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Abstract. One of the most used techniques for full-body human track-
ing consists of estimating the probability of the parameters of a human
body model over time by means of a particle filter. However, given the
high-dimensionality of the models to be tracked, the number of required
particles to properly populate the space of solutions makes the problem
computationally very expensive. To overcome this, we present an efficient
scheme which makes use of an action-specific model of human postures
to guide the prediction step of the particle filter, so only feasible human
postures are considered. As a result, the prediction step of this model-
based tracking approach samples from a first order motion model only
those postures which are accepted by our action-specific model. In this
manner, particles are propagated to locations in the search space with
most a posteriori information avoiding particle wastage. We show that
this scheme improves the efficiency and accuracy of the overall tracking
approach.

1 Introduction

Full-body 3D human tracking from a monocular image sequence is one of the
most challenging problems from visual human motion analysis. However, the
number of difficulties related to the problem are very large. Among others,
the shape and appearance of a human body in 2D images may change dras-
tically over time due to changing lighting conditions, loose fitting clothes and
background clutter. Additionally, one must deal with 2D-3D projection ambi-
guities, and self and non-self occlusions of body parts. Hence, only a reduced
number of DOF present in the model are directly observable from 2D images.
Finally, the implied models are very high dimensional, non-linear, and may suf-
fer from kinematic ambiguities and singularities [12]. To overcome these issues,
many approaches make use of Bayesian filtering techniques combined with care-
fully designed search strategies of the solution space [2,8,11,14,13]. When the
involved distributions are non-Gaussian, the computation of model parameters
over time can be approximated by means of a particle filter [3]. This probabilistic
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framework can deal with multiple hypotheses, and brings a principled way to
incorporate a priori knowledge about human motion into the tracking, so the
solution space can be explored in a more efficient manner.

Particle filters supply a powerful tool for representing and propagating com-
plex posterior distributions. However, the number of needed particles grows ex-
ponentially as the number of dimensions to be tracked does [7]. This fact is
obvious in the human motion tracking case, due to the high DOF needed to
represent human postures. For this reason, it is necessary to make particle filters
more efficient. For example, the annealed particle filter aims to reduce the num-
ber of required samples by successively pruning less likely hypotheses [2]. They
used it in combination to a smooth motion model in a multi-camera tracking
system in order to track generic human motion.

Alternatively, it is possible to use efficient motion models which concentrate
particles in areas of interest. Sidenbladh et al. applied the particle filtering frame-
work for full human body tracking in [10] in combination with a cyclic dynamic
model designed to improve the performance of the tracker for the walking action.
Likewise, Ning. et al [8] tracked a walking sequence of a 12 DOF body model
using a particle filter and a dynamic model of walking. The dynamic model
included constraints on human motion, and learnt the parameters of motion
formulated as independent Gaussian distributions per each joint. In [11], Siden-
bladh et al. generalized their approach to include different actions than walking.
They learnt the dynamic model from a pre-recorded set of human motions, and
predictions were made assuming a Gaussian distribution over subsequences of
the learned motions. As a result, particle wastage was avoided by concentrating
particles in areas where motion was observed before. However, the model can
only predict postures which were present in the motion database.

Recently, Urtasun et al. introduces the use of Scaled Gaussian Process La-
tent Variable Models (SGPLVM) to learn models of 3D human poses from small
training sets [13]. They use this model as a motion prior to constrain the human
postures to the learned actions. However, instead of particle filters, they use a
deterministic optimization approach to implement the Bayesian filter. Alterna-
tively, for large motion sets it is possible to use the learning scheme of Chai et
al. to build a more efficient space of human postures [1].

Likewise, we propose a posture-based human action space for modeling feasi-
ble postures within an action. This model is used to constrain human postures
within the framework of a particle filter responsible for tracking the human body
motion. In such a recursive model-based tracking approach, human postures are
projected forward by means of a dynamic model, and they are subsequently
updated according to the measurements obtained from images. As a result, we
must define both the dynamic model and the fitness function of human postures
to images. In this work, predictions are made according to a dynamic model
which focuses and constrains human postures only to a set of feasible postures
within the performance of a particular action.

The remainder of this paper is organised as follows. In Section 2 we present
the training of our action-specific model of human postures using real data ac-
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quired with a commercial Motion Capture system. This action model is used
to determine whether a human posture belongs to a particular action or not.
Section 3 introduces the tracking framework. We define a dynamic model based
on a first order motion model constrained to the postures which are accepted by
the action model. Moreover, we present a fitness function based on the overlap-
ping area between the projection of the body state and the body region obtained
from image segmentation. In Section 4 results of the tracking approach are pre-
sented for a performance not considered in the training set. Finally, Section 5
discusses the conclusions and future research.

2 Learning Posture Constraints

The 3D human body model used in this work is composed of 12 limbs with 3 DOF
per joint expressed as relative angles in a 3D polar coordinate system. Using a
commercial Motion Capture System, we acquired 45 performances, in average,
of 9 different actions performed by 9 different actors. We refer the reader to [9]
for details on the body model and motion database used. From the observed
motion, we aim to automatically learn per each action, which human postures
are feasible during the performance of that particular action. Towards this end,
we first express all the training postures for action A in a lower dimensional
representation called aSpace [4] which is computed as follows:

Let φ be a 36-dimensional vector representing a particular human posture,
and Φ be a sequence of human postures, hereafter performance. Then, for a
particular action A, we compute PCA over all the training performances Φj for
that action. The resulting PCA-like space - called aSpace - will be denoted as
ΩA. The projections Φ̃j on the aSpace of Φj constitute the lower dimensional
version from the original data.

Subsequently, we aim to characterize the shape of the training performances
for action A within the aSpace. Since each performance Φ̃j may be composed of a
different number of postures and may exhibit different speeds, we need a method
for synchronising all the performances from the training set. Hence, we normalise
the length of each performance by means of a cubic spline, and compute the mean
performance ḡA. Afterwards, a key-frame set KA is found from ḡA by selecting
the maximum and minimum distant postures from the mean posture in the same
fashion than [5]. We look for the most similar postures to the key-frames found
in each performance, so we can resample all the performances to have the same
number of postures. As a result, we obtain a synchronised version of the training
set. Fig. 1 shows the first 4 dimensions of the aSpace from the non-synchronised
(Fig. 1.(a)) and the synchronised (Fig. 1.(b)) versions of the training set for a
bending action.

As a result, we can put in correspondence postures between different training
performances. Therefore, we compute the synchronised mean performance ĝA,
and the standard deviation σA

k for each k-th posture, using all the synchronised
performances Φ̃j . In Fig.1.(b), we show the synchronised training performances
(thin lines) and its mean performance (thick line) for a bending action. The

cetto
Rectangle



Posture Constraints for Bayesian Human Motion Tracking 417

(a) (b)

Fig. 1. Before (a) and after (b) synchronization of the training set using key-frames

dashed black line corresponds to three times the standard deviation computed
from the mean. Finally, our action model is defined as:

Γ A = (ΩA, ĝA, σA
k ), (1)

where ΩA defines the aSpace, ĝA stands for the synchronised version of the mean
performance, and σA

k is the observed standard deviation.
The learnt action model will be used in the prediction step of the particle

filter to probabilistically determine whether a posture belongs to action A or
not. The probabilistic framework used to face the tracking problem is described
in the next section.

3 Using the Posture Constraints

The Bayesian filter recursively estimates the state of the tracked object at each
time step given the evidences (image data) up to that moment. It decomposes
the problem in two differentiated steps, i.e. the prediction and update steps. The
prediction step projects forward the model parameters to the next time step
by means of a dynamic model. Then the update step makes use of a likelihood
probability function in order to evaluate the fitness of the predictions to the
evidences available at each moment.

Formally, within the Bayesian filtering framework, we formulate the compu-
tation of the posterior distribution p(φt|It) of our model parameters over time
as follows:

p(φt|It) ∝ p(It|φt)
∫

p(φt|φt−1) p(φt−1|It−1) dφt−1 , (2)

where φt is a 36-dimensional vector from our body model representing a partic-
ular pose of the human body at time t, It is the image sequence up to time t,
p(It|φt) is the likelihood of observing the image It given the parametrization φt

of our model at time t, and finally p(φt|φt−1) is the dynamic model.
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We use particle filtering techniques in order to approximate the true posterior
pdf by means of a discrete weighted set of samples. Hence, whilst the likelihood
function decides which particles are worth to propagate, the dynamic model is
responsible for guiding the exploration of the space of solutions. The posterior
p(φt|It) represents all the current knowledge about the model state we have
extracted from image measurements. We can estimate the state φt at a particular
time step by computing the mean of the posterior pdf.

The number of samples -or particles- determines the accuracy and the speed
of the tracker. However, the computational cost of particle filters mainly comes
from the computation of the likelihood function from image measurements [15].
Additionally, the number of needed particles grows exponentially as the number
of dimensions of the model to be tracked does [7]. Therefore, given the high-
dimensionality present in human motion tracking, we need to design efficient
search strategies to lower the number of particles needed. In other words, the
dynamic model from the prediction step of the particle filter should be generic
enough to track any motion, but specific enough to focus particles only to areas
with high a posteriori information.

3.1 Constrained Motion Model

The action-specific posture model constitutes a priori knowledge on human mo-
tion which can be incorporated into the Bayesian tracking framework by means
of the dynamic model p(φt|φt−1) from Eq. (2). We aim to define a dynamic
model which samples only those postures which are feasible during the perfor-
mance of a particular action A, based on a 1st order motion model. Thus, the
prediction step of the particle filter is designed as a two-step process. First, we
project forward the particle set {φs

t−1} following a 1st order motion model plus
some Gaussian noise, i.e.,

φ̂s
t = φs

t−1 + Vt−1 + η(σφ), (3)

where φs
t−1 denotes the particle s at time t − 1, and φ̂s

t is the prediction for this
particle. Vt−1 is the velocity term computed at time at time t − 1, and η(σφ) is
a Gaussian diffusion term. To determine σφ, we used a constant velocity model
to predict each performance of the training set. Then, σφ was computed as the
standard deviation of the average error committed. Subsequently, we update the
term Vt according to Vt = αVt−1 + (1 − α)(φt−1 − φt−2), where α is a learning
coefficient, and φt−1, φt−2 correspond to the estimated state of the human body
at the two previous time steps.

Secondly, we filter those predictions φ̂s
t which are not accepted as feasible

postures during the performance of the action Ai by our action-specific model.
If a prediction φ̂s

t is rejected, we resample from Eq. (3) until a feasible posture
is generated for this particle. Finally, the new set of predicted particles {φs

t} at
time t is constituted by those predictions φ̂s

t which were accepted by the action
model.
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As a result, we reformulate Eq. (2) including the action model into the pre-
diction step as

p(φt|It) ∝ p(It|φt)
∫

p(φt|φt−1, Γ
A) · p(φt−1|It−1) dφt−1. (4)

Now, by applying the Bayes’ rule and assuming independence between φt−1
and Γ A, i.e. only current postures are constrained by the action model, we can
further decompose Eq. (4) as

p(φt|It) ∝ p(It|φt)
∫

p(φt|φt−1) p(φt|Γ A) · p(φt−1|It−1) dφt−1, (5)

where p(φt|Γ A) is a function which determines whether a particular posture φt

belongs to action A or not defined as follows:

p(φt|Γ A) =
{

1 if (|φ̃t,d, ĝA
j,d| < 2 · σA

j,d), ∀d = 1..D

0 otherwise
, (6)

where φ̃t = (φ̃t,1, ..., φ̃t,D)T is the projection of φt in the D-dimensional aSpace.
ĝA

j is the j-th posture from the mean performance computed for the action A

which probabilistically matched φ̃t, i.e., we draw ĝA
j from a Gaussian conditional

distribution assuming that φ̃t = ĝA
j + η(∆), where ∆ is empirically determined

from the training set. σA
j = (σA

j,1, ..., σ
A
j,D) stands for the learnt standard devia-

tion of the j-th posture for the action A. Notice that the level of filtering depends
on the number of dimensions D considered in the aSpace representation.

By defining this filtering method, we prune those predictions which are more
distant than two times the learnt standard deviation from the matched posture
of a particular action. As a result, our dynamic model predicts feasible human
postures avoiding particle wastage on postures which are not likely to appear
during the performance of a particular action.

3.2 Image Measurements

The likelihood function p(It|φt) computes how likely is to observe the image It

given a human body posture φt. In this paper, we implemented a likelihood
function based on the image region filled by the human body. Hence, the human
body model has been fleshed out with 3D volumetric primitives consisting in
3D cylinders. As a result, we synthesise an image Ĭφs

t
of the region defined by

a particular parametrization φs
t of the human body model. For simplicity and

efficiency, we have simplified the 2D projections onto the image plane from the
limbs’ cylinders as rectangles.

On the other hand, we extract the true region filled by the body in the current
image It by applying a background subtraction algorithm from Horprasert et
al. [6]. This pixel-wise algorithm needs to be trained with several background-
only frames beforehand. Then, for each frame to be segmented, the algorithm
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Fig. 2. It (a), Ĭφt (b), Ît (c), IOV
t,φt

(d) and IU
t,φt

(e) images from the likelihood compu-
tation. See text for details.

computes for each pixel the normalised distortion on chromacity and brightness
with respect to the learnt background model. Based on this values, each pixel
is classified as background, foreground, shadow, or highlight. We denote the
segmented body region image as Ît. Finally, the likelihood is computed based on
the overlapping area between the synthesised and the segmented images, i.e.,

p(It|φt) ∝
∑

x

∑
y(IOV

t,φt
(x, y))∑

x

∑
y(IU

t,φt
(x, y))

, (7)

where IOV
t,φt

refers to the overlapping region between Ĭφt and Ît, IU
t,φt

is the union
of both regions. The notation I(x, y) is used to make reference to the pixel of I
at column x, row y. As a result, we assign maximum weight to those postures
whose synthesised image coincide totally with the segmented one, and lower
values otherwise. Fig. 2 shows the images It (a), Ĭφt (b), Ît (c), IOV

t,φt
(d) and

IU
t,φt

(e) computed at a particular time t of the algorithm.

4 Experimental Results

To test this work we used a training set of 40 performances of a bending action
carried out by 9 different actors. However, the approach is easily extensible
to other sets of actions. Hence, we have tested the tracking approach using a
bending sequence not present in the training set, consisting in 86 frames from
which we have 3D ground truth data available.

The number of D dimensions considered when building the aSpace represen-
tation determines the degree of adaptation of the action model to the training
data. Hence, too low values for D result in a poor filtering effect, since too
many particles with low a posteriori information will be accepted by the action
model. On the other hand, too high values lead to overfitting to the training set,
since the action model only accepts particles that are almost equal to postures
used to learn the action model. To test this work, we used D = 13 dimensions
which proved to achieve a good compromise between generality of the model and
non-feasible postures rejection.

To test the effectiveness of the approach, we compared the results obtained
using our action model against a first order motion model without any filtering
method. We repeated the same experiment varying N from 100 to 10000 parti-
cles, with D = 13 and the learning coefficient of the velocity set to α = 0.5. In
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Fig. 3. MSE obtained with both approaches

(a) (b)

Fig. 4. Predictions of the aSpace and 1st order motion approaches

Fig.3 we show the obtained error for the aSpace filtering method (solid line) and
the simple first order motion model (dashed line). The error was computed as
the average Mean Square Error (MSE) of the relative angles between the final
estimated postures -computed as the expectation of the posterior pdf- and the
ground truth data from the sequence. We may observe that the action model
overperforms the 1st order motion model in all the experiments. Furthermore, the
error for the aSpace filtering method quickly stabilises around 7 at N = 3000
particles. One may observe that we obtain similar error measures using 2000
particles with the aSpace approach than 10000 particles without any filtering.
Additionally, with very few particles -below 1000-, our approach quickly lowers
the error and tends to stabilise, while the 1st order motion model approach gives
very high error rates. Hence, our approach never totally looses the tracked ob-
ject since it never produces non meaningful postures. This is depicted in Fig.4
where a frame of the tracked sequence is plotted with a randomly selected set
of predicted postures projected over it for (a) the aSpace approach, and (b) the
1st order motion model approach. One may observe that the latter leads to un-
likely and non feasible human postures for this action, while the aSpace filtering
approach predicts natural and coherent human postures.
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Fig. 5. Estimated frames 1, 11, 21, 31, 41, 51, 61, 71 and 81

Finally, selected frames of the final estimated sequence are shown in Fig.5
for N = 5000 particles. We may observe, that the left arm is confused with the
right arm in the first frames. This is an expected behaviour, since the right arm
is totally occluding the left one, so the likelihood function gives us no clue for
evaluating the proper arm position. However, in the second half of the sequence,
the left arm tends to its correct position since it becomes slightly visible in those
frames, so the likelihood function is higher for postures covering the left arm.
The ability to handle multiple hypothesis of the particle filtering framework is
proved to be very suitable, since it can recover from a self-occluding situation
where the likelihood function doesn’t provide the right maxima.

5 Conclusion

We have presented an efficient tracking approach based on particle filtering for
full-body human tracking, which makes use of an action model to guide the pre-
diction step of the particle filter. Despite the use of a simple likelihood function,
the space of possible solutions is explored in an efficient manner since only fea-
sible human postures are generated by our dynamic model. We compared the
overall error of our tracking approach against a first order motion model without
filtering in the aSpace. Results point out that the action model approach dras-
tically reduces the number of particles needed to track a 36 DOF human body
model, thus reducing the high computational cost inherent to typical particle
filter approaches. Moreover, given the PCA-like definition of the action space,
the degree of dependence of the predictions to the training data set can be tuned
by considering more or less dimensions when building the space.

Future work relies on extending this approach to a more general set of actions,
so we can track any action and transitions between actions. Furthermore, the
likelihood function needs to be improved in order to include other image-based
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cues like color or edges, so it provides more reliable information for evaluat-
ing the predicted poses. Moreover, we need to define a method for handling
self-occlusions based on predicting which body parts are visible at each time
step. Finally, it is possible to improve the action model by considering other for-
mulations which may improve the pruning effect providing more accuracy and
efficiency to the overall tracking process.
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