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Abstract: In this paper, we mainly research a multifractal analysis of one probability measure with respect
to another. We explore the properties of the multifractal Hausdorff measure and the multifractal packing
measure with one to another in a probability space, and calculate the relative results of multifractal spectra
function in a probability space.
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1 Introduction
The fractal properties have been a basic question in fractal geometry. Many authors [1–10] have studied them. In recent
years multifractal theory has been discussed by numerous authors and it is developing rapidly. In 1986, physicist Halsey
drew to the conception of multifractal spectrum. Olsen was motivated by the heuristics of Halsey. In 1995 Olsen es-
tablished a multifractal formalism (see [1]). In 2000, Cole researched relative multifractal analysis which was based on
[1](see [2]). Billingsley defined the Haussdorff measure in a probability space (see [3, 4]). Then, Dai and Taylor devel-
oped the packing measure and packing dimension in a probability space (see [5]). In fact, multifractal Hausdorff measure
is a generalization of the centered Hausdorrff measure and multifractal packing measure is a generalization of the packing
measure. Applying the above idea, Li and Dai generalized the Hausdorff measure and packing measure in a probability
space (see [6]). So we can establish a general formalism for the multifractal analysis of one probability measure with
respect to another in a probability space.

2 Preliminaries
In this paper, we want to yield a generalization multifractal formalism in a probability space.

Let we start by defining Hausdorff 𝜙-measure and packing 𝜙-measure. We start with a fixed stochastic process
{𝑋𝑛, 𝑛 ∈ 𝑁} on a probability space {Ω,F , 𝜇} taking values in a finite or countable state space 𝐸. A cylinder set
𝐶 of rank 𝑛 is of the form

𝐶 = {𝜔 : 𝑋𝑖(𝜔) = 𝑘𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅𝑛}
with 𝑘𝑖 ∈ 𝐸. For each 𝜔0 ∈ Ω there is a unique cylinder set of rank 𝑛, denoted by 𝑢𝑛(𝜔0), which contains 𝜔0. Thus

𝑢𝑛(𝜔0) = {𝜔 : 𝑋𝑖(𝜔) = 𝑋𝑖(𝜔0), 𝑖 = 1, 2, ⋅ ⋅ ⋅𝑛}.
We assume the process is F -measure, that is that C ⊂ F , where C is the class of all cylinder set. We use sets in C for
both covering and packing. In this paper, we will assume that 𝜇 is H = 𝜎(C ) continuous, that is

lim
𝑛→∞𝜇(𝑢𝑛(𝜔)) = 0 ∀ 𝜔 ∈ Ω.

Any function 𝜙 : [0, 𝛿] → [0, 1] which is continuous, monotone increasing, with 𝜙(0) = 0, is called a measure function.
The Billingsley [3] definition of Hausdorff 𝜙-measure follows, for 𝛿 > 0, 𝐴 ⊂ Ω, define

L 𝜙
𝜇,𝛿(𝐴) := inf

{∑
𝑖

𝜙(𝜇(𝐶𝑖)) : 𝐴 ⊂ ∪𝑖𝐶𝑖, {𝐶𝑖} ⊂ C , 𝜇(𝐶𝑖) < 𝛿
}
,
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L 𝜙
𝜇 (𝐴) := lim

𝛿→0
L 𝜙

𝜇,𝛿(𝐴).

Dai and Taylor [5] defined the packing 𝜙-premeasure and 𝜙-measure by

P̃𝜙
𝜇,𝛿(𝐴) := sup

{∑
𝑖

𝜙(𝜇(𝐶𝑖)) : {𝐶𝑖} are disjoint, 𝜇(𝐶𝑖) < 𝛿 and 𝐶𝑖 = 𝑢𝑛(𝜔) with 𝜔 ∈ 𝐴}.

P̃𝜙
𝜇 (𝐴) := lim

𝛿→0
P̃𝜙

𝜇,𝛿(𝐴),

P𝜙
𝜇 (𝐴) := inf

{∑
𝑖

P̃𝜙
𝜇 (𝐴𝑖) : 𝐴 ⊂ ∪𝑖𝐴𝑖

}
.

In particular, if 𝜙 = 𝑠𝛼, we simply write L 𝛼
𝜇 (⋅), P𝛼

𝜇 (⋅) and P̃𝛼
𝜇 (⋅) for L 𝜙

𝜇 (⋅), P𝜙
𝜇 (⋅) and P̃𝜙

𝜇 (⋅) respectively.
We now define multifractal generalizations of the Hausdorff 𝜙-measure and packing 𝜙-measure. For 𝑞 ∈ ℝ, define

𝜙𝑞 : [0,∞) → ℝ+ = [0,∞] by

𝜙𝑞(𝑥) =

{ ∞ for 𝑥 = 0,
𝑥𝑞 for 𝑥 > 0,

for 𝑞 < 0,

𝜙𝑞(𝑥) = 1 for 𝑞 = 0,

𝜙𝑞(𝑥) =

{
0 for 𝑥 = 0,
𝑥𝑞 for 𝑥 > 0,

for 𝑞 > 0.

Let ∅ ∕= 𝐴 ⊂ Ω and 𝛿 > 0, suppose 𝜈 is a probability measure on (Ω,F ). For 𝑞 ∈ ℝ, write

H̃ 𝑞,𝑡
𝜇,𝜈,𝛿(𝐴) = inf

{∑
𝑖

𝜙𝑞(𝜈(𝐶𝑖))𝜙𝑡(𝜇(𝐶𝑖)) : 𝐴 ⊂ ∪𝑖𝐶𝑖, 𝜇(𝐶𝑖) < 𝛿 and 𝐶𝑖 = 𝑢𝑛(𝜔) with 𝜔 ∈ 𝐴

}
.

H̃ 𝑞,𝑡
𝜇,𝜈 (𝐴) = lim

𝛿→0
H̃ 𝑞,𝑡

𝜇,𝜈,𝛿(𝐴) = sup
𝛿>0

H̃ 𝑞,𝑡
𝜇,𝜈,𝛿(𝐴).

It is easy to check that if 𝐴 ⊂ 𝐵, then a centered 𝛿-covering of 𝐵 is not necessarily a centered 𝛿-covering of 𝐴, thus H̃ 𝑞,𝑡
𝜇,𝜈

is not necessarily monotone. So, we put
H 𝑞,𝑡

𝜇,𝜈 (𝐴) := sup
𝐴𝑖⊂𝐴

H̃ 𝑞,𝑡
𝜇,𝜈 (𝐴𝑖)

Clearly, H 𝑞,𝑡
𝜇,𝜈 is of monotony, and we can prove that H 𝑞,𝑡

𝜇,𝜈 is of subadditivity, thus H 𝑞,𝑡
𝜇,𝜈 is an outer measure, we call the

set function H 𝑞,𝑡
𝜇,𝜈 (𝐴) multifractal Hausdorff measure in a probability space. We also make the dual definitions. Write

P̃𝑞,𝑡
𝜇,𝜈,𝛿(𝐴) := sup

{∑
𝑖

𝜙𝑞(𝜈(𝐶𝑖))𝜙𝑡(𝜇(𝐶𝑖)) : 𝐶𝑖 ∩ 𝐶𝑗 = ∅, 𝑖 ∕= 𝑗,

𝜇(𝐶𝑖) < 𝛿 and 𝐶𝑖 = 𝑢𝑛(𝜔) with 𝜔 ∈ 𝐴

}
,

P̃𝑞,𝑡
𝜇,𝜈,(𝐴) := lim

𝛿→0
P̃𝑞,𝑡

𝜇,𝜈,𝛿(𝐴) = inf
𝛿→0

P̃𝑞,𝑡
𝜇,𝜈(𝐴)

It is imperative to point out that the subadditivity is the false for the pre-measure P̃𝑞,𝑡
𝜇,𝜈 , and we can apply the method of

Munroe(see [7]Theorem 11.3) to the pre-measure P̃𝑞,𝑡
𝜇,𝜈(⋅) to obtain an outer measure

P𝑞,𝑡
𝜇,𝜈(𝐴) := inf

{∑
𝑖

P̃𝑞,𝑡
𝜇,𝜈(𝐴𝑖) : 𝐴 ⊂ ∪𝑖𝐴𝑖

}
,

we call the set function P̃𝑞,𝑡
𝜇,𝜈(⋅) multifractal packing measure in a probability space.

Definition 1 Let
dim𝑞

𝜇,𝜈(𝐴) := sup{𝑡 : H 𝑞,𝑡
𝜇,𝜈 (𝐴) = +∞} = inf{𝑡 : H 𝑞,𝑡

𝜇,𝜈 (𝐴) = 0},
Dim𝑞

𝜇,𝜈(𝐴) := sup{𝑡 : P𝑞,𝑡
𝜇,𝜈(𝐴) = +∞} = inf{𝑡 : P𝑞,𝑡

𝜇,𝜈(𝐴) = 0},
Δ𝑞

𝜇,𝜈(𝐴) := sup{𝑡 : P̃𝑞,𝑡
𝜇,𝜈(𝐴) = +∞} = inf{𝑡 : P̃𝑞,𝑡

𝜇,𝜈(𝐴) = 0},
which are, respectively, called multifractal Hausdorff dimension, packing dimension, pre-packing dimension with respect
to 𝜇 in a probability space.
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3 The relative multifractal spectrum in a probability space
In order to investigate the relative multifractal spectrum, we will define the local pointwise dimension.

Let 𝜔 ∈ Ω, define the upper, lower local dimension of 𝜃 with respect to 𝜈 at a point 𝜔, respectively, by

𝛾𝜃,𝜈(𝜔) = lim sup
𝑛→∞

log 𝜃(𝑢𝑛(𝜔))

log 𝜈(𝑢𝑛(𝜔))
,

𝛾
𝜃,𝜈

(𝜔) = lim inf
𝑛→∞

log 𝜃(𝑢𝑛(𝜔))

log 𝜈(𝑢𝑛(𝜔))
.

If 𝛾𝜃,𝜈(𝜔) = 𝛾
𝜃,𝜈

(𝜔), then the common value, known as the local dimension of 𝜃 with respect to 𝜈 at 𝜔, is denoted by
𝛾𝜃,𝜈(𝜔).

Then, if 𝛼 ≥ 0, let us introduce the fractal sets

Π
𝛼
:= {𝜔 ∈ supp𝜇 ∩ supp𝜈 : 𝛾𝜇,𝜈(𝜔) ≤ 𝛼},

Π𝛼 := {𝜔 ∈ supp𝜇 ∩ supp𝜈 : 𝛾
𝜇,𝜈

(𝜔) ≥ 𝛼},

Π(𝛼) = Π𝛼 ∩Π
𝛼
= {𝑥 ∈ supp𝜇 ∩ supp𝜈 ∣ 𝛾𝜇,𝜈(𝑥) = 𝛼}.

Also, let

𝛾𝜈,𝜇(𝜔) = lim sup
𝑛→∞

log 𝜈(𝑢𝑛(𝜔))

log𝜇(𝑢𝑛(𝜔))
,

𝛾
𝜈,𝜇

(𝜔) = lim inf
𝑛→∞

log 𝜈(𝑢𝑛(𝜔))

log𝜇(𝑢𝑛(𝜔))
.

Given 𝜃, 𝜇, 𝜈 are probability measures, for 𝛼, 𝛽 ≥ 0, set

Π(𝛼, 𝛽) := {𝜔 ∈ supp𝜇 ∩ supp𝜈∣ 𝛾𝜃,𝜈(𝜔) ≤ 𝛼 and 𝛾𝜈,𝜇(𝜔) ≤ 𝛽},

Π(𝛼, 𝛽) := {𝜔 ∈ supp𝜇 ∩ supp𝜈∣ 𝛼 ≤ 𝛾
𝜃,𝜈

(𝜔) and 𝛾𝜈,𝜇(𝜔) ≤ 𝛽},

Π(𝛼, 𝛽) := {𝜔 ∈ supp𝜇 ∩ supp𝜈∣ 𝛾𝜃,𝜈(𝜔) ≤ 𝛼 and 𝛽 ≤ 𝛾
𝜈,𝜇

(𝜔)},

Π(𝛼, 𝛽) := {𝜔 ∈ supp𝜇 ∩ supp𝜈∣ 𝛼 ≤ 𝛾
𝜃,𝜈

(𝜔) and 𝛽 ≤ 𝛾
𝜈,𝜇

(𝜔)}.
Also, let

Π(𝛼, 𝛽) := Π(𝛼, 𝛽) ∩Π(𝛼, 𝛽) ∩Π(𝛼, 𝛽) ∩Π(𝛼, 𝛽)

= {𝜔 ∈ supp𝜇 ∩ supp𝜈∣ 𝛾𝜃,𝜈(𝜔) = 𝛼, 𝛾𝜈,𝜇(𝜔) = 𝛽}.

Fix 𝛼, 𝛽 ≥ 0, 𝑞, 𝑡 ∈ ℝ and 𝛿1, 𝛿2 > 0 such that 𝛿1 ≤ 𝛼𝑞+ 𝑡 and 𝛿2 ≤ 𝛽(𝛼𝑞+ 𝑡− 𝛿1). Then the following inequalities
hold.

Theorem 3.1 Let {Ω,F} be a probability space and 𝜃, 𝜈, 𝜇 are probability measures on {Ω,F}. Then we have the
following:

(i) L
𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2
𝜇 (Π(𝛼, 𝛽)) ≤ H 𝑞,𝑡

𝜃,𝜈 (Π(𝛼, 𝛽)) for 𝑞 ≥ 0.

(ii) L
𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2
𝜇 (Π(𝛼, 𝛽)) ≤ H 𝑞,𝑡

𝜃,𝜈 (Π(𝛼, 𝛽)) for 𝑞 ≤ 0.

Proof. The statements are true for 𝑞 = 0.
(i) For 𝑚 ∈ ℕ, write

𝑇𝑚 :=
{
𝜔 ∈ Π(𝛼, 𝛽)∣ log 𝜃(𝑢𝑛(𝜔))

log 𝜈(𝑢𝑛(𝜔))
≤ 𝛼+

𝛿1
𝑞

and
log 𝜈(𝑢𝑛(𝜔))

log𝜇(𝑢𝑛(𝜔))
≤ 𝛽 +

𝛿2
𝛼𝑞 + 𝑡+ 𝛿1

, for 0 < 𝜇(𝑢𝑛(𝜔)) <
1

𝑚

}
.
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Now given 𝑚 ∈ ℕ, and 0 < 𝜌 < 1
𝑚 let {𝐶𝑖 = 𝑢𝑛(𝜔), 𝜔 ∈ 𝑇𝑚} be a centered 𝜌-covering of 𝑇𝑚. Then clearly

log 𝜃(𝐶𝑖)

log 𝜈(𝐶𝑖)
≤ 𝛼+

𝛿1
𝑞
,

𝜃(𝐶𝑖) ≥ 𝜈(𝐶𝑖)
𝛼+

𝛿1
𝑞 ,

𝜃(𝐶𝑖)
𝑞 ≥ 𝜈(𝐶𝑖)

𝛼𝑞+𝛿1 ,

𝜃(𝐶𝑖)
𝑞𝜈(𝐶𝑖)

𝑡 ≥ 𝜈(𝐶𝑖)
𝛼𝑞+𝑡+𝛿1 .

Also, we have,
log 𝜈(𝐶𝑖)

log𝜇(𝐶𝑖)
≤ 𝛽 +

𝛿2
𝛼𝑞 + 𝑡+ 𝛿1

𝜈(𝐶𝑖) ≥ 𝜇(𝐶𝑖)
𝛽+

𝛿2
𝛼𝑞+𝑡+𝛿1 ,

𝜈(𝐶𝑖)
𝛼𝑞+𝑡+𝛿1 ≥ 𝜇(𝐶𝑖)

𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2 .

Putting these together we see that
𝜃(𝐶𝑖)

𝑞𝜈(𝐶𝑖)
𝑡 ≥ 𝜇(𝐶𝑖)

𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2 .

Hence ∑
𝑖

𝜃(𝐶𝑖)
𝑞𝜈(𝐶𝑖)

𝑡 ≥
∑
𝑖

𝜇(𝐶𝑖)
𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2 ≥ L 𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2

𝜇,𝜌 (𝑇𝑚).

From this we can deduce that for 0 < 𝜌 < 1
𝑚

L 𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2
𝜇,𝜌 (𝑇𝑚) ≤ H̃ 𝑞,𝑡

𝜃,𝜈,𝜌(𝑇𝑚).

Thus letting 𝜌 → 0 now yields

L 𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2
𝜇 (𝑇𝑚) ≤ H̃ 𝑞,𝑡

𝜃,𝜈 (𝑇𝑚) ≤ H 𝑞,𝑡
𝜃,𝜈 (𝑇𝑚) for 𝑚 ∈ ℕ.

Clearly 𝑇𝑚 ↑ Π(𝛼, 𝛽) from the definition of 𝑇𝑚, whence

L 𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2
𝜇 (Π(𝛼, 𝛽)) = sup

𝑚
L 𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2

𝜇 (𝑇𝑚) ≤ sup
𝑚

H 𝑞,𝑡
𝜃,𝜈 (𝑇𝑚) ≤ H 𝑞,𝑡

𝜃,𝜈 (Π(𝛼, 𝛽)).

(ii) For 𝑞 < 0, for any 𝑚 ∈ ℕ, write

𝑇𝑚 :=
{
𝜔 ∈ Π(𝛼, 𝛽)∣ log 𝜃(𝑢𝑛(𝜔))

log 𝜈(𝑢𝑛(𝜔))
≥ 𝛼+

𝛿1
𝑞

and
log 𝜈(𝑢𝑛(𝜔))

log𝜇(𝑢𝑛(𝜔))
≤ 𝛽 +

𝛿2
𝛼𝑞 + 𝑡+ 𝛿1

, for 0 < 𝜇(𝑢𝑛(𝜔)) <
1

𝑚

}
.

and proceed as in case (i).

Theorem 3.2 Let {Ω,F} be a probability space and 𝜃, 𝜈, 𝜇 are probability measures on {Ω,F}. Then we have the
following:

(i) P
𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2
𝜇 (Π(𝛼, 𝛽)) ≤ P𝑞,𝑡

𝜃,𝜈(Π(𝛼, 𝛽)) for 𝑞 ≥ 0.

(ii) P
𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2
𝜇 (Π(𝛼, 𝛽)) ≤ P𝑞,𝑡

𝜃,𝜈(Π(𝛼, 𝛽)) for 𝑞 ≤ 0.

Proof. The statements are true for 𝑞 = 0 .
(i) For 𝑚 ∈ ℕ, write

𝑇𝑚 :=
{
𝜔 ∈ Π(𝛼, 𝛽)∣ log 𝜃(𝑢𝑛(𝜔))

log 𝜈(𝑢𝑛(𝜔))
≤ 𝛼+

𝛿1
𝑞

and
log 𝜈(𝑢𝑛(𝜔))

log𝜇(𝑢𝑛(𝜔))
≤ 𝛽 +

𝛿2
𝛼𝑞 + 𝑡+ 𝛿1

, for 0 < 𝜇(𝑢𝑛(𝜔)) <
1

𝑚

}
.
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Now given 𝑚 ∈ ℕ, 𝐵 ⊂ 𝑇𝑚 and 0 < 𝜂 < 1
𝑚 let {𝐶𝑖 = 𝑢𝑛(𝜔), 𝜔 ∈ 𝐵} be a centered 𝜂-packing of 𝐵. Then clearly

log 𝜃(𝐶𝑖)

log 𝜈(𝐶𝑖)
≤ 𝛼+

𝛿1
𝑞
,

hence
𝜃(𝐶𝑖)

𝑞𝜈(𝐶𝑖)
𝑡 ≥ 𝜈(𝐶𝑖)

𝛼𝑞+𝑡+𝛿1 .

Also, we have,
log 𝜈(𝐶𝑖)

log𝜇(𝐶𝑖)
≤ 𝛽 +

𝛿2
𝛼𝑞 + 𝑡+ 𝛿1

𝜈(𝐶𝑖)
𝛼𝑞+𝑡+𝛿1 ≥ 𝜇(𝐶𝑖)

𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2 .

Putting these together we see that
𝜃(𝐶𝑖)

𝑞𝜈(𝐶𝑖)
𝑡 ≥ 𝜇(𝐶𝑖)

𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2 .

Hence ∑
𝑖

𝜃(𝐶𝑖)
𝑞𝜈(𝐶𝑖)

𝑡 ≥
∑
𝑖

𝜇(𝐶𝑖)
𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2 .

From this we can deduce that for 0 < 𝜂 < 1
𝑚

P̃𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2
𝜇,𝜂 (𝐵) ≤ P̃𝑞,𝑡

𝜃,𝜈,𝜂(𝐵).

Thus letting 𝜂 → 0 gives that for all 𝐵 ⊂ 𝑇𝑚

P̃𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2
𝜇 (𝐵) ≤ P̃𝑞,𝑡

𝜃,𝜈(𝐵).

Now let 𝑇𝑚 ⊂ ∪𝑖𝐵𝑖, then the above inequality implies that

P𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2
𝜇 (𝑇𝑚) = P𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2

𝜇 (∪𝑖(𝑇𝑚 ∩𝐵𝑖))

≤
∑
𝑖

P𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2
𝜇 (𝑇𝑚 ∩𝐵𝑖)

≤
∑
𝑖

P̃𝑞,𝑡
𝜃,𝜈(𝑇𝑚 ∩𝐵𝑖)

≤
∑
𝑖

P̃𝑞,𝑡
𝜃,𝜈(𝐵𝑖),

Hence
P𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2

𝜇 (𝑇𝑚) ≤ P𝑞,𝑡
𝜃,𝜈(𝑇𝑚) ∀𝑚 ∈ ℕ.

Since 𝑇𝑚 ↑ Π(𝛼, 𝛽), Π(𝛼, 𝛽) = ∪𝑚𝑇𝑚. From the monotonicity of the measure, we have

P𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2
𝜇 (Π(𝛼, 𝛽)) = sup

𝑚
P𝛽(𝛼𝑞+𝑡+𝛿1)+𝛿2

𝜇 (𝑇𝑚) ≤ sup
𝑚

P𝑞,𝑡
𝜃,𝜈(𝑇𝑚) ≤ P𝑞,𝑡

𝜃,𝜈(Π(𝛼, 𝛽)).

(ii) For 𝑞 < 0, for any 𝑚 ∈ ℕ, write

𝑇𝑚 :=
{
𝜔 ∈ Π(𝛼, 𝛽)∣ log 𝜃(𝑢𝑛(𝜔))

log 𝜈(𝑢𝑛(𝜔))
≥ 𝛼+

𝛿1
𝑞

and
log 𝜈(𝑢𝑛(𝜔))

log𝜇(𝑢𝑛(𝜔))
≤ 𝛽 +

𝛿2
𝛼𝑞 + 𝑡+ 𝛿1

, for 0 < 𝜇(𝑢𝑛(𝜔)) <
1

𝑚

}
.

and proceed as in case (i).

Theorem 3.3 (i) If 𝐴 ⊆ 𝐾(𝛼, 𝛽) is Borel then, for 𝑞 ≤ 0,

H 𝑞,𝑡
𝜃,𝜈 (𝐴) ≤ L 𝛽(𝛼𝑞+𝑡−𝛿1)−𝛿2

𝜇 (𝐴).

(ii) If 𝐴 ⊆ 𝐾(𝛼, 𝛽) is Borel then, for 0 ≤ 𝑞,

H 𝑞,𝑡
𝜃,𝜈 (𝐴) ≤ L 𝛽(𝛼𝑞+𝑡−𝛿1)−𝛿2

𝜇 (𝐴).
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Proof. An exhaustive proof of this theorem would require considerable repetition. Thus we only prove (ii). The statement
is well-known for 𝑞 = 0.

(1) For 𝑚 ∈ ℕ, let us set

𝑇𝑚 :={𝑥 ∈ 𝐴∣ log 𝜃(𝑢𝑛(𝜔))

log 𝜈(𝑢𝑛(𝜔))
≥ 𝛼− 𝛿1

𝑞

and
log 𝜈(𝑢𝑛(𝜔))

log𝜇(𝑢𝑛(𝜔))
≥ 𝛽 − 𝛿2

𝛼𝑞 + 𝑡− 𝛿2
, for 0 < 𝜇(𝑢𝑛(𝜔)) <

1

𝑚
}

Fix 𝑚 ∈ ℕ, 𝐸 ⊆ 𝑇𝑚 and 0 < 𝜂 < 1
𝑚 let {𝐶𝑖 : 𝐶𝑖 = 𝑢𝑛(𝜔), 𝜔 ∈ 𝐵} be a centered 𝜂-covering of 𝐸. Then we have

log 𝜃(𝐶𝑖)

log 𝜈(𝐶𝑖)
≥ 𝛼− 𝛿1

𝑞
,

𝜃(𝐶𝑖) ≤ 𝜈(𝐶𝑖)
𝛼− 𝛿1

𝑞 ,

𝜃(𝐶𝑖)
𝑞𝜈(𝐶𝑖)

𝑡 ≤ 𝜈(𝐶𝑖)
𝛼𝑞+𝑡−𝛿1 .

Also, we have,
log 𝜈(𝐶𝑖)

log𝜇(𝐶𝑖)
≥ 𝛽 − 𝛿2

𝛼𝑞 + 𝑡− 𝛿1

𝜈(𝐶𝑖)
𝛼𝑞+𝑡−𝛿1 ≤ 𝜇(𝐶𝑖)

𝛽(𝛼𝑞+𝑡−𝛿1)−𝛿2 ,

Putting these together we see that
𝜃(𝐶𝑖)

𝑞𝜈(𝐶𝑖)
𝑡 ≤ 𝜇(𝐶𝑖)

𝛽(𝛼𝑞+𝑡−𝛿1)−𝛿2 .

Hence ∑
𝑖

𝜃(𝐶𝑖)
𝑞𝜈(𝐶𝑖)

𝑡 ≤
∑
𝑖

𝜇(𝐶𝑖)
𝛽(𝛼𝑞+𝑡−𝛿1)−𝛿2

≤ P̃𝛽(𝛼𝑞+𝑡−𝛿1)−𝛿2
𝜇,𝜂 (𝐸).

From this we can deduce that for 𝜂 < 1
𝑚

P̃𝑞,𝑡
𝜃,𝜈,𝜂(𝐸) ≤ P̃𝛽(𝛼𝑞+𝑡−𝛿1)−𝛿2

𝜇.𝜂 (𝐸).

Thus letting 𝜂 → 0 gives that for all 𝐸 ⊆ 𝑇𝑚

P̃𝑞,𝑡
𝜃,𝜈(𝐸) ≤ P̃𝛽(𝛼𝑞+𝑡−𝛿1)−𝛿2

𝜇 (𝐸).

Finally, let (𝐸𝑖)𝑖∈𝑁 be a covering of 𝑇𝑚.Then we have

P𝑞,𝑡
𝜃,𝜈(𝑇𝑚) ≤ P𝑞,𝑡

𝜇,𝜈(∪𝑖(𝑇𝑚 ∩ (𝐸𝑖)))

≤
∑
𝑖

P𝑞,𝑡
𝜇,𝜈(𝑇𝑚 ∩ 𝐸𝑖)

≤
∑
𝑖

P̃𝑞,𝑡
𝜇,𝜈(𝑇𝑚 ∩ 𝐸𝑖)

≤
∑
𝑖

P̃𝛽(𝛼𝑞+𝑡−𝛿1)−𝛿2
𝜇 (𝑇𝑚 ∩𝐸𝑖)

≤
∑
𝑖

P̃𝛽(𝛼𝑞+𝑡−𝛿1)−𝛿2
𝜇 (𝐸𝑖).

Hence
P𝑞,𝑡

𝜃,𝜈(𝑇𝑚) ≤ P𝛽(𝛼𝑞+𝑡−𝛿1)−𝛿2
𝜇 (𝑇𝑚)

and the result follows since 𝐴 = ∪𝑚𝑇𝑚.

Theorem 3.4 (i) If 𝐴 ⊆ 𝐾(𝛼, 𝛽) is Borel then, for 𝑞 ≤ 0,

P𝑞,𝑡
𝜃,𝜈(𝐴) ≤ P𝛽(𝛼𝑞+𝑡−𝛿1)−𝛿2

𝜇 (𝐴).

(ii) If 𝐴 ⊆ 𝐾(𝛼, 𝛽) is Borel then, for 0 ≤ 𝑞,

P𝑞,𝑡
𝜃,𝜈(𝐴) ≤ P𝛽(𝛼𝑞+𝑡−𝛿1)−𝛿2

𝜇 (𝐴).

The proof is the same as Theorem 3.3.
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