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Abstract
We present the possibility that the gravitational growth of primordial density
fluctuations leads to what can be considered a weak version of the cosmological
principle. The large-scale mass distribution associated with this principle must
have the geometrical structure known as a regular honeycomb. We give the
most important parameters that characterize the honeycombs associated with
the closed, open, and flat Friedmann–Lemaı̂tre–Robertson–Walker models.
These parameters can be used to determine by means of observations which
is the appropriate honeycomb. For each of these honeycombs, and for a
nearly flat universe, we have calculated the probability that a randomly placed
observer could detect the honeycomb as a function of the density parameters
�0 and ��0.

PACS numbers: 98.65.Dx, 98.80.−k, 04.20.−q

1. Introduction

In recent works (see [1–5]), it has been speculated that the cosmological large-scale matter
distribution may form repetitive structures analogous to the crystalline ones formed with
polyhedra. The geometrical structures of largest symmetry into which a homogeneous
space can be decomposed are known as regular honeycombs. A regular honeycomb
is a decomposition of the space into congruent regular polyhedra (see [6, 7]). In
section 2 we give a new version of the cosmological principle that we call the weak
cosmological principle. This version is the most natural way to extend the cosmological
principle to a universe with inhomogeneities. The geometrical structures that fit it are
precisely the regular honeycombs. Because closed, open, and flat Friedmann–Lemaı̂tre–
Robertson–Walker (FLRW) models correspond to the three possible homogeneous spaces:
elliptic, hyperbolic, and Euclidean respectively, we have given the distances, angles and other
characteristic parameters for the regular honeycombs of these spaces (sections 3 and 4). The
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calculation of the distances and angles appears in the appendix. Observe that among these three
spaces only the Euclidean one does not have a proper scale. The other two have a characteristic
scale, namely, the curvature radius (see [8]). Thus, in these spaces there are no homothetic
polyhedra and the honeycombs are rigid in the sense that the size of the basic cell cannot be
arbitrary as is the case for the Euclidean honeycombs. In particular, in these spaces there
cannot be fractal structures because fractals do not have any characteristic scale. In section 5
we present a possible interpretation of this geometric scenario in terms of the cosmological
dynamics, by interpreting the spherical and hyperbolic honeycombs as the pattern of large-
scale mass distribution. Such crystalline structures would be the result of the evolution of
a homogeneous one. If the basic cell of the honeycomb lies in the interior of the particle
horizon, then the appropriate honeycomb could be determined by observations, providing a
check on the parameter values that we have calculated in sections 3 and 4. In section 6 we
have detailed some observational prospects for detection of the honeycomb structure. The
case in which the size of the basic cell is much smaller than the particle horizon is commented
on in subsection 6.1. In subsection 6.2 we have studied the case where the particle horizon is
of the order of the basic cell’s size, and we have calculated, for each regular honeycomb, the
probability that a randomly placed observer could detect the honeycomb as a function of the
density parameters �0 and ��0.

2. A weak version of the cosmological principle

The assumption of large-scale homogeneity, together with that of large-scale isotropy, is called
the cosmological principle (CP) (see, for example, [11]). This principle applies for continuous
mass distribution. For the discrete case, the symmetry of the regular honeycombs is the
most natural definition of discrete homogeneity and isotropy. A regular (or homogeneous)
honeycomb is a decomposition of the space into congruent regular polyhedra, which are
called the cells of the honeycomb. Any motion that takes a cell into another also takes the
whole honeycomb into itself, i.e., belongs to the group of symmetries of the honeycomb. The
homogeneity corresponds to the decomposition of the space into regular polyhedra (see [7]),
and the isotropy corresponds to the symmetry of regular polyhedra. When all the matter is
distributed homogeneously at the vertices of a honeycomb, we say that it obeys the discrete
cosmological principle (DCP). We can consider another version of the CP, in which the matter is
distributed in a continuous way, in the pattern of a honeycomb, with a hierarchical distribution
of matter densities, increasing though the sequence: interior, faces, edges, and vertices of
the basic cells. In general, if a distribution of matter has the symmetry of a honeycomb, we
say that it obeys the weak cosmological principle (WCP). It includes the CP when the matter
is distributed homogeneously and isotropically in the basic cell, and also includes the DCP
considered above as a limit case. Another weak version of the cosmological principle has
been considered in [9, 10]. In that version the universe is locally homogeneous and isotropic
but not necessarily globally homogeneous and isotropic.

In a space of dimension 3 with constant curvature, the honeycombs are classified by means
of three integer numbers {p, q, r} called the Schläfli symbols, which completely characterize
the honeycomb (see [7]). Specifically, {p, q} characterizes the polyhedron which is the basic
cell of the honeycomb, p is the number of vertices (or edges) of each of the regular polygons
that constitute the faces of a cell, q is the number of faces (or edges) having a common vertex
in each cell, and r is the number of cells having a common edge. Therefore the dihedral angle
of each cell, α, equals 2π/r . Note that because the dihedral angle must be a divisor of 2π ,
not all the regular polyhedra can be the cells of a regular honeycomb. It is easy to see that the
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Table 1. Three-dimensional spherical honeycombs.

Name Schläfli symbol N0 N1 N2 N3 Basic cell

5-cell {3, 3, 3} 5 10 10 5 Tetrahedron
8-cell {4, 3, 3} 16 32 24 8 Cube
16-cell {3, 3, 4} 8 24 32 16 Tetrahedron
24-cell {3, 4, 3} 24 96 96 24 Octahedron
120-cell {5, 3, 3} 600 1200 720 120 Dodecahedron
600-cell {3, 3, 5} 120 720 1200 600 Tetrahedron

numbers of vertices, V , edges, E, and faces, F, in a polyhedron with Schläfli symbols {p, q}
can be given in terms of p, q by

V = 2

1 − q
(

1
2 − 1

p

) , E = qV

2
, and F = qV

p
. (1)

3. Honeycombs in the closed FLRW models

In this case the space-like sections of the universe are three-dimensional spheres, S3.
Honeycombs in S3 are in one-to-one correspondence with regular polyhedra in R4. The
correspondence can be described as follows. The convex hull of a set M is the minimal convex
set containing this set; it is the intersection of all convex sets containing M. Then the convex
hull in R4 of the set of vertices of a honeycomb in S3 is a regular polyhedron inscribed in S3,
and conversely if P is a regular polyhedron inscribed in S3, then the central projection of its
faces onto S3 forms a honeycomb in S3. From the six regular polyhedra of R4 (see [6, 7]) we
get the following six regular honeycombs in S3:

The regular simplex of R4 with Schläfli symbols {3, 3, 3} gives the honeycomb 5-cell of
S3, which is composed of five spherical tetrahedra.
The regular cube of R4 ({4, 3, 3}) gives the 8-cell of S3, which is composed of eight
spherical cubes.
The regular cocube of R4 ({3, 3, 4}) gives the 16-cell of S3, which is composed of eight
spherical tetrahedra.
The regular 24-hedron ({3, 4, 3}) gives the 24-cell of S3, which is composed of 24 spherical
octahedra.
The 120-cell honeycomb ({5, 3, 3}) is composed of 120 spherical dodecahedra.
Finally, the 600-cell honeycomb ({3, 3, 5}) is composed of 600 spherical tetrahedra.

Reversing the order of the Schläfli symbols yields the so-called dual honeycombs. The
vertices of the honeycomb P∗, dual to the honeycomb P , should be taken as the centres of the
cells of P . The symmetry groups of P and P∗ coincide. The 8-cell and 16-cell honeycombs
are dual to one another, and the same holds for the 120-cell and 600-cell honeycombs. For
symmetric Schläfli symbols, dual honeycombs are congruent. This is the case of the 5-cell and
the 24-cell. In our interpretation of the honeycombs as the patterns of the large-scale matter
distribution, if the higher density is at the vertices of a honeycomb then the lower density is at
the vertices of the corresponding dual honeycomb.

Table 1 gives the following characteristics of these honeycombs: the Schläfli symbols
{p, q, r}; the numbers of vertices, N0, edges, N1, faces, N2, and polyhedra, N3. Note that
N0 − N1 + N2 − N3 is the Euler characteristic of S3, so it is zero. In table 2 we also give the
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Table 2. Characteristic parameters associated with the three-dimensional spherical honeycombs
(R(t) = 1).

Name d rc dE ri dF Vol ρ

5-cell 1.8235 1.3181 1.1503 0.9117 1.1503 3.9478 0.2533
8-cell 1.0472 1.0472 0.9553 0.7854 0.7854 2.4674 0.8105
16-cell 1.5708 1.0472 0.7854 0.5236 0.9553 1.2337 0.4023
24-cell 1.0472 0.7854 0.6155 0.5236 0.6155 0.8224 1.2158
120-cell 0.2709 0.3881 0.3648 0.3141 0.2318 0.1644 30.3964
600-cell 0.6283 0.3881 0.2318 0.1354 0.3649 0.0329 6.0793

Table 3. Other characteristic parameters associated with the three-dimensional spherical
honeycombs.

Name Dihedral angle Interior angle CV EV

5-cell 120◦ 109.47◦ 4 4
8-cell 120◦ 109.47◦ 4 4
16-cell 90◦ 90◦ 8 6
24-cell 120◦ 70.53◦ 6 8
120-cell 120◦ 109.47◦ 4 4
600-cell 72◦ 63.43◦ 20 12

distance between adjacent vertices (or edge length), d; the distance from the centre C of a cell
to a vertex V (or circum-radius), rc; that to an edge E, dE ; that to a face F (or in-radius), ri ;
and the distance from the centre of a face to a vertex of that face, dF . The calculation of these
parameters is shown in the appendix.

The distances in the RW spherical space for any cosmic time t are the above multiplied
by the expansion function of the universe, R(t). To obtain the corresponding recessional
velocities we have to multiply the above distances by the Hubble parameter, H(t).

We can also obtain the volume of a cell, Vol, as the quotient of the volume of S3, 2π2R(t)3,
and the number N3 of cells of the honeycomb. The density of vertices ρ is the quotient of
N0 and the volume of S3. In table 2 we list the values of the volume Vol and ρ for the six
honeycombs considered. Other interesting parameters of the honeycombs are: the number
of edges that share a vertex, EV , which is given by EV = 2N1/N0, and the number, CV ,
of cells that share a vertex, which is given by CV = rEV /q. This number corresponds
also to the number of vertices of the basic cell of the dual honeycomb, and thus is given by
CV = 1

/(
1 − q

(
1
2 − 1

r

))
. In table 3 we list the values of these parameters, as well as the

dihedral angles, and the interior angles φ of the polygons constituting the faces of each cell.

4. Honeycombs in the open and flat FLRW models

The space-like sections of the universe, in the open FLRW model, are three-dimensional spaces
of constant negative curvature, and these spaces are isomorphic to H 3, the hyperbolic space
(or Lobachevskij space) of dimension 3. If we restrict ourselves to honeycombs with bounded
cells it follows that there are only four regular honeycombs in H 3 [7] (see the appendix). Their
Schläfli symbols and dihedral and interior angles are listed in table 4. We have also calculated
the characteristic distances and angles of the basic cells of these honeycombs, as well as the
volume of the basic cell, the number, EV , of edges that share a vertex, the number, CV , of
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Table 4. Characteristic parameters associated with the three-dimensional bounded honeycombs of
the open RW space.

Name Schläfli symbol Basic cell Dihedral angle Interior angle CV EV

i120 {3, 5, 3} Icosahedron 120◦ 41.81◦ 12 20
d90 {5, 3, 4} Dodecahedron 90◦ 90◦ 8 6
c72 {4, 3, 5} Cube 72◦ 63.43◦ 20 12
d72 {5, 3, 5} Dodecahedron 72◦ 63.43◦ 20 12

Table 5. Other characteristic parameters associated with the three-dimensional bounded
honeycombs of the open RW space (R(t) = 1).

Name d rc dE ri dF Vol ρ

i120 1.7366 1.3826 0.9726 0.8683 0.9727 4.6860 0.2134
d90 1.0613 1.2265 1.0613 0.8085 0.8425 4.3062 0.5806
c72 1.6169 1.2265 0.8425 0.5306 1.0613 1.7225 0.2322
d72 1.9927 1.9028 1.4391 0.9964 1.4321 11.1991 0.0893

cells that share a vertex, the volume of the basic cell, Vol, and the density, ρ. Tables 4 and 5
give the values of all these parameters. Note that the honeycombs d90 and c72 are dual to one
another, and that d120 and d72 are self-dual.

The flat universe corresponds to the Euclidean tridimensional space. The regular
polyhedra of this space are the five platonic polyhedra. Among these polyhedra only the
cube has a dihedral angle divisor of 2π . Thus the only possible regular honeycomb is formed
by cubes. Its Schläfli symbols are {4, 3, 4}, the dihedral and the interior angles are both of
90◦, CV = 8, and EV = 6. But because in a flat space there is not a proper length, the basic
cube can be of any size and there is no characteristic distance.

We can also consider whether there are honeycomb structures for models of the universe
with local constant curvature but with topology different to the usual one. Models of universes
of this type have been considered; see [12, 13, 20]. See also [14] for a recent result that
constrains the possible topologies of these spaces. Special attention has been paid to the
locally flat and the locally hyperbolic ones. The reason is that one can then have universes
that are compact and flat, and universes that are compact and have negative constant curvature.
One which is very popular is known as the Seifert–Weber dodecahedral space (see [8, 21]).
This space is obtained from the above d72 hyperbolic honeycomb. To construct this space we
have to glue together the opposite faces of the basic dodecahedron using a clockwise twist
of 3/10 of a revolution. Another example, this one with positive constant curvature, is the
Poincaré dodecahedral space. This space is associated with the 120-cell spherical honeycomb.
To obtain it, opposite faces of the basic honeycomb are glued together using this time a twist of
1/10 of a revolution. For the flat space, identification of the opposite faces of a cube gives the
3-torus, which is a compact flat model of the universe. Only this last space, among all spaces
with non-trivial topology, admits a regular honeycomb structure. This is because for constant
non-zero curvature there are not two basic polyhedra whose distances between vertices are
such that one is a divisor of the other.

Comment. The relation of the above regular honeycombs and the multiply connected spherical
orientable spaces (see [15–17]) is as follows: to obtain a spherical orientable 3-manifold by
identifying the faces of a platonic polyhedron �, the polyhedron must obey two conditions
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(see [18]): (1) the dihedral angle must be a submultiple of 2π , say 2π/r , and (2) the number of
edges of � must be divisible by r. By definition, the basic polyhedron cell of any honeycomb
obeys (1), but there are two spherical honeycombs, the 16-cell and the 600-cell, that do
not satisfy (2). With the remaining four spherical honeycombs we can associate globally
homogeneous spherical 3-manifolds. These manifolds are single-action spherical manifolds.
The single-action spherical manifolds are those for which the members of a subgroup R of S3

act as pure right-handed Clifford translations (see [19]). With the honeycomb 5-cell, whose
basic cell is a tetrahedron, we can associate the lens space L(5, 1), which is the single-action
manifold associated with the cyclic group Z5. With the honeycomb 8-cell, whose basic cell
is a cube, we can associate the Montesinos quaternionic space, which is a prism manifold
associated with the binary dihedral group D∗

2 . With the honeycomb 24-cell, whose basic
cell is an octahedron, we can associate the Montesinos octahedral space, which is the single-
action manifold associated with the binary tetrahedral group T ∗. Finally, with the honeycomb
120-cell, whose basic cell is a dodecahedron, we can associate the above-mentioned Poincaré
dodecahedral space, which is the single-action manifold associated with the binary icosahedral
group I ∗. These associations provide a way to show that S3 is a covering space of the above
manifolds.

Among the four hyperbolic honeycombs, only the i120 and the d72 obey the above
condition (2). By identification of opposite faces of the basic icosahedron cell of i120 we
get a hyperbolic compact manifold, the 3-torus T 3. The basic dodecahedron cell of the
honeycomb d72 gives rise, by identification of opposite faces, to the above-mentioned Seifert–
Weber dodecahedral space. Finally, [18] gives other possible manifolds associated with these
honeycombs.

5. Interpretation in terms of standard FLRW cosmology

Analysis of the power spectrum of density perturbations and the correlation function have
shown that galaxies appear to be gathered into immense sheets and filaments surrounding very
large voids (see [1–3]). The most symmetric distributions of matter, after the homogeneous and
isotropic one, are those associated with the honeycomb structures. These structures give the
most natural generalization of the CP. We have named this generalization the WCP. Then we
propose that the large-scale structure of the universe could have the structure of a honeycomb.

We have seen that there are eleven suitable honeycombs, six corresponding to a closed
universe, four to an open one, and one to a flat one. We have calculated the different parameters
that characterize these honeycombs.

The model that we propose is very speculative, but we think that it could be useful in
looking for new ways to interpret the inhomogeneities that have been discovered on large
cosmological scales. To make this scenario feasible we have to assume that, initially, there
was a homogeneous and isotropic distribution of dark matter or of some other non-observable
kind of matter. We accept also that inhomogeneities with higher energy density than the mean,
formed during the cosmic evolution, are distributed in the most homogeneous and isotropic
manner possible, which we assume to have the honeycomb structure. From this, we can
speculate that the visible matter is concentrated in these inhomogeneities of higher density,
with a hierarchical distribution of densities, increasing through the sequence: interior, faces,
edges, and vertices of the basic cells.

The above symmetric distribution may be considered as the limit attractor of the less
symmetrical present distribution consisting of a huge net of filaments made up of clusters of
galaxies. This net would evolve, seeking the stability associated with the symmetry of any of
the above-described honeycombs. At the present time we could be just in the phase transition
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that goes from a more or less homogeneous distribution to a crystalline one. We do not know
what the precise dynamics governing the above process might be. Presumably, it would be a
very complex one, with the extragalactic magnetic field as a principal actor. It is possible that
the seeds of these structures were generated in the first moments after the big bang, perhaps
before the inflation due to the strong magnetic fields generated by the turbulence of the charged
plasma (see [5, 22–24]). If this were the case, there would be a suppression of cosmological
density fluctuations on scales beyond the size of the basic cell, similar to what happens in
small universe models (see [19, 25]). Then the honeycomb models could also explain the
existence of a cut-off in the cosmic microwave background (CMB) angular power spectrum
on large angular scales (see [26]).

6. Observational prospects

6.1. The case in which the size of the basic cell of the honeycomb is much smaller than the
particle horizon

If the size of the basic cell of the honeycomb is much smaller than the particle horizon we could
verify the correctness of the above model. A possible way would be to study the distribution
of high red-shifts, z, in any direction. They should exhibit peaks with periodic separations
given in log(1 + z). The period should depend on the periodic structure of the honeycomb and,
therefore, on the observational direction. Sufficient observations of this kind would enable the
determination of the appropriate honeycomb. Regularities of this type have been reported by
Broadhurst et al (see [3]). They found that in regions of small area around the northern and
southern galactic polar caps, the high and low density alternate with a rather constant step of
128 h−1 Mpc. In other directions the regularity is much less pronounced.

Another possible observational parameter is the number of filaments that converge on a
supercluster. The open space honeycombs only admit 6, 12, or 20 filaments; the possibilities
for the closed space are 4, 6, 8, and 12; the flat one only admits six filaments (see tables 3
and 4).

Once we know the honeycomb, we can use its characteristic distances to determine the
present curvature of the universe R0. The value of R0 may then be used to sharpen the value
of the density parameter, �tot (it can be calculated from �tot = 1 − kc2/(R0H0)

2; k = 1,−1
for the closed and open cases respectively), as well as other cosmological parameters.

We can also look for observable effects of these structures on gravitational waves,
analogous to the x-ray diffraction of crystals. Another possible observational feature is
the lens effect of these periodic structures on electromagnetic waves.

6.2. The case where the particle horizon is of the order of the basic cell’s size

If the particle horizon is of the order of the basic cell’s size, we may observe only a part of that
basic cell, but the data ratio between the characteristic distances of the cell as well as the values
of EV and CV can be enough to determine which is the appropriate honeycomb. To this end,
it would be important that we can observe at least one vertex of the honeycomb, because in
that case we can observe EV ,CV , and the dihedral and interior angles, and if these values are
ones given in the above tables, then we will have evidence that we are in a honeycomb. Also
these values will be enough to determine the appropriate honeycomb in all the cases except for
the pair of spherical honeycombs the 5-cell and 8-cell, and hyperbolic c72 and d72, for which
the values of these four parameters coincide. To discriminate between these cases, we must
use the observable distances to the vertices, edges, and faces to reconstruct the basic cell. Now
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we will calculate, for each of the honeycombs, the probability that a randomly placed observer
can detect a vertex of the honeycomb. This probability, pr , will depend on the horizon radius
rh considered.

In the following we assume that the universe can be described by the RW metric, and that
matter is made up from dust of density ρm and a cosmological constant �. The Friedmann
equation is then given by

H 2 = 8πGρm

3
− kc2

R2
+

�

3
, (2)

where H = Ṙ/R is the Hubble parameter, G is Newton’s constant, and k = 1, 0,−1 for an
open, flat, and closed universe respectively.

Moreover, we have that ρm = (R/R0)
3ρm0, and the red-shift z is given by z = R0/R − 1,

where the subscript 0 denotes evaluation at the present time.
The RW metric gives dr = (1/R)c dt for the photon equation. Integrating this equation,

and taking into account the above relations, we can find (see [27]) that the comoving distance
r(z), run over by a photon as function of the red-shift z, is given by

r(z) =
√

|1 − �tot|
∫ z

0
(��0 + (1 − �tot)(x + 1)2 + �0(x + 1)3)−1/2 dx, (3)

where �0,��0, and �tot are the density parameters given by �0 = 8πGρm0

3H0
2 ,��0 = �c2

3H 2 , and
�tot = �0 + ��0. The above distance, r(z), is given in units of the curvature radius R0. The
horizon radius, rh, corresponds to z = ∞; the last scattering surface radius, rLSS, associated
with the cosmic microwave background (CMB), corresponds to z ≈ 1100; and for the quasars
and the clusters of galaxies, we could take red-shift cut-offs of z ≈ 6 and z ≈ 1 respectively.
The probability pr associated with any radius r(z) is given by the fraction of the basic cell
volume in which the distance to a vertex is smaller than r(z), that is

pr = Vr

V
, (4)

where Vr is the volume of the region of the basic cell such that the distances from its points
to a vertex are less than r(z), and V is the volume of the basic cell of the honeycomb. If
r(z) > rc, then Vr = V , and pr = 1. If 2r(z) is less than the edge length d, the spheres with
centres at the vertices and radius r(z) do not intersect, and Vr is given by

Vr = V
Vs(r(z))

CV

, (5)

where Vs(r(z)) is the volume of the sphere of radius r(z), CV = 2
1−q( 1

2 − 1
r )

is the number of

cells around a vertex, and V = 2
1−q(1

2 − 1
p)

is the number of vertices of a cell. The volumes of a

sphere of radius r in S3 and in �3 are given respectively by

Vs(r) = π(2r − sin 2r), Vs(r) = π(2r − sinh 2r), (6)

where we have taken the curvature radius R = 1.
If d/2 < r(z) < distance from the centre of a face to a vertex of that face dF , there are no

points common to more than two spheres. The volume of the region of the intersection of two
spheres is double the volume of the spherical cup, Vc, corresponding to the height r(z) − d/2,
multiplied by the number of edges of a cell, E, and divided by the number of cells with a
common edge, r. Thus we have

Vr = V

CV

Vs(r) − E

r
2Vc(r − d/2). (7)
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Figure 1. The probability, pr , that a randomly located observer can detect the spherical honeycomb
16-cell, for 0.3 < �0 < 0.5, 1 < �tot < 1.08, and z = ∞.

Table 6. The probability that a randomly located observer detects a given honeycomb, for
red-shift z = 1, 6, 1100,∞. For the honeycombs of the closed universe we have taken
(�0, �tot) = (0.3, 1.03), and for the open universe (�0,�tot) = (0.3, 0.95).

Honeycomb z = 1 z = 6 z = 1100 z = ∞
r(z)(0.3, 1.03) 0.135 0.337 0.558 0.576
5-cell 0.003 0.040 0.173 0.190
8-cell 0.008 0.127 0.546 0.590
16-cell 0.004 0.064 0.277 0.304
24-cell 0.012 0.191 0.809 0.860
120-cell 0.311 – 1 1
600-cell 0.062 0.913 1 1

r(z)(0.3, 0.95) 0.170 0.423 0.706 0.729
i120 0.004 0.070 0.347 0.386
d90 0.012 0.191 0.740 0.779
c72 0.005 0.076 0.374 0.420
d72 0.002 0.029 0.145 0.161

The volume Vc(r − d/2) equals Vs(r)/2 minus the volume of the spherical segment of
height d/2, Vseg(d/2). But Vseg(h) = ∫ h

0 A(y) dx, where A(y) is the area of the circle of
radius y. Taking into account that for the spherical and hyperbolic cases we have respectively:
A(y) = π sin2 y, cos r = cos y cos x, and A(y) = π sinh2 y, cosh r = cosh y cosh x, we
obtain, for the spherical and hyperbolic segment volumes respectively,

Vseg(h) = (h − cos2 r tan h), Vseg(h) = (h − cosh2 r tanh h). (8)

With the above expressions we can calculate the probability pr in all the cases except
when dF < r(z) < rc. In this case we can approximate the value of pr by interpolation.
Using equation 3 we can express pr as a function of the density parameters �0 and �tot. As
an example, we have shown in figure 1 the probability for a randomly located observer of
detecting the spherical honeycomb 16-cell, for 0.3 < �0 < 0.5, 1 < �tot < 1.08, and z = ∞.
Note that if �tot → 0, then r(z) → 0, and the probability pr also goes to 0.

Table 6 gives the probability of detecting any of the regular honeycombs considered
above for z = 1, 6, 1100,∞. For the honeycombs of the closed universe we have taken
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Figure 2. The region of the (�0, �tot) plane where rLSS is greater than the circum-radius, rc; that
is, the region in which the probability of detecting the honeycomb is 1. (a) Shows these regions
for the spherical honeycombs. The points at which rLSS < rc correspond to the region above the
marked line (rLSS = rc). In the same way, (b) gives these regions for the hyperbolic honeycombs.
In this case the points with rLSS < rc are in the regions below the marked lines.

(�0,�tot) = (0.3, 1.03), and for the open universe (�0,�tot) = (0.3, 0.95). These values of
the density parameters are in the range 0.9 < �tot < 1.1 for the nearly flat universes that have
been found from recent observations [28]. The value omitted in the table corresponds to a
value of r(z) such that dF < r(z) < rc, and, as has been pointed out previously, it cannot be
calculated by the above procedure. Notice that in the closed universe the higher probabilities
correspond to the 120-cell and 600-cell honeycombs, and to d90 in the open case.

We have also calculated for each regular honeycomb the region of the (�0,�tot) plane
where rLSS is greater than the circum-radius, rc, that is, the region in which the probability of
detecting the honeycomb is 1. Figure 2(a) shows these regions for the spherical honeycombs,
and figure 2(b) gives these regions for the hyperbolic honeycombs. Observe that the
honeycombs that are easiest to detect in a nearly flat universe are the spherical 120-cell
and 600-cell.

7. Summary

In this article, we have considered the possibility that the gravitational growth of primordial
density fluctuations leads to what can be considered a weak version of the cosmological
principle, for which the large-scale matter distribution has the pattern of a regular honeycomb.
In a recently published paper (see [29]) we studied honeycombs in the space of relativistic
velocities and in the Milne cosmological model. In both cases the honeycombs were the
hyperbolic ones. In that paper we advanced some of the ideas of this one.

There are six regular honeycombs associated with the closed FLRW universe, and four,
with bounded cells, associated with the open case. We have calculated the most important
parameters characterizing these honeycombs.

We have also given some observational prospects for detecting the honeycomb. Moreover,
we have calculated, for each honeycomb, and for a nearly flat universe, the probability that a
randomly placed observer could detect the honeycomb as a function of the density parameters
�0 and ��0.
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Figure 3. One of the 2pF identical double-rectangular tetrahedra which any regular polyhedron
is decomposed into.
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Appendix

In this appendix we will calculate the characteristic distances and angles of the regular
honeycombs considered in this paper. To calculate these distances as functions of the Schläfli
symbols {p, q, r} of the honeycomb we proceed as follows. First, we decompose each
polyhedron into F identical pyramids with the apex in the centre of the polyhedron. Each
of these pyramids is then decomposed into 2p double-rectangular tetrahedra by dropping
perpendicular lines from the apex onto the faces and onto the lines bounding the faces. The
vertices of this tetrahedron are: the centre of the cell, P3, the centre of a face, P2, the centre of
an edge, P1, and a vertex of the cell, P0 (see figure 3). We recall that a tetrahedron P0P1P2P3

is said to be double rectangular if its edge P3P2 is orthogonal to the face P0P1P2 and its edge
P1P0 is orthogonal to the face P1P2P3. Thus, three out of the six dihedral angles are right
angles. Thus, the double-rectangular tetrahedron is determined by its dihedral angles α, β,
and γ corresponding to the edges a = P3P2, b = P3P0, and c = P1P0 respectively. Then,
using spherical trigonometry, we have (see [7])

tan a tan α = tan b tan
(π

2
− β

)
= tan c tan γ =

√
�

cos α cos γ
, (9)

where � = sin2 α sin2 γ − cos2 β.
By definition of p, q, and r it follows that α = π/p, β = π/q, and γ = π/r .

Therefore, by substituting these values in equation (9) we obtain a, b, and c. The above-
defined characteristic distances of a honeycomb are then given by: d = 2c, rc = b, dE =
arg sin(sin a/sin γ ), ri = a, and dE = arg sin(sin c/sin α) (see table 2).

Moreover, we can get the interior angle φ of the polygons constituting the faces of each
cell by solving for the hyperbolic triangle P0P1P2. In fact, we have sin φ

2 = cos α/cos c. In
this way we have obtained the values of φ in table 3.

The space-like sections of the universe, in the open FLRW model, are three-dimensional
spaces of constant negative curvature, and these spaces are isomorphic to H 3. We have
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followed the Vinberg and Shvartsman [7] classification of hyperbolic honeycombs, which does
not include as honeycombs those with cells inscribed in horospheres instead of finite spheres.
As in the spherical case, for a honeycomb with Schläfli symbols {p, q, r} the dihedral angle
of each cell, α, equals 2π/r , but in the hyperbolic case α has the restriction αmin � α < αEuc,
where αmin is the minimal possible dihedral angle in such a regular polyhedron in hyperbolic
space, and αEuc is the dihedral angle of the corresponding polyhedron in Euclidean space.
From this fact, if we restrict ourselves to honeycombs with bounded cells, it follows that there
are only four regular honeycombs in H 3 [7]. Their Schläfli symbols and dihedral and interior
angles are listed in table 4. In our paper [29], we calculated the characteristic distances and
angles of the basic cell of these honeycombs, as well as the volume of the basic cell, the
number, EV , of edges that share a vertex, the number, CV , of cells that share a vertex, the
volume of the basic cell, Vol, and the density, ρ. Tables 4 and 5 give the values of all these
parameters.
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[2] Einasto J, Einasto M, Frisch P, Gottlöber S, Müller V, Saar V, Starobinsky A A, Tago E, Tucker D and
Andernach H 1997 The supercluster–void network II. An oscillating cluster correlation function Mon. Not.
R. Astron. Soc. 269 801–12

[3] Broadhurst T J, Ellis R S, Koo D C and Szalay A S 1990 Large-scale distribution of galaxies at the galactic
poles Nature 343 726–8

[4] Kirshner R 1997 The universe as a lattice Nature 385 112–3
[5] Battaner E, Florido E and Garcia-Ruiz J M 1997 Magnetic fields and large scale structure in a hot universe III.

The polyhedric network Astron. Astrophys. 327 8–10
[6] Coxeter H S M 1973 Regular Polytopes (New York: Dover)
[7] Vinberg E B and Shvartsman O V 1993 Discrete Groups of Motions of Spaces of Constant Curvature in

Geometry II ed E B Vinberg Encyclopaedia Math. Sci. vol 29 (New York: Springer) pp 139–48
[8] Thurston W P 1997 Three-dimensional Geometry and Topology vol 1 (Princeton, NJ: Princeton University

Press)
[9] Inoue K T and Sugiyama N 2003 How large is our universe? Phys. Rev. D 67 043003

[10] Roukema B F 2003 How to avoid the ambiguity in applying the Corpernican principle for cosmic topology:
take the observational approach Adv. Space Res. 31 449–57

[11] Rindler W 1986 Essential Relativity 2nd edn (New York: Springer)
[12] Cornish N J, Spergel D N and Starkman G D 1998 Circles in the sky: finding topology with the microwave

background radiation Class. Quantum Grav. 15 2657–70
[13] Weeks J R 1998 Reconstructing the global topology of the universe from the cosmic microwave background

Class. Quantum Grav. 15 2599–604
[14] Cornish N J, Spergel D N, Starkman G D and Komatsu E 2003 Constraining the topology of the Universe

Preprint astro-ph/0310233
[15] Lachièze-Rey M and Luminet J-P 1995 Cosmic topology Phys. Rep. 254 135–214
[16] Inoue K T 2001 Exploring topology of the universe in the cosmic microwave background PhD Thesis (Preprint

astro-ph/0103158)
[17] Levin J 2002 Topology and the cosmic microwave background Phys. Rep. 365 251–333
[18] Everitt B 2004 3-manifolds from platonic solids Topology Appl. 138 253–67
[19] Lehoucq R, Weeks J R, Uzan J P, Gausmann J P and Luminet J P 2002 Eigenmodes of 3-dimensional spherical

spaces and their application to cosmology Class. Quantum Grav. 19 4683–708
[20] Cornish N J and Weeks J R 1998 Measuring the shape of the Universe Notice of the AMS 45 1463–70
[21] Thurston W P and Weeks J R 1984 Sci. Am. 108 (July) 108–20
[22] Battaner E, Florido E and Jimenez-Vicente J 1997 Magnetic fields and large scale structure in a hot universe I.

General equations Astron. Astrophys. 326 13–22
[23] Florido E and Battaner E 1997 Magnetic fields and large scale structure in a hot universe II. Magnetic flux tubes

and filamentary structure Astron. Astrophys. 327 1–7



The cosmological principle and honeycombs 2253

[24] Battaner E and Florido E 1998 Magnetic fields and large scale structure in a hot universe IV. The egg-carton
Universe Astron. Astrophys. 338 383–5

[25] Luminet J P, Weeks J R, Riazuelo A, Lehoucq R and Uzan J P 2003 Nature 425 593–5
[26] Bennett C N et al 2003 First year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary

maps and basics results Astrophys. J. Suppl. 148 1–27
[27] Peacock J A 1999 Cosmological Physics (Cambridge: Cambridge University Press) p 76
[28] Sievers J L et al 2002 Cosmological parameters from Cosmic Background Imager Observations and Comparisons

with BOOMERANG, DASI, and MAXIMA3 Preprint astro-ph/0205387
[29] Criado C and Alamo N 2002 Relativistic kinematic honeycombs Found. Phys. Lett. 15 345–58


