has a neighbour in C_{2}, a contradiction. This proves (2).

By the inductive hypothesis applied to $G \backslash p_{k}$ and the path p_{1}, \ldots, p_{k-1}, there is an uncle tree T of $G \backslash p_{k}$ with root t_{0} such that $p_{1} \cdots-p_{k-1}$ is a subpath of its elder line. Let us add p_{k} to T, and the edge $p_{k-1} p_{k}$, and make p_{k} the eldest child of p_{k-1} (leaving the linear orders of the ordered tree otherwise unchanged). We thus obtain an ordered tree T^{\prime}, and P is a subpath of its elder line. We must check that it is an uncle tree of G. To do so it suffices to check that for every edge $u p_{k}$ of G with $u \neq p_{k-1}, u$ is an uncle of p_{k}. Thus, let $u p_{k} \in E(G)$, where $u \neq p_{k-1}$. It follows that $u \notin V(P)$ since P is induced. From (1), u is adjacent in G to some p_{i} where $i<k$. If the edge $u p_{i}$ is an edge of T then u is indeed an uncle of p_{k} as required, so we assume not; and since T is an uncle tree of $G \backslash p_{k}$, it follows that one of u, p_{i} is an uncle of the other. Suppose first that p_{i} is an uncle of u. Then $i \geq 2$, and there is a child q of p_{i-1}, older than p_{i}, such that q is an ancestor of u. But this is impossible since p_{i} is the eldest child of p_{i-1}. So u is an uncle of p_{i}. Hence the parent of u is one of p_{1}, \ldots, p_{i-1}, and so u is also an uncle of p_{k} as required. This proves 2.1.

Another proof, perhaps more intuitive, is as follows: start from t_{0}, and follow the procedure to grow a depth-first tree, subject to the condition that every path of the tree with one end t_{0} is induced. Thus, we begin with a maximal induced path $p_{1} \cdots-p_{k}$ say, where $p_{1}=t_{0}$, and then back
up the path to the largest value of i such that p_{i} has a neighbour v not in the path and which is nonadjacent to p_{1}, \ldots, p_{i-1}, and add v and the edge $v p_{i}$ to the tree. If v has a neighbour not yet in the tree and nonadjacent to p_{1}, \ldots, p_{i}, we add the corresponding edge at v to the tree, and otherwise back down the tree again to the next vertex where growth is possible. And so on; the result is an uncle tree.

3 Long holes

A hole in a graph G is an induced subgraph which is a cycle of length at least four. In 1985, Gyárfás [3] made the conjecture that
3.1 Conjecture: For every integer ℓ there exists n such that every graph with no hole of length $>\ell$ and no triangle has chromatic number at most n.
(Since the paper was submitted for publication, we have proved this conjecture and stronger statements, in joint work with Maria Chudnovsky and Alex Scott [1, 8].) Here we prove the following. (Note that if G is triangle-free then we may set $d=1$.)
3.2 For all integers $d \geq 1$ and $\ell \geq 4$, if G is a graph with no hole of length $>\ell$, and such that for every vertex v, the subgraph induced on the set of neighbours of v has chromatic number at most d, then G has tree-chromatic number at most $d(\ell-2)$.

This follows immediately from the following. (A referee of this paper brought to my attention the paper [6] in which a very slightly weaker version of the same result was proved, independently.)
3.3 For all integers $\ell \geq 4$, if G is a graph with no hole of length $>\ell$, then G admits a treedecomposition $\left(T,\left(X_{t}: t \in V(T)\right)\right)$ such that for each $t \in V(T)$, there is an induced path Q_{t} of $G\left[X_{t}\right]$ with at most $\ell-2$ vertices, such that every vertex in X_{t} either belongs to Q_{t} or is adjacent to a vertex in Q_{t}.

Proof. We may assume that G is connected. Choose a vertex t_{0}; by 2.1 there is an uncle tree T in G with root t_{0}. For each $t \in V(T)$, let P_{t} be the subpath of T between t and t_{0}, and let Q_{t} be the maximal subpath of P_{t} with one end t and with length at most $\ell-3$. (Thus Q_{t} has length $\ell-3$ unless P_{t} has length less than $l-3$, and in that case $Q_{t}=P_{t}$.) If $s, t \in V(T)$, we say that s is junior to t if neither is an ancestor of the other, and there exists $w \in V(T)$, and distinct children s^{\prime}, t^{\prime} of w, such that s^{\prime} is an ancestor of s, and t^{\prime} is an ancestor of t, and t^{\prime} is older than s^{\prime}. (It follows easily that for every two vertices s, t, if neither is an ancestor of the other then one is junior to the other.) For $t \in V(T)$, let X_{t} be the set of all vertices v of G such that either

- $v \in V\left(Q_{t}\right)$, or
- v is a child of t in T, or
- v is junior to t and is adjacent in G to a vertex in Q_{t}.

We claim that $\left(T,\left(X_{t}: t \in V(T)\right)\right)$ is a tree-decomposition of G. To show this we must check several things. We start by verifying the first condition in the definition of "tree-decomposition".
(1) For each $v \in V(G)$ there exists $t \in V(T)$ with $v \in X_{t}$; and for every edge uv of G there exists $t \in V(T)$ with $u, v \in X_{t}$.

The first statement is clear, because $v \in X_{v}$. For the second, let $u v$ be an edge of G. If $u v \in E(T)$, and u is a parent of v, then $u, v \in X_{u}$ as required, so we may assume that $u v \notin E(T)$; and hence we may assume that u is an uncle of v, and so is junior to v. Since $u v$ is an edge it follows that $u \in X_{v}$ as required. This proves (1).

To verify the second condition in the definition of "tree-decomposition", it is easier to break it into two parts.
(2) Let $r, s, t \in V(T)$, where r is an ancestor of t and s lies on the path of T between r, t; then $X_{r} \cap X_{t} \subseteq X_{s}$.

We may assume that r, s, t are all different. Let $v \in X_{r} \cap X_{t}$. Suppose first that there is a path P of T with one end t_{0} that contains all of r, s, t, v. Since $v \in X_{r}$, and is not junior to r (because $v \in P$), it follows that $v \in Q_{r}^{+}$, where Q_{r}^{+}denotes the subpath of P consisting of Q_{r} together with the neighbour of r in P that is not in Q_{r}. Consequently v is not a child of t in T, and since $v \in X_{t}$ it follows that $v \in Q_{t}$; and so

$$
v \in Q_{r}^{+} \cap Q_{t} \subseteq Q_{s} \subseteq X_{s}
$$

as required. Thus we may assume that there is no such path P. In particular, v does not belong to P_{t}, and is not adjacent in T to t, and so v is junior to t and has a neighbour in Q_{t}.

We claim that v is junior to s; for if v is junior to r then v is junior to s, and otherwise, since $v \in X_{r}$, it follows that v is a child of r in T, and therefore junior to s since v is junior to t. This proves that v is junior to s. Moreover, v has a neighbour in Q_{r}. Suppose that v has no neighbour in Q_{s}. Now Q_{r}, Q_{s}, Q_{t} are all subpaths of P_{t}, and v has a neighbour in Q_{r} and a neighbour in Q_{t}, and so has neighbours in $V\left(Q_{r}\right) \backslash V\left(Q_{s}\right)$ and in $V\left(Q_{t}\right) \backslash V\left(Q_{s}\right)$. Hence there is a subpath of P_{t} between two neighbours of v that includes Q_{s}; choose a minimal such subpath P^{\prime} say. Since G has no hole of length $>\ell$, it follows that P^{\prime} has length at most $\ell-2$, and so Q_{s} has length at most $\ell-4$, a contradiction. So v has a neighbour in Q_{s} and hence $v \in X_{s}$ as required. This proves (2).
(3) Let $r, s, t \in V(T)$, where s lies on the path of T between r, t; then $X_{r} \cap X_{t} \subseteq X_{s}$.

By (2) we may assume that neither of r, t is an ancestor of the other. Let $v \in X_{r} \cap X_{t}$. Choose $w \in V(T)$ with distinct children r^{\prime}, t^{\prime} of w such that r^{\prime} is an ancestor of r and t^{\prime} is an ancestor of t. Then s belongs to either the path of T between r, w or the path of T between t, w, and so by (2), if $v \in X_{w}$ then $v \in X_{s}$; so we may assume that $v \notin X_{w}$, and hence we may assume that $s=w$. We may assume that t^{\prime} is older than r^{\prime} from the symmetry. If v belongs to P_{t}, then v is not junior to r, and so v belongs to Q_{r}, and hence $v \in Q_{r} \cap P_{t} \subseteq Q_{s}$ as required. We may assume then that $v \notin P_{t}$. Since $v \in X_{r}$, it follows that v is not a child of t in T, and so v is junior to t, and has a neighbour, say x, in Q_{t}. It follows that either v is adjacent in T to some vertex of Q_{t}, or v is junior to x, and in the latter case v is an uncle of x since T is an uncle tree. Thus both cases v is a child in T of some vertex y of P_{t}. Thus $v \in X_{y}$. Since $v \in X_{r}$, it follows that y belongs to P_{s}, and since $v \in X_{y} \cap X_{t}$, and s lies on the path of T between $y, t,(2)$ implies that $v \in X_{s}$. This proves (3).

It follows that $\left(T,\left(X_{t}: t \in V(T)\right)\right)$ is a tree-decomposition of G, and this completes the proof of 3.3 .

4 Acknowledgements

Thanks to Maria Chudnovsky and Alex Scott for helpful discussions on the topic of this paper.

References

[1] M. Chudnovsky, A. Scott, and P. Seymour, "Colouring graphs with no long holes", submitted for publication, arXiv:1506.02232 (manuscript May 2015).
[2] P. Erdős, "Graph theory and probability", Canad. J. Math 11 (1959), 34-38.
[3] A. Gyárfás, "Problems from the world surrounding perfect graphs", Proceedings of the International Conference on Combinatorial Analysis and its Applications, (Pokrzywna, 1985), Zastos. Mat. 19 (1987), 413-441.
[4] R. Halin, "S-functions for graphs", Journal of Geometry, 8 (1976), 171-186.
[5] T. Huynh and R. Kim, "Tree-chromatic number is not equal to path-chromatic number", arXiv:1505.06234 (manuscript May 2015).
[6] A. Kosowski, B. Li, N. Nisse and K. Suchan, " k-chordal graphs: from cops and robber to compact routing via treewidth", Algorithmica 72 (2015), 758-777; also, in Automata, Languages, and Programming, Springer, 2012, 610-622.
[7] N. Robertson and P. D. Seymour, "Graph Minors. III. Planar tree-width", J. Combinatorial Theory, Ser. B, 36 (1984), 49-64.
[8] A. Scott and P. Seymour, "Consecutive holes", in preparation (manuscript January 2015).
[9] J. Spencer, "Minimal completely separating systems", J. Combinatorial Theory, 8 (1970), 446447.

