
Applied Mathematical Sciences, Vol. 6, 2012, no. 77, 3827 - 3838

Improving the Study

of Multiobjective Optimization of a Stent

Ibrahima Mbaye

University of Thies, Department of Mathematics
ibambaye2000@yahoo.fr

Abstract

This paper is coming with a view to extend and improve the mul-
tiobjective optimization of a stent in a fluid structure context studied
in the previous works. The stent is assumed to be elastic and is mod-
eled by Euler-Bernouilli equation. To obtain an optimal stent shape,
we combine a fluid structure interaction computational method with a
ε-multiobjective evolutionary algorithm.
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1 Introduction

Stent placement keep artery open but it perturbs more often blood flow. Stent
shape in artery can provoke the presence of recirculation zones, blood stagna-
tion zones, thrombosis and embolism. the aim of this work is to find optimal
stents shapes in order to reduce blood stagnation and recirculation zones. As
it has already been observed [2], [8] a stent associated with a higher value
of shear stress is preferred because it lowers the risk of the late restenosis by
reducing the precence of blood stagnation. A former paper [3], [9] had shown
that a stent associated with a lower value of vorticity is preferred. Qualitative
study [3], shows that the variation of vorticity and shear stress depend entirely
on the variation of three parameters l, h and w.

In the previous papers [3], [7] the multiobjective optimization of a stent
is studied without taking into account the effect of fluid-stent interaction in
unsteady blood flow. That hypothesis simplifies the study.

In this paper, the fact that we describe the stent by an elastic structure
namely Euler-Bernouilli equation and the fluid by Navier-Stokes equations is
the one main contributions of this work. The coupled problem between stent
and fluid is taking into account during all the search of optimal stent shape.
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An other contribution of this paper is that we combine a quasi-Newton al-
gorithm with a genetic algorithm for multiobjective optimization problem in
order to find optimal Pareto front.

We propose the multiobjective optimization approach because we have two
competing criteria which are the vorticity and the shear stress on the wall
stent.

2 Fluid and stent properties

The symmetric properties of the problem implies us to take in the following
work the half fluid domain Ωt. The boundary of Ωt is decomposed by : ∂Ωt =
Σin ∪ Σout ∪ Σstent ∪ Σsym(see Figure 1. below).
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Figure 1: Simplified 2d-geometry of a stent and associed fluid domain Ωt

The stent is represented by an elastic structure Σstent which is described by
the Euler-Bernouilli equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρShS
∂2u

∂t2
(x1, t) +

Eh3
S

12(1 − ν2)

∂4u

∂x1
4
(x1, t) = γ(x1, t), ∀ (x1, t) ∈ [0, L] × [0, T ]

u(0, t) =
∂u

∂x1
(0, t) = 0, ∀ t ∈ [0, T ]

u(L, t) =
∂u

∂x1
(L, t) = 0, ∀ t ∈ [0, T ]

u(x1, 0) = u0(x1), ∀x1 ∈ [0, L]
∂u

∂t
(x1, 0) = u̇0(x1), ∀x1 ∈ [0, L]

(1)
Where,

1. u : [0, T ] × [0, L] → R is the transversal displacement of the structure,

2. u0 is the initial displacement of the structure,

3. u̇0 is the initial velocity of the structure,

4. E is the Young modulus of the structure,
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5. hS is the structure thickness,

6. ρS is the density of the structure,

7. ν is the poisson coefficient,

8. γ(x1, t) = (−σ(v, p) · n) · �e2

√
1 + ( ∂u

∂x1
(x1, t))2 the external volume force

acting on the structure [6],

9. L is the structure length.

The fluid is viscous, incompressible and Newtenian and is modelled by two
dimensional Navier Stokes equations.
Let

v : [0, T ] × Ωt → R2

the fluid velocity vector and

p : [0, T ] × Ωt → R

the fluid pressure.
We will find the couple (v, p) such that:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρF (∂v
∂t

+ (v.∇v)v) − μ�v + ∇p = f in [0, T ] × Ωt

∇.v = 0 in [0, T ] × Ωt

v(t = 0) = v0 in ΩF

−pIn + μ∇v.n = pinIn on [0, T ] × Σin

−pIn + μ∇v.n = 0 on [0, T ] × Σout

v(x1,
D
2

+ u(x1, t)) = (0, ∂u
∂t

(x1, t)) on [0, T ] × Σstent

v2 = 0 on [0, T ] × Σsym
∂v1

∂x2
= 0 on [0, T ] × Σsym

(2)

Where

1. I is the identity matrix,

2. n is the unit outward vector normal to ∂Ωt = Σin ∪Σout ∪Σstent ∪Σsym,

3. v0 is the initial condition of the fluid,

4. μ is the viscosity of the fluid,

5. ρF is the density of the fluid,

6. f is the volume force of the fluid,

7. pin is the boundary conditions imposed of the pressure,
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8. at outflow Σout, We impose free boundary condition of the pressure,

9. v1 is the first component of vector v,

10. v2 is the second component of vector v,

11. Σsym is symmetric axis,

12. on Σsym the no penetration condition v.n = v2 = 0 and the continuity
stress tensor σ.n = ∂v1

∂x2
= 0 are imposed.

We have a fluid structure interaction problem. The deformation of the stent
depends on the fluid flow through the vessel and the domain occupied by the
fluid Ωt depends on the displacement of the vessel wall. The computational
method to solve this coupled problem is done in [6].

2.1 Multiobjective optimization problem

The multiobjective optimization problem is defined as follow:
to maximize

J1(l, h, w) =
1

length(Γω)

√∫ T

0

∫
Γω

τ 2
ωdΓωdt

and to minimize

J2(l, h, w) =
1

area(ω)

√∫ T

0

∫
ω
|∇ × v|2dΩdt

simultaneously

such that

(l, h, w) ∈ [ldown, lup] × [hdown, hup] × [wdown, wup]

Where,

1. ∇× v =
∂v2

∂x
− ∂v1

∂y
is the vorticity,

2. τω = μ(
∂v2

∂x
+

∂v1

∂y
) is the shear stress,

3. ldown, lup, hdown, hup, wdown, wup are limits imposed on the design parame-
ters.
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Figure 2: Definition of the integration domains ω and Γω

2.2 Description of the computational method

To find the optimal stent shapes, On the one hand, we solve the fluid-stent
interaction problem thanks to the method developed by Mbaye et al [6]. In the
later paper authors introduce an approximation of the structure equation by
modal decomposition.The coupled problem is translated into an optimization
problem. Using ALE formulation, Newmark scheme and a quasi-Newton al-
gorithm namely BFGS method we compute the displacement of the structure,
the velocity and the pressure of the fluid, for more details of this method see [6].
On the other hand, we combine the fluid structure interaction computational
method with the ε-multiobjective evolutionary algorithm developed by K. Deb
et al. [4] and freely available at the site http://www.iitk.ac.in/kangal/soft.htm
in order to maximize J1 and minimize J2 simultaneously.

3 Numerical results

3.1 Variational formulation for the fluid equation

Let W and Q the variational spaces:

W =
{
w ∈ (H1(Ωt))

2 : w = ŵ(A−1
t ), w = 0 on Σstent and w2 = 0 on Σsym

}

Q =
{
q ∈ L2(Ωt) : q = q̂(A−1

t ); q̂ ∈ Q̂)
}

,

(3)
where

• w2 is the second component of w.

• At : Ω0 → Ωt is a C1-diffeomorphism defined as follow:

At(x̂1, x̂2) = (x1, x2) =

{
x1 = x̂1, ∀(x̂1, x̂2) ∈ Ω0 ∀t ∈ (0, T )

x2 = H+u(x̂1,t)
H

x̂2, ∀(x̂1, x̂2) ∈ Ω0 ∀t ∈ (0, T )
(4)
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The transformation At permits us to introduce the ALE formulation and
to compute the mesh velocity [6].

• Ω0 is the reference domain,

• Q̂ = L2(Ω0),

• ŵ ∈ Ŵ =
{
ŵ ∈ (H1(Ω0))

2 : ŵ = 0 on Σstent and ŵ.n = 0 on Σsym

}
Now, we can introduce the variational formulation for the fluid equations for
all t ∈ [0, T ], find the velocity v ∈ W and the pressure p ∈ Q such that

⎧⎪⎨
⎪⎩
(

∂v

∂t
|x̂, w

)
0,Ωt

+ c(v, v, w) + a(v, w) + b(w, p) = F (w), ∀w ∈ W

b(v, q) = 0, ∀q ∈ Q

(5)

Where (
∂v

∂t
|x̂, w

)
0,Ωt

=
d

dt

∫
Ωt

ρF v · w dx −
∫
Ωt

ρF v · w(∇.ϑ) dx,

c(v, v, w) =
∫
Ωt

ρF ((v − ϑ).∇)v · w dx

a(v, w) =
∫
Ωt

μ∇v · ∇w dx

b(w, p) = −
∫
Ωt

∇ · w · p dx

F (w) =
∫
Ωt

f · w dx +
∫
Σ1

pinw · n dσ,

ϑ(x, t) = ∂At

∂t
(x̂) = (0, ∂u

∂t
(x1, t)

x2

H+u(x1,t)
)T

(6)

and ϑ(x, t) is the mesh velocity.

3.2 Spatial discretization

Let Wh be the finite element approximation spaces for the fluid velocity ob-
tained from W by using the mixed finite element P 1 + bubble/P 1, and let Qh

be also the finite element approximation spaces for the fluid pressure obtained
from Q by using the finite element P 1:

Wh = {wh ∈ (C0(Ωh))
2/∀K ∈ Th, wh = ŵh(A−1

t ), wh|K ∈ P1 + bubble,
(w2)h = 0 on Σsym, wh = 0 on Σstent},

(7)
and

Qh = {qh ∈ C0(Ωh)/∀K ∈ Th, qh = q̂h(A−1
t ), qh|K ∈ P1}.
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we have the variational formulation defined as follow: find the velocity vh ∈ Wh

which satisfies the DIrichlet conditions vh(x1, H + u(x1, t)) ≈ (0, u̇(x1, t)) on
Σstent and the pressure ph ∈ Qh such that:

⎧⎪⎨
⎪⎩
(

∂vh

∂t
|x̂, wh

)
0,Ωt

+ c(vh, vh, wh) + a(vh, wh) + b(wh, ph) = F (wh), ∀wh ∈ Wh

b(vh, qh) = 0, ∀qh ∈ Qh

(8)

3.3 Time discretization

Let Δt the time step and tn = nΔt the time for n iterations where n ∈ N. Let
the following variational spaces:

W n+1
h = {wh ∈ (C0(Ω

n+1
h ))2/∀K ∈ Th, wh = ŵh(A−1

tn+1
), wh|K ∈ P1 + bubble,

(w2)h = 0 on Σsym, wh = 0 on Σstent},
(9)

and

Qn+1
h = {qh ∈ C0(Ω

n+1
h )/∀K ∈ Th, qh = q̂h(A−1

tn+1
), qh|K ∈ P1}.

The time integration scheme is based on the implicit Euler approximation.
Knowing Ωn

h, vn
h ∈ W n

h and pn
h ∈ Qn

h, find Ωn+1
h , (vn+1

h , pn+1
h ) ∈ W n+1

h × Qn+1
h

for all (w, q) ∈ W n+1
h × Qn+1

h such that:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

Δt

∫
Ωn+1

h

ρF vn+1
h · w dx − 1

Δt

∫
Ωn

h

ρF vn
h · w dx −

∫
Ωn+1

h

ρF vn+1
h · w(∇.ϑn+1) dx

+
∫
Ωn+1

h

ρF [(vn
h − ϑn+1) · ∇]vn+1

h · wdx +
∫
Ωn+1

h

μ∇vn+1
h · ∇w dx

−
∫
Ωn+1

h

∇ · wpn+1
h dx =

∫
Ωn+1

h

fn+1 · w dx −
∫

Σin

pin(., tn+1) w · n dσ, ∀w ∈ W n+1
h

−
∫
Ωn+1

h

∇ · vn+1
h q dx = 0, ∀q ∈ Qn+1

h

vn+1
h (x1, H + u(x1, tn+1), tn+1) = (0, u̇n+1)T , on Σn+1

stent, 0 < x1 < L
(10)

3.4 Time discretization of the structure equation

To discretize the structure equation, we use the modal decomposition and the
Newmark scheme (for more details see [6].)
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3.5 Boundary conditions

The boundary conditions imposed to the pressure [6]:

pin(x1, x2, t) =

{
103(1 − cos( πt

0.0025
)), (x1, x2) ∈ Σ1 , 0 ≤ t ≤ 0.005
0, (x1, x2) ∈ Σ1 , 0.005 ≤ t ≤ T

(11)

3.6 Parameters value related to fluid

The fluid viscosity is μ = 0.035 g
cm·s , the density of the fluid is ρF = 1 g

cm3 , the
volume forces f = (0, 0) and the width of artery is D = 0.4cm and the length
of the artery is between [1.88, 3.872]. Time step is Δt = 0.5ms, and v0 = 0.

3.7 Parameters value related to stent

The density of the structure is ρS = 4.51 g
cm3 , its Young modulus is E =

110.1010 g
cm.s2 , its poisson coefficient is ν = 0.33 and its thickness is hS =

0.01cm.

3.8 Parameters value related to stent

The three stent design parameters (l, w, h) ∈ [0.1, 0.2]×[0.005, 0.017]×[0.01, 0.04]
(incm).

3.9 Parameters value related to genetic algorithm

We use the following parameters for the genetic algorithm: a population of 60
individuals, number of generations 50, the probability of mutation pm = 0.33,
the probability of crossover pc = 0.9 and the seed ps = 0.123.

4 Numerical simulations

l w h J1 J2

0.103230 0.007831 0.027290 0.088440 12.106800
0.100609 0.014214 0.012138 0.094012 20.976600
0.174287 0.014452 0.037666 0.020916 1.439360
0.199600 0.013776 0.038084 0.004759 0.355302
0.102404 0.013559 0.012438 0.115140 24.660000
0.101965 0.016628 0.038707 0.042090 3.543920
0.118421 0.010580 0.037884 0.072433 6.532220

Table 1: Set of optimal solutions at t = 2.5 ms.
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l w h J1 J2

0.101258 0.006591 0.038870 0.120832 14.209000
0.101258 0.012545 0.039458 0.085801 8.909340
0.110229 0.008405 0.014031 0.196400 43.475300
0.110549 0.006614 0.015282 0.147732 28.601400
0.118381 0.013138 0.037243 0.063835 6.764010
0.103829 0.006033 0.014950 0.173769 33.411800
0.174370 0.014539 0.039114 0.043150 4.329730
0.196559 0.005972 0.036434 0.026643 2.541000
0.110201 0.012948 0.018666 0.128662 20.732600

Table 2: Set of optimal solutions at t = 5 ms.
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Figure 3: Population initial and Pareto
front at t = 2.5 ms.
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Figure 4: Set of optimal solutions on Pareto
front at t = 2.5 ms.
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Figure 5: Population initial and Pareto
front at t = 5 ms.
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Figure 6: Set of optimal solutions on Pareto
front at t = 5 ms.

According to optimal parameters v(l, w, h), we represent some optima stents
(see the following Figures):
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Figure 7: Streamlines between two struts at
t = 2.5 ms.

Figure 8: Streamlines between two struts at
t = 2.5 ms.

Figure 9: Streamlines between two struts at
t = 5 ms.

Figure 10: Streamlines between two struts
at t = 5 ms.
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Vec Value
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Figure 11: Velocity streamlines at t =
2.5 ms.
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Figure 12: Velocity streamlines at t =
2.5 ms.
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Figure 13: Velocity streamlines at t = 5 ms.
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Figure 14: Velocity streamlines at t = 5 ms.

4.1 Results and discussion

We observe again a significant advance of Pareto front and a good distribution
of the optimal solutions. The difference between the two approachs, without
or with taking into account the elasticity of the stent, is situated at the level
of the optimal parameters found. In this work, we note that the parameter l
takes at present more dispersed values than the previous case where the wall
artery is supposed rigid whereas h keeps its opposed character by comparison
with two criterias. If h goes to hup then we observe that J1 and J2 decrease
simultaneously, whereas if h goes to hdown then J1 and J2 increase simultane-
ously.
To sum up, the fact that we take into account the interaction fluid-stent con-
firm the previous tendency but bring a more strong sensibility on a par with
the distance between struts than two criterias.
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5 Conclusion

A combination of multiobjective optimization based on genetic algorithm and
a computational method of fluid-stent interaction problem is used to find a
set of optimal solutions. The fact that we take into account the fluid-stent
interaction in the multiobjective optimization problem permits us to obtain
good distribution of the solutions on the Pareto front. Once the solutions
are obtained, the designer may be able to choose a final design with futher
considerations.
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