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Abstract

■ Adaptive memory retrieval requires mechanisms of cogni-
tive control that facilitate the recovery of goal-relevant infor-
mation. Frontoparietal systems are known to support control
of memory retrieval. However, the mechanisms by which the
brain acquires, evaluates, and adapts retrieval strategies remain
unknown. Here, we provide evidence that ventral striatal acti-
vation tracks the success of a retrieval strategy and correlates
with subsequent reliance on that strategy. Human participants
were scanned with fMRI while performing a lexical decision

task. A rule was provided that indicated the likely semantic
category of a target word given the category of a preceding
prime. Reliance on the rule improved decision-making, as
estimated within a drift diffusion framework. Ventral striatal
activation tracked the benefit that relying on the rule had on
decision-making. Moreover, activation in ventral striatum cor-
related with a participantʼs subsequent reliance on the rule. Taken
together, these results support a role for ventral striatum in learn-
ing and evaluating declarative retrieval strategies. ■

INTRODUCTION

The human brain is capable of efficiently recovering
information from long-term memory with high utility in
our current context while also minimizing the costs asso-
ciated with retrieval itself (Anderson & Milson, 1989).
Although artificial memory systems are superior to human
memory in their ability to store vast amounts of infor-
mation in a durable, content-addressable state, even the
most sophisticated current search engines lack the effi-
ciency and success of human memory when considered
within the adaptive frame of this “information retrieval
problem.” Nevertheless, little is currently understood
about how the brain solves this problem and retrieves
information useful for our current goals.

One means of solving the information retrieval problem
is to develop retrieval strategies that structure or elaborate
inputs to the memory system to influence the likelihood
that task-relevant information is recovered. Strategic,
goal-directed influence over memory retrieval could be
supported by cognitive control systems that maintain a rule
or context in working memory to provide a top–down bias
on on-going processing (e.g., Badre &Wagner, 2007; Miller
& Cohen, 2001). For example, top–down signals from
frontoparietal control systems can bias perceptual and
semantic systems, thereby influencing input to the mem-
ory system (Barredo, Oztekin, & Badre, in press; Badre &
Wagner, 2007; Moscovitch, 1992). Likewise, control pro-

cesses can operate on the output of memory retrieval to
relate recovered information to decision criteria and
response contingencies (Badre & Wagner, 2007; Benjamin,
2007; Atkinson & Shiffrin, 1971). The frontal lobes are
known to be broadly necessary for effective use of retrieval
strategies (Gershberg & Shimamura, 1995; Stuss et al.,
1994; Moscovitch, 1992). And fMRI studies have further
implicated specific regions of dorsolateral PFC (DLPFC)
and ventrolateral PFC (VLPFC) in networks supporting
cognitive control ofmemory (Badre, Poldrack, Pare-Blagoev,
Insler, & Wagner, 2005; Anderson et al., 2004; Dobbins,
Foley, Schacter, & Wagner, 2002; Rugg & Wilding, 2000;
Gabrieli, Poldrack, & Desmond, 1998).
Importantly, however, it remains an open question

how memory retrieval strategies are acquired. Moreover,
not all retrieval strategies are equally effective, and a pre-
viously effective strategy can become obsolete. Thus, a
cognitive control system must have not only the capabil-
ity to implement a retrieval strategy but also to evaluate
the efficacy of that strategy given oneʼs goals, shifting to
new strategies when necessary (Becker & Lim, 2003).
Currently, it is unknown how retrieval strategies are eval-
uated during the course of memory retrieval.
Outside of the memory domain, evidence suggests

that cognitive control strategies, implemented by the
PFC, are partly learned and evaluated via mechanisms
of reinforcement learning supported by the nigra-striatal
dopamine system (Cools, 2011; OʼReilly & Frank, 2006;
Miller & Cohen, 2001). Positive or negative deviations
from the expected outcome of a course of action are
referred to as positive and negative reward prediction
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error (RPE), respectively, and can reinforce or punish
a governing behavioral strategy (OʼReilly & Frank, 2006;
OʼDoherty et al., 2004; Schultz, Dayan, & Montague,
1997). In this way, these learning signals make a given
strategy more or less likely to be used in the future.
A similar process of reinforcement learning has been

hypothesized to support the acquisition and adjustment
of memory retrieval strategies (Scimeca & Badre, 2012).
However, evidence for such a mechanism during dec-
larative memory retrieval remains limited and indirect
(Schwarze, Bingel, Badre, & Sommer, 2013; Han, Huettel,
Raposo, Adcock, & Dobbins, 2010; Han &Dobbins, 2009).
Indeed, to date, there has been no evidence that re-
inforcement learning signals in the brain lead to behavior-
ally evident changes in reliance on a declarative retrieval
strategy. Thus, this study sought to provide an initial
investigation of the neural systems supporting learning
of a retrieval strategy and to test the hypothesis that
whereas enacting retrieval strategies requires fronto-
parietal cognitive control systems, the selection and eval-
uation of these strategies involve nigra-striatal systems
that encode positive or negative RPE associated with task
outcomes.
To test this hypothesis, we scanned human partici-

pants using fMRI while they took advantage of an explicit
retrieval strategy that would aid their performance on a
lexical decision task (LDT). During the standard LDT,
participants are presented a prime word or picture and
then a target letter string, separated by a temporal offset
termed the SOA. Participants are asked to decide if the
target letter string is a word or not. Participants are
faster to respond to a word target when it is semantically
related to the prime word than when it is not. This short-
term semantic priming effect is thought to derive from
automatic associative retrieval and is evident at both short
and long SOAs (Neely, 1977, 1991; Meyer & Schvaneveldt,
1971). Importantly, however, when the SOA is sufficiently
long, participants can employ expectation-based retrieval
strategies to further enhance this semantic priming effect
(Gold et al., 2006; Neely, 1991).
In the present experiment, we took advantage of this

strategic aspect of LDT to test (a) how the brain can use
expectation to guide retrieval, without support from
automatic associative mechanisms, and (b) how it eval-
uates a retrieval strategy in terms of its utility for an up-
coming decision. Specifically, we provided participants
with explicit retrieval rules that indicated what category
a target word would come from given the category of
the prime (Figure 1). The rule was valid for most trials
(75%; “Expected” trials). So, on these trials, reliance on
the rule could guide retrieval of semantic features related
to the target and thereby improve decision-making per-
formance relative to “Unexpected” trials, when the rule
was violated.
We further manipulated SOA between Short (50 msec)

and Long (1000 msec) durations, thereby varying the
opportunity participants had to complete rule-guided

control processes. The manipulation of SOA is crucial
for establishing the effects of control in behavioral mea-
sures in that the impact of control is slow to develop and
so takes time to express in behavior. However, as partici-
pants do not know whether a given trial will involve a
Long or Short SOA, we do not anticipate that the engage-
ment of control will differ between these two trial types,
which is of primary relevance to the brain measures.
Thus, blocks on which a rule was available (“Rule” blocks)
were interleaved with blocks for which there was no rule
(“Neutral” blocks). Thus, the inclusion of a Neutral con-
dition permitted us to identify regions generally involved
in guiding retrieval according to the rule.

Finally, prior work has indicated that it is important to
distinguish whether LDT performance is affected by fac-
tors related to the decision process itself versus other
non-decision components, like cue encoding (Ratcliff,
Gomez, & McKoon, 2004). Reliance on the retrieval strat-
egy in the present task could hypothetically affect multi-
ple components. Thus, we sought to distinguish the
component process in the lexical decision using the drift
diffusion model (DDM) framework (Ratcliff & McKoon,
2008; Ratcliff, 1978). The DDM is a unified means of relat-
ing RT and error rates to interpretable component pro-
cesses during binary decisions, like in the LDT. The DDM
explains the decision process as arising from noisy evi-
dence accumulation or drift toward one of two response
thresholds. Applied to a Word/Nonword decision in the
LDT, evidence is any information recovered from memory
that supports an item being a word. Given the generality of
the Word/Nonword decision, this evidence could range
from semantic information about the target to its lexical
entry to its phonotactic structure. The amount, degree,
and ease with which this evidence is recovered would
affect the strength of evidence. Stronger evidence accu-
mulation during the decision is reflected in a larger drift
rate parameter. Prior modeling using the DDM framework
has implicated differences drift rate in accounting for a
number of major behavioral phenomena during LDT, such
as effects of repetition and word frequency. However,
there are a number of other parameters in the DDM that
affect RT and errors, such as the variability in the drift rate
itself, the starting position or bias toward one or the other
boundary, the separation between the boundaries, and an
initial non-decision time that is thought to reflect processes
related to item encoding occurring before the decision
process. Some of these other parameters would not be
expected to relate to Expectation manipulations in the pre-
sent experiment, as Expectation was independent of the
Word/Nonword decision. However, others, such as non-
decision time, have been shown previously to improve fits
to behavior in the LDT (Donkin, Heathcote, Brown, &
Andrews, 2009; Ratcliff, Thapar, Gomez, & McKoon,
2004) and could relate to reliance on the retrieval rule. In
this study, we used the DDM to (a) parameterize the
degree to which reliance on the retrieval rule affected these
components of the lexical decision and (b) to assess the
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relationship between individual differences in these deci-
sion components and activation in striatum.

METHODS

Participants

Seventeen (12 women) right-handed adults (age = 19–
32 years, mean = 22 years) with normal or corrected-
to-normal vision were recruited. All participants were
without psychiatric or neurological conditions, contrain-
dications for MRI, or medication affecting the CNS. Three
additional participants were recruited, but their data
were excluded before analysis because they either had
their MRI session interrupted (one participant), failed
to complete the task (one participant), or had excessive
head movement (>3 mm; one participant). All partici-
pants gave written informed consent and were compen-
sated for participation according to guidelines established
and approved by the Institutional Review Board of the
Research ProtectionsOffice at BrownUniversity. Participants
were compensated $15/hr.

Stimuli

Stimuli were object pictures or English orthography letter
strings that either spelled real English words (Word) or
nonwords (Nonword). Sixteen semantic categories were
used in the experiment. Each category contained 30 images
and 15 words. Individual exemplars were not included as
both a word and picture. For example, in the category
“bird,” the exemplar “robin” was included either as an
image of a robin or the word “robin,” but not both. Thus,
45 exemplars were included for each category across words
and pictures.

Picture stimuli depicted single, nameable real-world
objects and were 400 × 400 pixels in size subtending
3° of visual angle. Four hundred eighty pictures were
used in the experiment (i.e., only during Rule blocks)
drawn from the Internet and were selected such that
there were 30 pictures in each of 16 object categories.
Eight additional pictures taken from two semantic cate-
gories were presented in the practice section of the
experiment. The category membership of each object
pictured was established in a preexperimental category
norming pilot, and representativeness was equated
across categories. A visual noise stimulus with the same
dimensions as the picture stimuli was used during the
Neutral blocks.

A total of 600 lexical items (Words + Nonwords) were
used in the experiment. Two hundred forty Words and an
equivalent number of Nonwords were used during Rule
blocks. Likewise, 60 Words and Nonwords were used dur-
ing Neutral blocks. Nonwords were selected at random
from the ARC Nonword Database (Rastle, Harrington, &
Coltheart, 2002; www.maccs.mq.edu.au/∼nwdb/). Non-

word items were balanced for length across experimental
conditions. Words were selected as representative of 1
of the 16 semantic categories used for the picture sets
(15 Words per category), although they named objects that
differed from the exemplars featured in the picture set. The
Neutral Word stimuli came from categories other than
those represented in the picture set. Words were counter-
balanced across experimental conditions for length, sylla-
bles, and frequency of use in the English language (Kucera
& Francis, 1967).
All words were presented in black Helvetica font, 30 pt.,

in the center of a white screen using Matlab (Mathworks,
Inc., Natick, MA) and Psychtoolbox (Brainard, 1997)
displayed with an InFocus IN34 DLP projector (1024 ×
768 resolution).

Logic and Design

Rule-guided retrieval was tested using a modified form of
the LDT priming procedure (Figure 1; Neely, 1977, 1991;
Favreau & Segalowitz, 1983). Each trial of the experiment
began with presentation of a picture prime for 200 msec
followed by a black fixation cross and then a target letter
string that was either a Word or a Nonword with equal
frequency. The period between offset of the prime and
the onset of the target (SOA) was either 50 msec (Short)
or 1000 msec (Long). The target letter string was on the
screen for 500 msec and then was replaced by a green
fixation cross for a maximum of 1000 msec. Participants
were required to decide whether the target letter string
was a Word or Nonword and indicated their response

Figure 1. Schematic of task events and conditions in the LDT. Each
column depicts a time line of trial events for each condition of the
experiment. During rule blocks, participants were provided a rule
(top) that related two arbitrary semantic categories (e.g., boats and
birds). On all trials (bottom), a prime image was presented followed by
an SOA and then a target word string, which the participant identified as
a word or nonword. For Expected trials (left), the category of the prime
image predicted the category of the target word in accord with the rule.
On occasional Unexpected trials (middle; 25% of Rule trials), the target
came from the same category as the prime, which violated the rule.
During Neutral blocks (right), trial events followed the same structure
as for Rule blocks, except that there was no rule and the prime was
a visual noise image.
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using a key press response with the index or middle fin-
ger of their left hand. Participants could respond at any
point while either the letter string or the green fixation
cross was on the screen, resulting in a 1500-msec re-
sponse deadline. Once a response was made or the
1500 msec had expired, the fixation cross turned to red
and no further response was recorded. Trials were sepa-
rated by a variable intertrial interval (mean = 2 sec) that
was determined by an algorithm (optseq2; surfer.nmr.
mgh.harvard.edu/optseq/) that optimizes the efficiency
of the design for event-related fMRI analysis.
Trials were grouped into blocks. For Rule blocks, par-

ticipants were provided a single retrieval rule for each
block that related two unrelated semantic categories.
The rule indicated that when the prime depicted an ob-
ject from a particular category one could expect a word
from the paired category. For example, consider the rule,
“Bird←→ Building.” In this case, if a picture of a bird was
presented as the prime, the participant could expect that
an upcoming Word target would name a type of building.
Rules were bidirectional (i.e., bird pictures cued building
names with equal frequency as building pictures cued
bird names) and conveyed no information about the like-
lihood of an upcoming Word versus Nonword response
(i.e., both responses were 50% likely).
Throughout a Rule block, Word targets conformed to

the rule on 75% of trials. These were termed Expected
trials. On the remaining 25% of Word trials, the target
word was from the category of the picture prime. Hence,
on these Unexpected trials, the target word was seman-
tically related to the prime but violated the retrieval rule.
Participants were instructed that the rule would apply
most of the time. Thus, they were aware that there would
be violations, but they were not told exactly how often.
Importantly, this Expectation manipulation permitted a

test of reliance on the retrieval rule. By relying on the
rule, participants could start retrieving information about
features of the upcoming target before its presentation,
thereby facilitating item-level retrieval for category
members and allowing for faster and more accurate
Word/Nonword discrimination. The pairing between
the prime and target categories was arbitrary. Moreover,
any benefit from following the retrieval rule cannot be
accounted for based on an effect of priming, passive
spreading activation or automatic retrieval, as rule expec-
tancy is pitted against prior semantic association (i.e., the
Unexpected targets are semantically related to the
primes). Finally, a new rule relating two novel semantic
categories was provided for each block, diminishing the
influence of associative learning and requiring cognitive
control to direct retrieval to the new cued category. A
further implication of this manipulation is that any learn-
ing over blocks must be at an abstract level, as opposed
to between two specific categories.
Unexpected targets should result in conflict, relative to

Expected targets because of the prior retrieval of features
specified by the rule. This conflict could affect retrieval and/

or postretrieval decision processes because of (a) retrieval
interference from the retrieved but now-irrelevant features
of the cued category, (b) the initial interpretation of un-
expected category information as evidence for a Nonword
response, or (c) the suppression of features related to the
target category that occurred following presentation of
the prime. Moreover, as control processes take longer to
unfold, this conflict effect should emerge at the Long
SOA, specifically. At the Short SOA when participants
would have insufficient time to implement the category
rule, responses to Unexpected targets may not differ from
Expected targets or even may be facilitated because of
automatic semantic priming.

Neutral blocks were interleaved with Rule blocks.
During Neutral blocks, there was no retrieval rule. The
trial structure was the same as that for Rule blocks, except
that, instead of a picture prime, a static noise pattern was
presented for 200 msec. A noise pattern rather than an
object was used to minimize the potential for any seman-
tic relatedness or retrieval strategy to influence per-
formance on these trials. Thus, there were no Expected
or Unexpected trials during Neutral blocks. The Word/
Nonword and SOA manipulations were conducted exactly
as in Rule blocks.

Over the course of the experiment, participants per-
formed a total of eight Rule blocks (60 trials/block) and
four Neutral blocks (30 trials/block). Two Rule blocks
were scanned per run and alternated with runs featuring
a Neutral block. A new retrieval rule was presented for
10 sec at the beginning of each Rule block (followed by
a 10-sec interval before the first trial began). No rule was
repeated within a given participant.

Behavioral and Computational Modeling Analysis

Behavioral data were RTs and error rates across experi-
mental conditions. RT was measured from the onset of
the target letter string until the response. Failure to re-
spond before the 1500-msec deadline was coded as a non-
response, and these trials were excluded from calculations
of error rate or RT. Behavioral effects were assessed with
a Rule [Rule/Neutral] × Response [Word/Nonword] ×
SOA [Long/Short] ANOVA across all experimental trials
and an Expectation [Expected/Unexpected] × SOA
[Long/Short] ANOVA within the Rule blocks. Basic RT
analysis was restricted to correct trials. To provide a poste-
rior predictive check for the model, RT distributions and
quantiles were derived using the empirical (i.e., Kaplan–
Meier) cumulative distribution function for each condition.

The lexical decision was modeled as a drift diffusion
process, following prior work (Ratcliff, Gomez, et al.,
2004). In this framework, evidence accumulates noisily
over time, as estimated by drift rate (v), toward one of
two decision bounds (i.e., Word or Nonword). The accu-
mulation process itself begins after an initial non-decision
interval (t), thought to reflect processes like encoding of
the target. In addition, the model includes parameters for

Badre et al. 1931



the distance between the boundaries (a); the bias (z) or
starting position of evidence accumulation between the
two boundaries; and the intertrial variability in drift (sv),
non-decision time (st), and bias (sz).

Beyond drawing a link to prior work, we also chose to
fit a DDM instead of other descriptive parametric models
(e.g., an ex-Gaussian) because the DDM is a psychological
model that fits interpretable components of a decision
process to the RT and error rates data. Thus, it allows us
to (a) characterize which parameters of the decision are
being affected by our expectancy manipulation (namely
“drift” and “non-decision” time) and (b) relate these inter-
pretable components to our brain measures. This could
not be accomplished with a descriptive parameterization.

We tested several variants of the DDM before selecting
the best fitting model described in the Results (see Table 2
for model comparison). In particular, we fit a model in
which no parameter varied by condition (“Null model”);
models in which either drift rate (v), boundary separation
(a), bias (z), or non-decision time (t) was allowed to vary
across conditions (i.e., Expectation, Rule, and Response);
andmodels in which drift rate (v) was allowed to vary along
with non-decision time (t), bias (z), and boundary separa-
tion (a). Of these, the model allowing both drift rate (v)
and non-decision time (t) to vary with Expectation and Rule
conditions fit the data the best (see Table 2). Estimates
from this model were used for the remaining analysis.

For all model variants, parameterswere fit to the accuracy
and RT data (from both correct and error trials) using the
HDDM module (Wiecki, Sofer, & Frank, 2013). This mod-
ule, implemented in Python, uses a hierarchical Bayesian
estimation procedure that fits the DDM parameters based
on all participant data simultaneously. This approach is
analogous to random effects estimation in that it treats
between subject variance as a random variable while fitting
within-subject parameters simultaneously and sohas advan-
tages over other approaches like pooling all participant data
or fitting each individual participant separately. A Markov
chain Monte Carlo procedure estimated the DDM param-
etersʼ posterior distributions. Twenty thousand samples
from the distributions were estimated. The first 3000 sam-
ples were discarded (burn in), and of the remaining sam-
ples, every 10th sample was retained (thinning). Model
convergence was assessed based on Monte Carlo error
and visual assessments of chain convergence (Gelman,
Carlin, Stern, & Rubin, 2004). Model selection was based
on minimization of the divergence information criterion
(DIC), which is more readily compatible with Markov chain
Monte Carlo estimation than Akaike information criterion
or Bayesian information criterion. The DIC, along with
deviance and pD values, for each model are provided in
Table 2.

Simulated RT distributions were produced using the
best fitting model parameters and were based on 4000
simulated trials divided evenly among the four conditions
arising from the crossing of Expectation [Unexpected/
Expected] × SOA [Short/Long].

fMRI Procedures and Analysis

Whole-brain imaging was performed on a Siemens 3T
TIM Trio MRI system. High-resolution T1-weighted (MP-
RAGE) anatomical images were collected for visualiza-
tion (repetition time = 1900 msec, echo time = 2.98 sec,
flip angle = 9°, 160 sagittal slices, 1 × 1 × 1 mm). Next,
over eight runs, functional images were acquired using a
gradient-echo echo-planar sequence (repetition time =
2 sec, echo time= 30 msec, flip angle = 90°, 40 axial slices,
3 × 3 × 3 mm). Head motion was restricted throughout
scanning using firm padding that surrounded the head.
Visual stimuli were projected onto a screen and viewed
through a mirror attached to a 32-channel head coil.
Responses were registered on a Mag Design and Engineer-
ing MRI-compatible four-button response pad.
Preprocessing and data analysis were performed using

SPM5 (www.fil.ion.ucl.ac.uk/spm/). Following quality assur-
ance procedures, functional images were corrected for dif-
ferences in slice acquisition timing by resampling all slices
in time to match the first slice. Images were then motion-
corrected across all runs (using b-spline interpolation).
Functional data were then normalized based on MNI
stereotaxic space using a 12-parameter affine transforma-
tion along with a nonlinear transformation using cosine
basis functions. Images were resampled into 2-mm3 voxels
and then spatially smoothed with an 8-mm FWHM iso-
tropic Gaussian kernel.
Data analysis was conducted under the assumptions of

the general linear model as implemented in SPM5. Single-
subject effects were estimated using a fixed-effect model.
All regressors were generated by convolving event epochs
(duration= 2 sec) with a canonical hemodynamic response
function and its temporal derivative. Separate event-related
regressors for each cell of the design, crossing Expectation
[Expected, Unexpected, Neutral] ×Word/Nonword× SOA
[Long/Short] × Correct/Error. In addition, nuisance regres-
sors were included to account for run-to-run variance and
low-frequency signal components. RT was also included as
a nuisance regressor.
Linear contrasts at each voxel were used to obtain

subject-specific estimates for each effect. Statistical effects
were restricted to Correct trials. These estimates were
entered into a second-level analysis treating subjects as
a random effect, using a one-sample t test against a
contrast value of 0 at each voxel. Unless otherwise noted,
voxel-based group effects from whole-brain analysis were
considered reliable to the extent that they survived a
family-wise error (FWE)-corrected threshold of p < .05
at the cluster level. Given our a priori hypothesis regard-
ing effects of expectation in striatum, we conducted small
volume correction using a full striatum mask of the AAL
definitions of bilateral caudate and putamen. Within the
small volume, a p < .05 FDR height correction was
applied. Group contrasts were rendered on an MNI
canonical brain that underwent cortical “inflation” using
FreeSurfer (CorTechs Labs, Inc., La Jolla, CA). Statistical
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thresholds used for display purposes are listed in the
figure captions.
Whole-brain analyses were complemented by ROI ana-

lyses to test predicted effects in a priori hypothesized
regions. Where possible, a priori ROIs were taken from
prior studies of memory retrieval and learning that were
representative of a putative function of interest. ROIs that
we did not have a particular prior effect or representative
study to use were functionally defined based on all sig-
nificant voxels within an 8-mm radius of a chosen maxi-
mum from the unbiased contrast of all correct trials
versus fixation. The maximum was chosen as the local
peak t value within the anatomical area of interest.
We defined four ROIs based on the prior literature.

First, we constructed a bilateral ROI in ventral striatum
that encompassed ventral caudate and nucleus accum-
bens using the conjunction of 8-mm spheres around
three peak foci reported in two published studies of reward
processing (OʼDoherty et al., 2004 [xyz = 14, 10, −10;
xyz = 6, 14, 2]; Bray & OʼDoherty, 2007 [xyz = −9, 15,
−3]) along with their contralateral hemisphere homo-
logues (ROI mask is shown in Figures 5 and 6). To ensure
that our ventral striatum ROI could be considered repre-
sentative of the literature on reinforcement learning, we
used the Neurosynth database (neurosynth.org; Yarkoni,
Poldrack, Nichols, Van Essen, & Wager, 2011) to assess
whether our ROI is representative of ventral striatum as
activated during studies of reward and reinforcement
learning. Neurosynth is a large-scale meta-analytic database
for functional neuroimaging data. This analysis yielded
posterior probabilities for the peak foci of the ROIs ranging
from .81 to .91, supporting the representativeness of
this ROI. Second, in VLPFC, we defined ROIs in anterior
[xyz = −47 30 −6] and mid-VLPFC [xyz = −50 25 14]
defined from a prior study of semantic retrieval that func-
tionally dissociated these subregions in terms of controlled
retrieval and postretrieval selection (Badre et al., 2005).
Finally, in parietal cortex, we defined an ROI in angular
gyrus (AG) [xyz = −56 −54 36] based on a study of
expectation violation in recognition memory (OʼConnor,
Han, & Dobbins, 2010). OʼConnor et al. (2010) is among
the few studies of expectation violation in memory, analo-
gous to the present manipulation, and so provides a func-
tional definition within inferior parietal cortex that we wish
to test in the present manuscript. The remaining ROIs in
DLPFC (−47 26 35) and IPS (−32 −56 40) were defined
from all correct trials versus fixation, as discussed above.
Estimates of the shape of the HRF for each condition

as a function of peristimulus time was calculated using a
finite impulse response model implemented in Marsbar
(marsbar.sourceforge.net/). The signal change from
each condition was extracted, and the peak percent sig-
nal change was calculated as the integral of the peak
time point within condition ± one time point. The re-
sulting integrated percent signal change estimates were
subjected to repeated-measures analyses of variance,
t tests, and linear regression as noted in the Results.

Brain–behavior correlations were considered significant
at p < .05.

RESULTS

Behavioral Results

Behavioral performance indicated that participants used
the rule to proactively guide retrieval and aid their deci-
sions. Participants performed with a high degree of accu-
racy overall (mean commission error rate = 4%) while
making most of their responses before the response
deadline (mean omission error rate = 3%). Error rates
were comparable to prior similar versions of the LDT
(Ratcliff, Gomez, et al., 2004; Favreau & Segalowitz,
1983). Table 1 lists the mean correct trial RT and commis-
sion error rates in each condition of the experiment. In
general, responses to Nonwords were slower (713 msec)
than Words (669 msec), F(1, 16) = 28.3, p < .0001. Rule
blocks (735 msec) were slower overall and were asso-
ciatedwithmore errors (4%) thanNeutral blocks (647msec;
1% error) Fs(1, 16) > 13.6, ps < .005. This overall slowing
for Rule relative to Neutral likely reflects the added work-
ing memory load associated with maintaining the rule.
Finally, there was a main effect of SOA such that RT was
faster and error rates lower for Long relative to Short SOAs,
F(1, 16) = 39.7, p < .0001.

Consistent with reliance on the retrieval rule, Expected
trials were facilitated relative toUnexpected trials (Figure 2A;
Table 1), F(1, 16) = 26.6, p < .0005. Moreover, when
crossed with SOA, this effect was only evident at the long
SOA (SOA × Expectation: F(1, 16) = 39.1, p < .0001;
Unexpected–Expected: Long SOA: F(1, 16) = 93.9, p <
.0001; Short SOA: F = .42), supporting the contribution of
a slower cognitive control process.

Finally, as there has been substantial work in the litera-
ture on the LDT focusing on distributional effects (e.g.,
Ratcliff, Gomez, et al., 2004; Balota & Spieler, 1999)
and because the DDM fits depend on the full RT distribu-
tion, we analyzed the effect of Expectation on RT distri-
butions by computing RT quantiles (Figure 2B; Ratcliff,
Gomez, et al., 2004; Balota & Spieler, 1999). Comparison

Table 1. Mean Correct Trial RT (msec) and Error Rates

SOA

Rule Block Neutral Block

Expected Unexpected Nonword Word Nonword

Short

RT 741 749 793 627 686

Error 4% 5% 3% 1% 2%

Long

RT 653 742 702 604 669

Error 4% 9% 3% 2% 2%
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of the .1 and .9 quantiles of the correct trial RT cumula-
tive distribution functions indicated that the interaction
of SOA with Expectation shifted the entire RT distribu-
tion earlier for Expected trials, evident both at the lead
edge, F(1, 16) = 26.6, p < .0001, and the long tail, F(1,
16) = 29.7, p < .0001, with no interaction between the
two, F = 1.7. These behavioral effects across conditions
provided constraints on the fit of the DDM model.

DDM Results

Behavior (accuracy and RT across both error and cor-
rect trials) was best fit by a DDM model allowing drift
rate (v) and non-decision time (t) to vary as a function
of Expectation condition (Figure 2B; Table 2). This is
consistent with a prior DDM investigation of the LDT
that found inclusion of non-decision along with drift
rate fit the lead of RT distribution across word fre-
quency conditions better than including drift rate alone
(Donkin et al., 2009). Monte Carlo error was less than

1% of the standard deviation of the posterior distribution
for all parameters, providing evidence of convergence.
Parameter estimates from the best fitting model are

shown in Table 3. Expected and Unexpected conditions
expressed their effects on drift rate and non-decision
time estimates. Unexpected trials showed a slowing of
drift rate relative to Expected, F(1, 16) = 10.6, p < .01,
and Neutral trials, F(1, 16) = 104.3, p < .001, suggesting
that the violation of expectation on these trials impeded
the Word/Nonword decision process. Notably, although
the difference in drift rate between Expected and Un-
expected conditions was quantitatively larger at the Long
SOA, the Expectation by SOA interaction was only mar-
ginal, F(1, 16) = 3.1, p = .096.
Expectation also affected non-decision time given a

sufficiently long SOA. Specifically, non-decision time for
Expected trials was estimated slower than both Un-
expected and Neutral at the Short SOA, but following a
Long SOA, non-decision time for Expected trials was esti-
mated to be faster than Unexpected or Neutral conditions.
This cross-over was supported by reliable Expectation by
SOA interactions for Expected relative to Unexpected,
F(1, 16) = 24.0, p < .001, and Expected relative Neutral
items, F(1, 16) = 9.6, p< .01. Thus, the facilitative effect
of Expectation on non-decision time suggests that par-
ticipants relied on the retrieval rule in advance of the
target, thereby speeding encoding of the target when it
was consistent with the rule and sufficient time was pro-
vided. Unexpected showed a slower non-decision than
Neutral, F(1, 16) = 5.7, p< .05. There was no interaction
of this effect with SOA, F(1, 16) = 1.6.
To assess whether the drift rate and non-decision time

estimates were related across participants, we correlated
the drift rate and non-decision time parameters. Collaps-
ing across SOA, this correlation was not significant for
Unexpected (R = .01, p = .9) and marginal for Expected
(R = .47, p = .06). For the critical Expected Long and
Unexpected Long conditions, neither correlation was
reliable (Rs < .16, ps > .5). Thus, we do not find strong

Figure 2. Behavioral and model simulation results from the LDT.
(A) Expected and Unexpected conditions showed an interaction with
SOA on RT such that participants were speeded for Expected conditions
at the Long SOA. Error bars depict within subject standard error.
(B) Five RT quantiles (.1, .3., .5, .7, .9) from the empirical RT
distributions are plotted for the Expectation and SOA conditions
(solid circles). Simulated RTs from the best fitting DDM model are
plotted (open squares) for comparison. This model allowed drift rate
and non-decision time to vary as a function of experimental condition.
One thousand trials were simulated for each condition.

Table 2. Comparison among Alternative Models

Model DIC Deviance pD

Null model 7462 7414 48.2

a only 2226 2033 192.7

t only 685.9 483 202.0

z only −4365 −4375 9.6

v only −7197 −7414 217.5

v and a −9299 −9644 344.3

v and z −9303 −9574 271.0

v and ta −9524 −9877 352.3

aBest fitting model.
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evidence that variance in these parameter estimates is
highly related across participants.

Effects of Expectation in Striatum

To identify voxels that are more activated when retrieval
is consistent with expectations based on the rule, we con-
trasted Expected greater than Unexpected trials (Table 4).
This contrast yielded activation in posterior superior tem-
poral gyrus and the right insula. Small volume correction
using our a priori whole striatum mask revealed activation
in ventral striatum, including posterior putamen and ven-
tral caudate/nucleus accumbens (Figure 3A). Whole-brain
analyses of the interaction between Expectation and SOA
did not yield reliable results at corrected thresholds.
We next conducted ROI analysis to confirm the whole-

brain effects and to more directly test between condition
interactions (Figure 3B). Specifically, we defined an ROI
in bilateral ventral caudate and nucleus accumbens taken
from foci identified in prior studies of reinforcement
learning (Bray & OʼDoherty, 2007; OʼDoherty et al.,
2004). Consistent with the whole-brain analysis, there
was reliably greater activation for Expected versus Un-
expected trials in this ROI. Moreover, an Expectation
[Unexpected/Expected] × SOA [Long/Short] ANOVA,
revealed a main effect of Expectation, F(1, 16) = 9.7, p <
.01. Although the effect of Expectation was quantitatively
larger at the Long SOA, the Expectation × SOA interaction
was not reliable, F(1, 16) = 2.3, p = .15. Quantitatively,
activation for Neutral items appeared to fall between the

activation for Unexpected and Expected trials at the long
SOA (Figure 3B). However, a test of a parametric increase
between the conditions was not significant ( p = .4). Like-
wise, there were no reliable differences between Neutral
and each Rule condition ( ps > .08).

Thus, ventral striatal activation was greatest when the tar-
get matched expectations. This effect is initially consistent
with an RPE account of striatal contributions to the task, in
that the positive activation for Expected versus Unexpected
trials may reflect the higher likelihood of positive out-
comes of retrieval or decision processes when relying on
the rule during Expected trials. However, this pattern could
also reflect more general goal/rule satisfaction without
being sensitive to trial-to-trial outcome differences that
would drive RPE. Thus, we sought to further specify the
nature of the ventral striatal effects by testing the relation-
ship between activation in ventral striatum and individual
differences in the component decision processes, as esti-
mated by the DDM.

Brain–Behavior Relationships between Striatum
and Component Decision Processes

We tested the relationship between activation in ventral
striatum and individual differences in behavior, specifi-
cally focusing on the non-decision and drift rate param-
eters from the DDM. Ventral striatum was positively
correlated with drift rate on Expected trials (R = .51, p <
.05; Figure 4A), including specifically for the Long SOA
(R= .52, p< .05). Importantly, the correlation of drift rate

Table 3. DDM Parameters from the Best-Fitting Model

a. Constant DDM Parameter Estimates (Posterior Std)

Parameter Mean

Boundary separation (a) 1.7 (0.09)

Bias (z) 0.54 (0.02)

Intertrial variance in non-decision time (st) 0.01 (0.0)

Intertrial variance in drift rate (sv) 0.008 (0.04)

Intertrial variance in bias (sz) 0.35 (0.03)

b. DDM Parameter Estimates (Posterior Std) that Vary by Condition

Rule Block Neutral Block

SOA Expected Unexpected Nonword Word Nonword

Short

Drift rate (v) 2.8 (1.2) 2.6 (1.1) −3.1 (1.2) 3.8 (1.2) −3.8 (1.2)

Non-decision time (t) 0.464 (0.025) 0.440 (0.023) 0.496 (0.026) 0.417 (0.022) 0.441 (0.024)

Long

Drift rate (v) 2.8 (1.2) 2.2 (1.2) −3.5 (1.1) 3.6 (1.1) −3.8 (1.1)

Non-decision time (t) 0.373 (0.020) 0.441 (0.025) 0.433 (0.023) 0.383 (0.020) 0.414 (0.023)
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Table 4. fMRI Activations from Major Contrasts (FWE Cluster Corrected p < .05)

Region

Stereotaxic Coordinates

∼Brodmannʼs Area Peak Zx y z

Rule Minus Neutral

Left DLPFC −40 22 16 9, 46 4.0

−42 20 30 9, 46 3.6

−50 18 34 9, 46 3.5

Right lateral occipital 36 −78 8 4.5

44 −74 −6 4.3

32 −80 −2 4.2

Left lateral occipital −44 −72 −12 4.5

−32 −74 −14 4.3

−44 −74 −20 4.2

Right cerebellum 30 −50 −24 4.3

34 −38 −32 4.3

38 −46 −42 3.2

Right IPS 22 −92 36 3.9

30 −90 26 3.6

30 −80 30 3.3

Unexpected Minus Expected

Left VLPFC −46 22 −2 47/45 4.0

−44 28 4 47/45 3.6

Precuneus −10 −62 38 4.6

8 −68 36 3.7

0 −68 38 3.6

Left SMA −14 8 70 4.4

−18 6 60 4.0

−10 10 62 4.0

Left DLPFC −38 20 32 9, 46 4.0

−40 22 40 9, 46 3.4

−50 12 46 9, 46 4.0

Right DLPFC 42 14 40 9, 46 3.7

50 10 52 9, 46 4.0

Rostral medial frontal cortex 14 44 32 3.7

20 54 34 3.6

8 40 28 3.4

Left angular gyrus −56 −54 36 3.6

−48 −52 40 3.6
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with activation on Neutral Long trials (R= .08, p= .75) was
not significant, and this difference from the correlation
with Long Expected activation was supported in a reliable
Expectation (Expected/Neutral) by effect interaction ( p <
.05). The correlation of Unexpected Long activation with
drift rate was also unreliable (R = .22, p = .38). However,
in this case, the Expectation (Expected/Unexpected) by
effect interaction was not significant ( p = .23), and so
we could not rule out a positive correlation between drift
rate and Unexpected Long activation. Although also show-
ing a positive trend, the correlation between Expected
Long trials and non-decision time was not significant (R =
.35, p = .31). Thus, these analyses provide evidence that
ventral striatal activation was related to the degree to which

the lexical decisionwasmade easier following adherence to
the retrieval rule. We next sought to test the degree to
which activity in ventral striatum was related to learning,
the hallmark of an RPE.

If activation in ventral striatum reflects a learning signal
related to the retrieval rule, then individual differences in
this response should also account for learning-related
changes in retrieval strategy. To test this, we first calcu-
lated the Expectation Effect on drift rate as the Expected
drift rate minus Unexpected drift rate for Long SOA trials.
This Expectation Effect was computed separately for each
half of the experiment. We then operationalized the
learning effect as an increase in this Expectation Effect
from the first to the second halves of the experiment

Figure 3. Effects of
Expectation in ventral striatum.
(A) The whole-brain voxel-wise
contrast of Expected >
Unexpected is plotted on
coronal slices. To show the
spread of activation, the
contrast is plotted at p < .005
uncorrected. However, the
peaks of activation in ventral
striatum correct for multiple
comparison over the whole
striatal volume. (B) A large ROI
covering ventral caudate and
nucleus accumbens was
constructed from previous
studies of reinforcement
learning and is shown at left in a
coronal slice. Bar plot depicts
the percent signal change
integrated over a 4- to 10-sec
window following presentation
of the prime stimulus across
Rule and Neutral conditions
by SOA. Error bars show
within-subject standard error.

Table 4. (continued )

Region

Stereotaxic Coordinates

∼Brodmannʼs Area Peak Zx y z

Expected Minus Unexpected

Right superior temporal cortex 58 −22 8 4.3

50 −22 0 3.9

66 −30 16 3.7

Right insula 52 −10 6 4.2

Right posterior putamena 30 −12 2 4.2

Right nucleus accumbensa 14 18 −8 3.6

aSmall volume FDR height corrected ( p < .05).
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(i.e., [Expectation Effect 2nd half] minus [Expectation
Effect 1st half]). In other words, a growth in the Expecta-
tion Effect over the course of the experiment indicated
greater reliance on the rule and so larger drift rates for
Expected trials and smaller ones for Unexpected trials.
We computed learning for non-decision time in a similar
way, except that we calculated the Expectation Effect as
the Unexpected non-decision time minus the Expected
non-decision time because greater reliance on the rule
would be reflected in slower non-decision time for Un-
expected trials and faster for Expected trials.

Across participants, there was no overall trend in the
change in Expectation Effects from the first to the second
halves of the experiment, either in drift rate (mean v shift =
.13) or in non-decision time (mean T shift = .0002), with
some participants shifting toward a larger Expectation
Effect and others toward a smaller one by the end of the
experiment. Critically, however, activation in ventral stria-
tum on Expected Long trials during the first half of the
experiment positively accounted for individual differences

in the change in the drift rate Expectation Effect from the
first to the second half of the experiment (R = .58, p <
.05; Figure 4B). This correlation held (R= .64,p< .01) even
when we first removed any correlation of the shift in v
with activation from Expected Long trials in the second half
of the experiment. As the activation in the second half of
the experiment would follow any shift in the Expectation
Effect, this control should remove any variance in the
Expected Long activation that is not attributable to a learn-
ing effect. Thus, those participants showing greater activa-
tion in ventral striatum for Expected Long trials during
the first half of the experiment showed a greater increase
in the Expectation Effect in drift rate in the second half
of the experiment. There were no reliable effects of ven-
tral striatal Expected Long activation on the shift in non-
decision time (R = .1, p = .7). Hence, as with the basic
brain–behavior correlations, the learning effects related
to ventral striatum were most evident in the drift rate.
To the degree that participants increase their reliance

on the cue over the course of the experiment based on
striatal signals, then one should predict that the differ-
ence in drift rate between Rule and Neutral trials should
also correlate with the striatal signals. Specifically, to the
degree that participants learn about cue reliability over
the course of the experiment, then the difference in drift
rate between Expected and Unexpected should relate to
the difference between Neutral and Rule events. To test
this, we correlated the change in Expected minus Un-
expected drift rates between the first and second halves
of the experiment with the change in Neutral minus Rule
(Long) drift rates, we found the two to be correlated (R=
.63, p < .01). Moreover, striatal activation on Expected
Long trials during the first half of the experiment should
positively correlate with the change in the difference be-
tween the Neutral and Rule drift rates. In other words,
the more positive RPE that is experienced in the first half
of the experiment, the more that cue reliance is re-
inforced as a strategy. This should translate into a larger
Neutral versus Rule difference in the second half of the
experiment. This correlation was also reliable (R = .59,
p < .05). As with the correlation with the Unexpected
vs. Expected difference, Expected Long activation in the
second half was not correlated with the change in Neutral
versus Rule (R = .06, p = .8), nor was the activation for
Neutral Long trials themselves either in the first half (R =
.001, p = .9) or over the entire experiment (R = .38, p =
.14), suggesting that this effect was related to reliance on
the rule as rewarded during the Rule blocks.
To summarize, activation in ventral striatum tracked the

efficiency of decision-making following application of the
retrieval rule. Moreover, individual differences in activa-
tion in this region during Expected trials predicted sub-
sequent reliance on the retrieval rule, providing evidence
of a learning effect. Hence, these results are consistent
with the hypothesis that ventral striatum is a component
of the system that selects, evaluates, and adapts retrieval
strategies. In contrast to striatum, frontoparietal control

Figure 4. Correlations of ventral striatal activation with individual
differences in drift rate. (A) Activation in the ventral striatum
was positively correlated with individual differences in drift rate.
(B) Activation in ventral striatum in the first half of the experiment
was correlated with the shift in the Unexpected versus Expected
difference in drift rate between the first and second halves of
the experiment. The ventral striatal ROI, covering ventral caudate
and nucleus accumbens, is shown on each plot.
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systems are hypothesized to be important for cognitive
control processes necessary to enact the retrieval strat-
egies themselves. Thus, we next sought to characterize
the effects of maintaining the retrieval strategy (i.e., the
retrieval rule) and adjusting to the effects of expectancy
violation.

fMRI Correlates of Rule-guided Retrieval

To identify regions that were more active when a rule was
available to guide retrieval expectations, we contrasted
Rule versus Neutral Word trials. Rule blocks featured an
available retrieval rule and Neutral blocks did not. Thus,
contrasting these conditions provides an initial test of
regions that are engaged when retrieval can be influence
by expectations as set up by the rule. This whole-brain,
voxel-wise contrast yielded activation in left DLPFC, along
with superior parietal lobule, intraparietal sulcus (IPS),
bilateral middle occipital gyrus, and cerebellum (Figure 5A;
Table 4). There were no clusters that survived multiple
comparison correction in the contrast of Neutral > Rule.
We again tested an ROI in left DLPFC (−47 26 35) to

more directly test between condition interactions. The
left DLPFC ROI showed greater activation for Rule than
Neutral trials, as assessed in a Rule [Rule/Neutral] ×
SOA [Long/Short] ANOVA, F(1, 16) = 11.1, p < .005.
Notably, this effect cannot be entirely attributed to a gen-
eral effect of RT or difficulty associated with the Rule
relative to Neutral epochs. As already described, the Long
SOA was associated with faster RT and lower errors (see
Figure 2A). However, left DLPFC did not show amain effect
of SOA (F= 2.8). Moreover, during Rule epochs, although
there was a reliable effect of SOA in left DLPFC, F(1, 16) =
4.6, p < .05, the activation in DLPFC was greater for

Long than Short SOA events (see Figure 6A). The direc-
tion of this difference contrasts with the behavioral effects
that showed facilitation for Long SOA events.

Effects of Rule Violations in Prefrontal and
Parietal Cortex

Regions that are more activated for Unexpected than
Expected trials may be involved in overcoming violations
of the retrieval rule. We conducted a whole-brain contrast
of Unexpected versus Expected Word trials within the
Rule blocks. A number of regions in lateral and medial
PFC along with posterior parietal cortex (PPC) were more
active for Unexpected trials (Figure 5B; Table 4). In frontal
cortex, Unexpected greater than Expected effects were
located in left VLPFC along the horizontal ramus of the
lateral fissure, bilateral DLPFC, and pre-SMA. In parietal
cortex, activation was evident in precuneus and AG.

Analysis of signal change from unbiased ROIs in left
anterior VLPFC (aVLPFC; −47 30 −6) and left DLPFC
(−47 26 35) confirmed and extended the whole-brain
analysis. Expectation [Unexpected/Expected] × SOA
[Long/Short] ANOVAs in these ROIs located main effects
of Unexpected greater than Expected trials (Fs > 7.1, ps <
.05; Figure 6A, B). The Expectation × SOA interaction was
not reliable in either region (F < .6).

Given the association of left DLPFC with Rule relative
to Neutral conditions, we further assessed an expanded
Expectation [Unexpected/Expected/Neutral] × SOA
[Long/Short] ANOVA. Left DLPFC showed an effect of
Expected and Unexpected greater than Neutral (Fs > 23.9,
ps < .0001) and a further effect of Unexpected greater
than Expected, F(1, 16) = 4.7, p < .05, at the Long SOA
(Figure 6A). By contrast, in left aVLPFC (Figure 6B), the

Figure 5. Whole-brain
activation maps rendered on
an inflated canonical surface.
(A) The contrast of Rule >
Neutral events yielded
activation in a network of
regions that included DLPFC
and IPS. (B) The contrast of
Unexpected > Expected yielded
activation in DLPFC, VLPFC,
and AG. All contrasts are
thresholded at p < .05
(FWE cluster corrected).
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activation on Expected trials did not differ from Neutral
items (F= .06), whereas Unexpected activationwas greater
than Neutral, F(1, 16) = 4.6, p < .05. The relative differ-
ences of the Expected and Unexpected trials from Neutral
differentiated the ROIs in VLPFC and DLPFC, as was
evident in a region [lVLPFC, lDLPFC] by effect [Expected,
Unexpected, Neutral] interaction, F(2, 32) = 7.3, p< .005.

Prior work has suggested that the anterior portion of
VLPFC highlighted in whole-brain and ROI analysis here
is functionally dissociable from more caudal and dorsal
portion of mid-VLPFC, corresponding approximately to
inferior frontal gyrus pars triangularis (BA 45; Badre &
Wagner, 2007). Thus, we next tested an ROI in this
mid-VLPFC region based on a prior fMRI experiment
(Badre et al., 2005). As shown in Figure 6C, activation
in this region was unlike aVLPFC and similar to DLPFC,
with both Expected and Unexpected conditions being
more activated than Neutral (Fs > 6.8, ps < .05) and
Unexpected showing marginally greater activation than
Expected, F(1, 16) = 3.3, p = .08. The difference in acti-
vation across Expected, Unexpected, and Neutral condi-
tions between aVLPFC and mid-VLPFC resulted in a
region by effect interaction, F(2, 32) = 4.4, p < .05.

Finally, we further explored the effects of expectation
violation in AG (−51 −66 39) and IPS (−32 −56 40; Fig-
ure 6D, E). AG showed greater activation for Unexpected

than Expected trials, F(1, 16) = 4.2, p < .05. Moreover,
like aVLPFC, this effect was driven by an increase in Un-
expected relative to Neutral, F(1, 16) = 6.4, p < .05,
whereas Expected and Neutral did not differ (F = .2).
In contrast to AG, IPS showed a pattern similar to that
observed for DLPFC, with greater activation for both Ex-
pected and Unexpected trials relative to Neutral (Fs >
11.9, ps < .01). Although Unexpected trials also showed
quantitatively greater activation than Expected, akin to
that observed in DLPFC, this effect was not reliable in
IPS (F = 1.4).
Thus, these analyses identify two networks of frontal

and parietal neocortical regions during the application
of strategy to memory retrieval and when compensating
for violations of expectation. One network, including
DLPFC, mid-VLPFC, and IPS, was generally more activated
on Rule relative to Neutral blocks and for Unexpected
than Expected trials. The other network, including
aVLPFC and AG, was more activated for Unexpected than
Expected trials but did not further differentiate Expected
from Neutral conditions.

Brain–Behavior Correlations in PFC and PPC

Finally, we tested the relationship between activation pat-
terns observed in four frontal and parietal ROIs—left

Figure 6. Plots of percent signal change in ROIs in prefrontal and parietal cortex. Bar plots depict percent signal change integrated over a
4- to 10-sec window following presentation of the prime stimulus. Plots depict Expected (dark gray), Unexpected (light gray), and Neutral (black)
across SOA conditions. Results from ROIs in (A) DLPFC, (D) mid-VLPFC, and (C) IPS show similar patterns of Unexpected greater than Expected,
with both Rule conditions greater than Neutral. By contrast, (B) aVLPFC and (E) AG show greater activation for Unexpected than Expected and
Neutral. Error bars depict within subject standard error.
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aVLPFC, left DLPFC, IPS, and AG—and individual differ-
ences in non-decision and drift rate parameters from
the DDM. Left DLPFC and IPS did not correlate with
any of the individual difference measures or overall RT.
aVLPFC reliably correlated with drift rate on Expected
Long trials (R = .58, p < .05). However, there was no
evidence of a learning effect on drift rate in left aVLPFC
(R = .05, p = .86). Expected Long activation in AG also
showed a marginal correlation with drift rate (R = .48,
p = .053).
Finally, to further address a potential RT confound in

the present results, we tested the correlation of the RT
difference between participants with the observed activa-
tion differences for the (1) Expected > Unexpected con-
trast in ventral striatum, (2) the Rule > Neutral contrast
in DLPFC, and (3) the Unexpected > Expected contrast
in DLPFC. There was no evidence of a correlation be-
tween the Expected versus Unexpected RT differences
and the corresponding difference in activation in ventral
striatum (R = .006). Likewise, there was no correlation
between the Rule versus Neutral trial RT difference and
the corresponding activation difference in DLPFC (R =
.02). There was a marginal correlation between the Unex-
pected versus Expected RT difference and this contrast in
DLPFC (R = .44, p = .07). However, the fact that this
correlation is condition specific (i.e., marginally evident
in the Unexpected vs. Expected case, but not in the Rule
vs. Neutral case), despite the clear difficulty differences
across these conditions argues against a global difficulty
account for this DLPFC activation (see Discussion for
additional elaboration of this point).

DISCUSSION

To be adaptive, it is crucial that our memory system accu-
rately and precisely recovers information that is useful for
achieving our behavioral goals. This study provides evi-
dence that the ventral striatum may track the efficacy of
retrieval strategies in terms of their impact on decision-
making and goal attainment. Importantly, based on these
signals, the control system may adjust its future reliance
on the governing strategy. Thus, our results provide initial
support for the hypothesis that memory retrieval strate-
gies may be partly acquired and adjusted through striatal-
dependent reinforcement learning mechanisms, akin to
what is observed in the action andworkingmemory domains
(Scimeca & Badre, 2012).
Using a rule that related the category of a prime to the

likely category of an upcoming target, participants could
start retrieving information about features of the upcoming
target before its presentation, thereby facilitating item-
level retrieval for category members. As the relationship
between the prime and target category was arbitrary and
changed regularly, relying on this rule required cognitive
control systems to direct retrieval to the cued category.
Importantly, reliance on the rule was adaptive to the
degree that successful retrieval aided a separate decision

regarding the lexical status of the target letter string. The
adaptive nature of the rule was evident in facilitated behav-
ioral measures for Expected relative to Unexpected trials.
Moreover, this expectation effect emerged in behavior
once sufficient time within a trial was provided (the Long
SOA), consistent with the contribution of a slow, cognitive
control process.

DDM estimates provided specificity regarding poten-
tial sources of these effects. In particular, the effects of
Expected and Unexpected conditions on the non-decision
and drift rate components of the model suggest that reli-
ance on the rule had separable consequences on the lexical
decision. Expected trials were partly faster because the
non-decision component was speeded relative to Neutral
and Unexpected items. This speeding could reflect faster
encoding of the item, in essence a priming effect on the
target because of prior rule-guided retrieval at presentation
of the prime. However, as non-decision time can be diffi-
cult to distinguish from the effects of intertrial shifts in de-
cision boundary (Ratcliff & Frank, 2012), another possibility
is that participants dynamically shift their decision thresh-
old depending on the fluency of retrieval, such as by adopt-
ing a higher boundary when fluency is lower, conflict
arises, or expected conditions change (Cavanagh et al.,
2011).

Unexpected trials were marked by a lower drift rate
relative to Expected and Neutral trials. In other words,
evidence accumulated toward the boundary more slowly
when the rule was violated, impacting the decision process
itself. One account of this is that recovery of item-specific
information on Unexpected trials suffered interference
from the prior retrieval of the cued, but now irrelevant,
category and/or because of lingering suppression of the
prime-related category that is unexpectedly relevant again
(recall that, on Unexpected trials, the prime and target
were semantically related). We note that there is no par-
ticular relationship of rule violations to word versus non-
word decision frequency itself and that the unexpected
item is a word. Hence, it is unlikely that the expectancy
violation itself provided evidence that the item is a non-
word (i.e., countervailing evidence). Rather, we interpret
the slowed drift rate for Unexpected trials as reflecting
(a) the reduced benefit of prior controlled retrieval pre-
sent on Expected trials and/or (b) the impact of interfer-
ence, as in blocking or proactive interference, arising
because of the prior retrieval of irrelevant information
from the expected category. Although it is important to
note that “conflict” itself is not directly estimated as a param-
eter by the DDM. Thus, overall, the DDM indicates that
participants generally relied on the rule to guide retrieval
and indirectly improve their performance on the lexical
decision.

In this context, we observed novel evidence that the
BG and specifically ventral striatum may evaluate the suc-
cess of a retrieval strategy (i.e., the retrieval rule). These
signals, in turn, drive the cognitive control system to ad-
just reliance on this strategy. There were three primary
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observations that support this interpretation. First, ven-
tral striatum showed greater activation when reliance on
the rule was adaptive (Expected) than when it was not
(Unexpected). Second, the activation in ventral striatum
was positively correlated with the drift rate or the ease of
the decision process. And, third, there was a learning effect
such that individual differences in ventral striatal activation
during the first half of the experimental session correlated
with changes in reliance on the retrieval rule from the first
to the second half of the experiment. It is important to
emphasize that the learning effect was evident in terms
of individual differences in the change on reliance on the
rule rather than an overall effect of learning on the group
mean. More specifically, when participants are ranked
according to their striatal activation for Expected Long
trials in the first half of the experiment, we see that those
showing greater activation early in the experiment show
greater behavioral shifts.

These observations are consistent with the hypothesis
that the ventral striatum supports a form of reinforcement
learning based onRPE, where in this case, a cognitive action
(i.e., a retrieval strategy) is being selected. As noted pre-
viously, RPE is the deviation of the outcome of a behavior
from what was expected and can drive incremental learn-
ing of which behavioral strategies yield the best outcomes
given the context (OʼDoherty et al., 2004; Sutton & Barto,
1998; Schultz et al., 1997). More specifically, when out-
comes are better than expected, a positive RPE reinforces
a particular course of action in that context, whereas a
negative RPE makes it less likely that a course of action will
be chosen in that context again. In traditional reinforce-
ment learning, there is strong evidence for a relationship
between ventral striatal systems and RPE, including demon-
strating positive correlations between ventral striatal acti-
vation and trial-to-trial changes in RPE (Badre & Frank,
2012; Daw, Gershman, Seymour, Dayan, & Dolan, 2011;
Bray & OʼDoherty, 2007; OʼDoherty et al., 2004). Scimeca
and Badre (2012) hypothesized that RPE could similarly
reinforce or punish particular declarative memory retrieval
strategies given the context. They further proposed that this
function might be at least partially supported by ventral
striatum, consistent with the present results.

It is notable that the correlations in ventral striatal acti-
vation were with drift rate. This indicates that reward in
this task was related to the ease of the decision, indexing
either the minimization of effort needed to make the deci-
sion (with or without awareness of the drift process itself )
or the fluency of evidence accumulation that followed
from relying on the retrieval rule. This type of outcome
seems more in-line with the kind of reinforcer that would
apply to memory processes outside of a laboratory set-
ting, where provision of immediate primary rewards is
uncommon and most tasks use the products of retrieval
to inform other decisions and actions. It follows then that
memory control processes may be shaped indirectly, in
terms of the impact that memory retrieval has on goal
attainment and minimization of effort.

Learning to minimize effort is consistent with views of
cognitive control that emphasize adjusting control signals
to reduce the costs associated with achieving a desirable
outcome (e.g., Chatham&Badre, 2013; Shenhav, Botvinick,
& Cohen, 2013). Likewise, this type of utilitarian compu-
tation also fits with a view of cognitive control of memory
in which participants balance the application of control in
memory with the effort involved and the expectation of
acceptable, as opposed to maximal, outcomes (i.e., satisfi-
cing behavior; Benjamin, 2007).
These effects in ventral striatum are likely not related

to global “difficulty” per se. First, we did not find evi-
dence of a correlation of between-subject differences in
RT and the primary contrasts in this study. Second, global
difficulty is inconsistent with the overall pattern of data.
In particular, the concern with global difficulty is that
domain general, epiphenomenal processes other than
those of specific interest are correlated with overall diffi-
culty, and so it is these confounding processes that could
drive activation change in the ROIs. A key aspect of this
account, however, is that it is not specific to particular
conditions or contrasts; more condition-specific versions
of an RT effect are difficult to distinguish conceptually
from our primary account of the data. Thus, if global dif-
ficulty or time-on-task (or some variable correlated with
these) is the primary basis of activation change in a par-
ticular region, then it should consistently be the basis of
activation change in these regions, rather than only apply-
ing under certain conditions and not others.
To elaborate this point with respect to the specific con-

trasts tested in this experiment, consider the effect of
greater activation for Expected than Unexpected events
in ventral striatum. It could be that this represents a reverse
difficulty effect, such that less overall difficulty drives greater
activation in ventral striatum. However, the Neutral condi-
tion is also faster than both the Expected and Unexpected
conditions. Yet, there was no reliable Neutral > Rule activa-
tion in ventral striatum observed. Similarly, there was no
evidence of a correlation of drift rate with activation during
Neutral conditions (R = .08). Thus, the activation change
was specific to conditions where any ease of processing
could be attributed to having engaged in cognitive control
to follow the retrieval rule. It is difficult to see how global
difficulty can account for this pattern of data.
Similarly, the DLPFC shows Unexpected greater than

Expected activation, which could reflect difficulty, as
Unexpected trials are indeed slower than Expected trials.
Likewise, Rule trials were slower than Neutral trials, and so
again, the greater activation observed in DLPFC for Rule
trials could reflect this difficulty difference. However,
participants were faster and more accurate overall fol-
lowing a Long SOA, so these trials were easier. Yet, activa-
tion in DLPFC was greater for the Long than Short SOA.
Thus, DLPFC activation is not simply tracking RT or global
difficulty across all conditions of the experiment, again
inconsistent with a simply global difficulty or time-on-task
account.
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Thus, the ventral striatal relationship to the ease of
decision-making appeared to be specific to trials on
which expectations were established by the Rule. This
is particularly notable given that the Rule incurred an
overhead on working memory that resulted in globally
slower RT and worse errors for the Rule than Neutral
blocks. Hence, these observations are difficult to recon-
cile with general accounts of these results on the basis of
simple reward (i.e., participants who are doing better at
the task generally are positively reinforced) or of the
learning effect on the basis of motivation (i.e., partici-
pants who are generally doing better continue to try at
the task later). Rather, given the selectivity of these
effects to Rule conditions, an account of these effects
must make reference to the retrieval Rule specifically
and its impact on decision-making.
A second key point is that these ventral striatal effects

are not easily explained as learning at the motor or
“response” level. As described later, prior work has pro-
vided suggestive evidence regarding a role for reinforce-
ment learning and striatum in coding memory success
and the achievement of retrieval goals (Schwarze et al.,
2013; Han et al., 2010; Han & Dobbins, 2009). However,
an open question from these investigations has been
whether RPE is being coded at the level of the retrieval
process or at the level of specific responses or categorical
reports (Maddox & Bohil, 2005; Lauwereyns, Watanabe,
Coe, & Hikosaka, 2002). In the present experiment, the
retrieval rule has no direct bearing on the report of the
participant; Word and Nonword responses were equally
likely following any given category prime. Rather, the rule
established expectations regarding the type of evidence
that could contribute to the decision (i.e., the semantic
features of the word). Thus, learning affected reliance
on the retrieval rule rather than choosing a particular
response.
Most of the observed effects of expectation and learn-

ing were related to positive activation on Expected trials
rather than negative activation on Unexpected trials. To
some degree, this is surprising to the degree that we
predict negative and positive RPEs during this task. How-
ever, it is not necessarily the case that symmetric activa-
tion and deactivation for positive and negative RPEs must
be observed in striatum. First, in the present experiment,
we did not have a strong baseline against which to con-
trast positive and negative RPE, as it is not necessarily
appropriate to assume that the fixation baseline is a true
“zero RPE” baseline. The Neutral condition provides
something of a baseline and notably does fall between
the Expected and Unexpected signal change (Figure 3).
However, there were other differences between this
condition and Rule conditions (such as working memory
demand) that can complicate its interpretation. Second,
in the present experiment, we do not know to what
degree individual participants expected certain out-
comes, and so though it may be possible that they tend
to expect positive outcomes and so have large negative

RPEs, they may tend to expect negative outcomes and
so have larger positive RPEs. In the absence of a trial-
to-trial fit, we must rely on the relative mean difference.
Finally, although reinforcement learning models directly
relating prediction error to BOLD signal in the striatum
are often discussed as having symmetric effects, this is
rarely tested in separate contrasts for positive and nega-
tive RPE in the human fMRI literature. When such an
analysis has been done, there are often asymmetries,
and indeed there is a precedent for somewhat better cor-
relation with positive than negative RPE. For example,
Badre, Doll, Long, and Frank (2012) tested positive and
negative RPE separately using trial-to-trial estimates of
prediction error during a more traditional reinforcement
learning task. In this experiment, we only found evidence
of striatum correlating with positive RPEs and not nega-
tive RPEs, despite negative RPEs contributing to a learn-
ing effect. Similar positive RPE-specific effects have been
observed in striatum by others when positive and negative
valences are tested separately (e.g., Pessiglione, Seymour,
Flandin, Dolan, & Frith, 2006). Regardless of these un-
certainties, the core prediction for RPE in the present
design is a relative mean difference in activation between
Expected and Unexpected in the direction observed here
along with the observed relationship to behavior.

Following from this discussion, there are limitations of
this study that necessitate further research in this domain
to fully confirm our interpretation of these results. First,
as noted above, the reported brain–behavior correlations
are at the whole subject/session level. We interpret these
effects as arising from trial-to-trial differences in drift rate,
learning, and so forth, that then emerge in aggregate at
the whole-subject level. However, we recognize that cor-
relations observed across the group, although common
in neuroimaging, may not represent the within-subject
patterns of correlation (Simpson, 1951). This aggregate
approach was necessary in this study as our design and
the latent nature of memory retrieval itself made it diffi-
cult to fit individual participant learning rates, trial-to-trial
changes in RPE, and/or belief about the utility of the
retrieval rule. Nevertheless, future work in this domain
should attempt to employ designs that can model individ-
ual subject learning more directly and so permit this type
of trial-by-trial analysis. Second, although the learning cor-
relation did include a temporal component, in that striatal
activation early in the experiment correlated with shifts in
reliance on the rule in the second half of the experiment,
it is not possible to draw a conclusive causal link based on
fMRI data or brain–behavior correlation. Nevertheless, the
present results provide a clear motivation to further test
learning of declarative retrieval strategies in populations
with known disruption of striatal and BG systems, such
as in Parkinsonʼs disease.

These caveats notwithstanding, the present results ad-
vance an emerging literature on the role of striatum in
the cognitive control of declarative memory retrieval (re-
viewed in Scimeca & Badre, 2012). Considerable evidence
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supports a necessary role for striatum in declarative mem-
ory retrieval. Striatal activation has been observed across
studies of episodic memory to accompany retrieval success
and cognitive control of memory retrieval (Scimeca &
Badre, 2012; Spaniol et al., 2009). Moreover, disruptions
to the broader BG system because of neurological dis-
orders such as Parkinsonʼs disease may result in mem-
ory retrieval impairments, particularly during retrieval
tasks that require cognitive control (Crescentini, Marin,
Del Missier, Biasutti, & Shallice, 2011; Crescentini, Mondolo,
Biasutti, & Shallice, 2008).

More process specificity has been provided by recent
neuroimaging studies. Han et al. (2010) manipulated
overt incentives to endorse an item as old or new during
item recognition and thereby provided evidence that
striatal activation was related to goal attainment during
episodic retrieval rather than the experience of retrieval
success. Schwarze et al. (2013) built on this result by dem-
onstrating that, beyond retrieval success effects, ventral
striatal activation tracked high confidence. These high-
confidence trials were rare, and participants reported
experiencing subjective satisfaction for these events. Thus,
potentially consistent with an RPE, ventral striatal activation
was modulated by retrieval experiences that were not just
rewarding, but unexpectedly so. The present results extend
these observations by not only finding effects of goal attain-
ment, which we interpret in terms of RPE, but also relating
this activation to subsequent changes in the reliance on a
retrieval strategy.

It is important to note that this is not the first demon-
stration that individuals can learn abstract actions or
strategies through reinforcement learning mechanisms.
Reinforcement learning signals can be used to learn
about not only simple stimulus–action–outcome group-
ings but also more complex and abstract strategies and
policies (Badre & Frank, 2012; Daw et al., 2011; Li & Daw,
2011; Glascher, Daw, Dayan, & OʼDoherty, 2010). How-
ever, although it is known thatmemory can be goal directed
and that people can learn strategies for memory retrieval,
it has not been demonstrated that this type of strategy for
a cognitive action (i.e., memory retrieval) is acquired
through the same reinforcement learning system that
supports learning more overt action policies. Although we
hypothesized that this is a common system (Scimeca &
Badre, 2012), there may be reasons that memory retrieval
strategies are acquired through other means. For example,
there has long been a distinction between declarative
memory systems that support processes like lexical re-
trieval and nondeclarative memory that includes the type
of skill and reinforcement learning supported by striatum
(Cohen, Eichenbaum, & Poldrack, 1997; Squire, 1992).
However, the present data point to a critical interaction
between these two, wherein one learns the skill of decla-
rative memory retrieval via the nondeclarative system.

Relatedly, an open question particularly relevant to
learning in the memory retrieval strategy domain is
whether learning is driven by more standard reward out-

come learning (i.e., RPEs) or by an expectation of a partic-
ular state, such as a particular type of retrieved information
that constitutes a new state. For example, in the present
experiment, this new state could represent the successful
retrieval of information from the expected category.
Although it is possible that such state prediction errors
(SPEs) might drive learning in the present task, it is notable
that when this has been tested directly versus RPE in the
action domain using fMRI, ventral striatum tracked RPE
but not SPE (Glascher et al., 2010). By contrast, DLPFC
and IPS tracked SPE. From this perspective, theUnexpected
versus Expected activation in similar regions observed in
the present experiment might reflect a form of SPE. But
we did not find evidence of a learning effect on behavior
arising from the magnitude of this activation. So, it is diffi-
cult to attribute this difference to a learning signal in the
present data set. Nevertheless, identifying SPEs and the
putative contribution to learning in the declarative retrieval
domain could be an interesting avenue for future research.
Beyond striatum, the broader results from the present

experiment also inform recent debates regarding the
neural systems supporting rule-guided retrieval. In lateral
PFC, DLPFC was most related to the working memory
demand associated with maintaining the retrieval rule.
Activation in DLPFC was greatest on blocks when a rule
was relevant. It further showed sensitivity to rule violations,
with greater activation for Unexpected than Expected
items. But activation in DLPFC was not strictly related to
global difficulty or time-on-task, as it showed greater acti-
vation on Long than Short SOA trials, despite faster and
more accurate performance with the Longer SOA. Taken
together, these results support the hypothesis that DLPFC
maintains the explicit retrieval rule during the rule blocks,
as manipulated both by both the presence of a rule to
maintain and the length of the maintenance interval (i.e.,
SOA). From this perspective, the further increase in acti-
vation for Unexpected over Expected trials could relate
to the demand to shift or inhibit the retrieval rule in
response to the unexpected target.
A related working memory account might be more in

line with the broader literature concerning DLPFC and
working memory gating (Chatham, Frank, & Badre, 2014;
Badre, 2012; Badre & Frank, 2012; DʼArdenne et al., 2012;
Cools, 2011; McNab & Klingberg, 2008; OʼReilly & Frank,
2006; Cools, Barker, Sahakian, & Robbins, 2001; Braver &
Cohen, 2000). From one such perspective, the striatum
gates rule-relevant information intoDLPFC to bemaintained
in working memory (OʼReilly & Frank, 2006). Thus, on rule
blocks, DLPFC activation could reflect mechanisms that
support input and maintenance of retrieved conceptual
features from the rule-relevant category, accounting for
the differences from Neutral and the effect of SOA. More-
over, on Unexpected trials, it would be necessary to input
new, previously irrelevant features, and/or select these
over the previously relevant features to influence the
decision (i.e., “output gating” of working memory), result-
ing in more activation on these trials relative to Expected.
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Of interest, whether DLPFC is maintaining the retrieval
rule to influence striatal gating or is maintaining retrieved
features, the working memory gating account ties the role
of DLPFC to a process that could support what has been
termed postretrieval selection (Badre & Wagner, 2007)
and is discussed in more detail below.
The working memory gating account also potentially

raises an alternative interpretation of the activation ob-
served in striatum. From this perspective, striatal activa-
tion might reflect the response of go pathways that
disinhibit thalamic input to PFC following encounter with
the Expected item or rule-relevant semantic features.
However, it is not clear why additional gating would
not also be required for Unexpected trials, either to update
the retrieval rule or to input/select new features. One pos-
sibility is that striatal subregions distinct from those identi-
fied here, such as in dorsal striatum, would gate DLPFC
(Bornstein & Daw, 2011; OʼDoherty et al., 2004). However,
the present design did not permit us to separate between
the prime and target phases of the trial in fMRI that could
have better distinguished effects of gating/expectation
from those related to outcome.
As with DLPFC, VLPFC was more activated for Un-

expected than Expected trials. However, Expected trial
activation in VLPFC did not differ from Neutral. More-
over, VLPFC activation was correlated with drift rate dur-
ing the Expected Long condition, associating its activity
with the evidence accumulation process itself. We should
note that the present effects are related to the “signed
drift rate” or the drift toward the Word decision specifi-
cally. This may be an important distinction, as prior work
has associated DLPFC with the absolute drift or the over-
all ease of the decision (e.g., Heekeren, Marrett, Ruff,
Bandettini, & Ungerleider, 2006). Thus, in this study,
whereas DLPFC appeared crucial for maintaining the arbi-
trary retrieval rule or retrieved features, VLPFC may have
engaged reactively to guide retrieval of evidence for a
word response when the rule was violated.
To the degree that VLPFC operates reactively to sup-

port the decision process, its activation could reflect (a)
the demand to activate (or reactivated) target information
from memory (i.e., controlled retrieval) and/or (b) the
demand to select against the now-irrelevant information
in working memory (i.e., postretrieval selection). Both of
these processes could theoretically increase drift rates by
making diagnostic evidence more available and prior evi-
dence has implicated VLPFC in both controlled retrieval
and selection (Badre & Wagner, 2007). Moreover, some
studies indicate that these functions are independently
supported by aVLPFC and more caudal mid-VLPFC, re-
spectively (Badre et al., 2005), including during lexical de-
cision (Gold et al., 2006). In this regard, it is notable that
the pattern described above was in the anterior, orbitalis
portion of VLPFC that prior work has associated with con-
trolled retrieval. Moreover, an ROI placed in mid-VLPFC
revealed a pattern of response that was similar to that
observed for DLPFC rather than aVLPFC. This is consistent

with previous functional dissociations between mid-
and aVLPFC and also concurs with recent work suggest-
ing that each subregion tends to correlate with separate
functional networks (Barredo et al., in press). However,
although it is possible that differences in the present data
set could reflect functional distinctions between aVLPFC
and mid-VLPFC/DLPFC networks observed previously
(e.g., Barredo et al., in press; Badre & Wagner, 2007), this
study was not designed to specifically test a controlled
retrieval versus postretrieval account of this distinction
over other possible functional differences.

Finally, the present results may inform recent debates
concerning the functional role of PPC inmemory retrieval.
Broadly, regions of PPC have been repeatedly associated
with episodic retrieval success (Wagner, Shannon, Kahn,
& Buckner, 2005). However, PPC is functionally heteroge-
neous (Hutchinson et al., 2014; Nelson et al., 2010; Cabeza,
Ciaramelli, Olson, & Moscovitch, 2008; Wagner et al., 2005)
with dorsal regions, like IPS, being associated with top–
down attention (Cabeza et al., 2008) or decision-making
processes (Hutchinson et al., 2014) and ventral regions,
like AG, with processes related to retrieval outcome
(Hutchinson, Uncapher, & Wagner, 2009; Vilberg & Rugg,
2008) and bottom–up attention (OʼConnor et al., 2010;
Cabeza et al., 2008).

The current study involved semantic rather than epi-
sodic retrieval. Nevertheless, we observed activation in
both IPS and AG subregions of PPC. And consistent with
prior observations, these regions appeared to functionally
dissociate, with the IPS showing a pattern of response simi-
lar to that of DLPFC and mid-VLPFC and the AG response
being similar to aVLPFC.

Of particular note, AG demonstrated an effect of Expec-
tation similar to that of aVLPFC whereby Unexpected trials
were associated with more activation than either Expected
or Neutral conditions. Thus, similar to aVLPFC, this impli-
cates AG in the network supporting retrieval in response
to an unexpected cue. AG has been widely associated with
semantic processing and is particularly activated under
conditions in which richer semantic content is available
(Binder & Desai, 2011). Likewise, accounts of AG function
during episodic retrieval relate it to bottom–up attention
to memory (Cabeza et al., 2008) or retrieval output (Vilberg
& Rugg, 2008; Wagner et al., 2005). In the present work,
the demands on retrieval may similarly result in greater
semantic analysis and activation of semantic representa-
tions during Unexpected relative to Expected and Neutral
conditions. However, prior episodic retrieval studies have
also indicated that AGmay be related to thematch of expec-
tations rather than retrieval per se. In particular, OʼConnor
et al. (2010) found an effect of expectancy violation in AG
when expected retrieval experiences (Old or New) were
violated at a memory probe. The present results replicate
this effect, although, as noted above, it is possible that the
violation of expectation gated retrieval in the present de-
sign. Thus, the present results do not distinguish between
retrieval-based and attentional accounts of AG function.
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To conclude, we have provided evidence that ventral
striatal activation tracks the positive outcomes that follow
from an effective retrieval strategy, and this signal is re-
lated to an individualʼs tendency to subsequently abandon
or rely on this strategy. These results suggest a closer re-
lationship than previously demonstrated between nigra-
striatal dopamine systems related to basic reinforcement
learning functions and the cognitive control of memory
retrieval.
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