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greater understanding of the epidemiology, pathogenesis, and pathophysiology of pulmonary artery hypertension
(PAH) has led to significant advances, but the disease remains fatal. Treatment options are neither universally
available nor always effective, underscoring the need for development of novel therapies and therapeutic strategies.
Clinical trials to date have provided evidence of efficacy, but were limited in evaluating the scope and duration of
treatment effects. Numerous potential targets in varied stages of drug development exist, in addition to novel uses
of familiar therapies. The pursuit of gene and cell-based therapy continues, and device use to help acute
deterioration and chronic management is emerging. This rapid surge of drug development has led to multicenter
pivotal clinical trials and has resulted in novel ethical and global clinical trial concerns. This paper will provide an
overview of the opportunities and challenges that await the development of novel treatments for PAH. (J Am Coll
Cardiol 2013;62:D82–91) ª 2013 by the American College of Cardiology Foundation
A greater understanding of the epidemiology, pathogenesis,
and pathophysiology of pulmonary artery hypertension
(PAH) has led to significant advances over the past 2
decades in treatment of this disorder. However, these
treatment options are neither universally available nor always
effective, underscoring the need for development of novel
therapies and therapeutic strategies. Because PAH is
considered an orphan disease that is uniformly progressive
and fatal, prior clinical trials evaluating novel therapies were
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relatively short in duration and were comprised of small
populations of affected patients. These studies provided
evidence of efficacy, but were limited in evaluating the scope
and duration of treatment effects. Accordingly, clinical
development of novel therapies for PAH in the future will
require trials of larger and perhaps more diverse patient
cohorts who are studied for longer periods and with more
robust and meaningful efficacy endpoints. The challenges
posed by these requirements are substantial, and include
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greater global access to patients and experienced investiga-
tors, industry partners who are willing and able to invest
in drug development for a rare disease, and collaboration
with regulators to ensure that the trials can both provide
evidence of sufficient safety and efficacy to support regula-
tory approval while, at the same time, can be realistically
carried out in a diverse clinical environment. This paper will
provide an overview of the opportunities and challenges that
await the development of novel treatments for PAH.
cell

FAO = fatty acid oxygenation

LV = left ventricle/

ventricular

MSC = mesenchymal stem

cell

NO = nitric oxide

PAH = pulmonary arterial

hypertension

PDGF = platelet-derived

growth factor

PH = pulmonary

hypertension

PRO = patient-reported

outcome

PVR = pulmonary vascular

resistance

RAAS = renin-angiotensin-

aldosterone system

RV = right ventricle/

ventricular

TTCW = time to clinical

worsening

VEGF = vascular endothelial

growth factor
Designs and Endpoints for PAH Trials

Clinical trial designs. The objective of clinical trials is to
determine, in a selected population, if a treatment is both safe
and effective and whether the findings in the study can be
translated to the larger population of affected individuals.
The “proof of concept” or phase 2 stage of clinical develop-
ment can generate critical information regarding dosing and
safety and can provide insight into whether a full-scale phase
3 study is likely to be successful (1). Virtually all of the
currently approved PAH therapies underwent phase 2 studies
prior to phase 3, whereas none of the drugs that have gone
straight to pivotal trials has met with regulatory approval.

Nonetheless, the limitations of phase 2 trials include: small
sample size, heterogeneity of the study population, selection of
an appropriate endpoint, and competition for patients
between multiple trials. Some of these issues can be addressed
by using enrichment strategies, as recently highlighted in the
Food and Drug Administration’s strategies for successful
drug trials (2). One of the challenges arising from our relative
success in developing therapies for PAH is that future ther-
apies can no longer be studied as de novo treatments with
placebo-treated comparator groups. One solution to this
dilemma is to implement creative adaptive designs. For
example, a factorial design allows for testing more than
1 novel element in a single trial (3).

A second creative approach that could be used for PAH
therapies, which is known to be effective during the short
term but without potential utility over a longer term, is the
randomized discontinuation trial. Although PAH clinicians
have expressed concern about implementing this approach
in a population that is hemodynamically fragile, the stan-
dardized use of background therapy should help minimize the
risk without compromising the quality of information. This
trial design utilizes predictive enrichment techniques by
selecting subjects for study who, on the basis of their prior
response, have the greatest chance of benefit (4). Of course,
concern remains that withdrawal of a treatment could result
in acute clinical deterioration (5). Additionally, it is prob-
lematic that the population studied in this type of trial design
may not be representative of the larger affected population (4).

Noninferiority and crossover designs are difficult to
implement in an orphan disease. A noninferiority trial
utilizing current endpoints could require large sample sizes
(6). Acceptable margins for such studies would be depen-
dent on many factors, including the selected endpoint, the
ded From: http://content.onlinejacc.org/ on 01/24/2014
active control regimen, the eligi-
bility criteria, and supportive care
regimens, and these may be dif-
ficult to justify in settings such
as PAH where these factors are
rapidly changing (6–8). A cross-
over design can test for short-
term differences in 2 different
treatment approaches; however,
such designs assume that a short
time to wash out the therapeutic
is adequate and that there are no
“carry-over” treatment effects (3).
Crossover trials for PAH are of
concern as a washout may cause
rebound clinical worsening.
Clinical trial endpoints.
CHARACTERISTICS OF APPRO-

PRIATE PRIMARY ENDPOINTS IN

REGISTRATION TRIALS. The se-
lection of the primary endpoint
for a registration trial is one of the
most important steps in study
design at any phase of develop-
ment. There are several charac-
teristics of outcome measures that
should be considered when
choosing the primary endpoint.
This endpoint should be consis-
tently and reliably measureable,
because missing data meaning-
fully impacts the interpretability
of results and because ethical
issues might arise when outcome

assessments are based on invasive procedures that are not
routinely conducted as part of clinical practice. These ethical
issues are particularly important in pediatric settings. Due to
these considerations, endpoints that require right heart
catheterizations or histologic measures that require invasive
biopsy procedures might be problematic. The outcome
measure also should be distinct and reliable, with properly
established content validity. Content validity is “the extent to
which an instrument measures the important aspects of
concepts most significant and relevant to the patient’s
condition and its treatment” (9,10).

The most important characteristic of the primary
outcome measure in a registration trial is that it should be
a clinically meaningful endpoint, defined by Temple (11) to
be a direct measure of how a patient “feels, functions or
survives,” where “function” refers to the ability of a patient
to carry out normal daily activities. Examples of clinically
meaningful endpoints in PAH are death, lung trans-
plantation, initiation of parenteral prostanoid therapy,
hospitalization for worsening PAH, or symptoms of PAH
such as cough, breathlessness, chest pain, or syncope. PAH
symptoms can be utilized as primary endpoints in



Table 1 Future Therapeutics

Pathway/Targets Therapy

Vasodilation Nitric oxide, nitrite

Sympathetic nervous
system

Selective > nonselective beta-adrenergic blockade

Renin-angiotensin-
aldosterone system

Aldosterone antagonist, vasopressin receptor
antagonist, catheter-guided ablation

Vascular remodelingd
metabolic alterations

Dichloroacetate, ranolazine

Anti-inflammation Rho-kinase inhibitors, rituximab, vasoactive intestinal
peptide

Selective and
multikinase
inhibition

Tyrosine kinase inhibitors

Stem cells

Gene therapy

Cell therapy Endothelial, mesenchymal, and
gene-enhancing cells

Devices Cardiac resynchronization, extracorporeal life
support: venoarterial, venovenous, and pumpless
arteriovenous extracorporeal lung assist
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registration trials if the effects on these outcomes are
assessed using appropriate patient-reported outcome
(PRO) measures. The December 2009 Food and Drug
Administration’s Guidance to Industry for Patient-
Reported Outcomes provides valuable insights into the
proper development of such measures, including confir-
mation of reliability, sensitivity, content and construct
validity, interpretability, and clinical relevance (12). To
ensure integrity of the evaluation of the effect of
an intervention on symptoms of PAH, it is important that
this be done using randomized blinded clinical trials with
efforts to minimize the occurrence of missing data. In
pediatric settings, it might be necessary to restrict trials to
children �7 years of age when conducting a PRO-based
assessment of treatment effects on PAH symptoms.

SURROGATE ENDPOINTS: DEFINITION AND VALIDATION. In
order to reduce the size and duration of registration clinical
trials, there often is interest in using indirect outcome
measures, such as biomarkers that are measurements of
biological processes, as replacement or “surrogate” end-
points. A surrogate endpoint is an outcome measure “used as
a substitute for a clinically meaningful endpoint” (11). It is
acceptable to use an indirect outcome measure if it is
a properly validated surrogate for a clinically meaningful
endpoint. Establishing an indirect measure to be a valid
surrogate endpoint “requires providing an evidence based
justification, often from randomized controlled clinical trials,
that achievement of substantial effects on the surrogate
endpoint reliably predicts achievement of clinically impor-
tant effects on a clinically meaningful endpoint” (13).

Biomarkers that are based on laboratory assessments (such
as brain natriuretic peptide or the N-terminal pro-brain
natriuretic peptide) or hemodynamic measures (such as
pulmonary vascular resistance [PVR], PVR index, mean
pulmonary arterial pressure, or cardiac output) are of interest as
ded From: http://content.onlinejacc.org/ on 01/24/2014
potential surrogate endpoints because they are thought to be
related to disease progression andbecause they are known to be
correlated with clinically meaningful endpoints. As correlates,
they can be very useful for diagnosis or assessing prognosis, as
endpoints in phase 2 trials, or as parameters that support the
meaningfulness of changes in the primary endpoint. In addi-
tion, measurement of biomarkers may provide insights into
the mechanisms of action of novel treatments.

It is important, however, to distinguish between showing
that a biomarker value is strongly correlated with the risk
of achieving clinically meaningful endpoints and demon-
strating that changes in biomarker values reliably predict
comparable directional changes on clinically meaningful
outcomes; in other words, a “correlate does not a surrogate
make” (14). There are multiple reasons for this apparent
paradox (13–15). First, even if a biomarker does not
contribute to causation of the disease, it may nevertheless be
correlated with a clinically meaningful endpoint if both the
endpoint and biomarker are impacted by the disease’s true
cause. Second, the magnitude of change and duration of
effect on the biomarker that translates to clinically
meaningful endpoints may be unknown, or there may be
other pathways that are not represented by the biomarker.
Third, even if the biomarker captures the effects of the
intervention on all important causal pathways of the disease
process, interventions often have off-target effects that are
not captured by the biomarker, yet may have a meaningful
impact on the net treatment effect (14). The Institute of
Medicine provided a detailed discussion of rigorous steps,
entitled “analytical validation,” “qualification,” and “utiliza-
tion,” that are needed before a biomarker is used as a
replacement endpoint in any registration clinical trial (15).
Unfortunately, it is very uncommon to have biomarkers that
are properly validated surrogate endpoints, and it is apparent
that there are currently none in the setting of PAH.

INDIRECT OUTCOME MEASURES. Some indirect measures that
are dependent on patientmotivation or clinical judgment have
been used as primary endpoints in registration trials. These
include the 6-min walk distance (6MWD), the 3-min stair
climb, and handgrip strength or treadmill testing. These tests
are conducted in artificial settings and thus provide only
indirect assessments of the effect of the intervention on how
a patient feels, functions, or survives (13).What is theminimal
clinically meaningful effect of treatment on 6MWD, that is,
the treatment-induced change that can be translated to
a patient’s ability to carry out daily activities that are relevant to
him or her? As trials in the future will primarily assess the
effects of add-on therapy to background therapies, the
magnitude of incremental changes in 6MWD will be nar-
rower than studies in treatment-naïve patients, making
interpretation more challenging. In pediatric settings, these
indirect measures might also require an age restriction, as
younger subjects may not be able to cooperate sufficiently.

THE ROLE AND INTERPRETABILITY OF COMPOSITE ENDPOINTS.

Composite endpoints may more comprehensively reflect
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clinically meaningful treatment effects. This approach is
particularly appealing in rare diseases such as PAH and, in
particular, in subsets of rare diseases such as PAH in children.
All of the components of a composite endpoint should be of
similar clinical relevance, thereby strengthening the mean-
ingfulness of the treatment effect. For example, the major
cardiovascular endpoint is a composite endpoint comprised of
cardiovascular death, stroke, and myocardial infarction that is
used frequently as the primary endpoint in registration trials
for the treatment of acute coronary syndrome. The mean-
ingfulness of changes in this composite endpoint is enhanced
because each component is an independent measure of irre-
versible morbidity or mortality.

In PAH, the composite endpoint of time to clinical
worsening (TTCW) has been used as a secondary, or rein-
forcing, endpoint in prior registration trials. As defined at
the Fourth World Symposium in PH at Dana Point, Cal-
ifornia, components of this composite include death,
lung transplantation, hospitalization for worsening PAH
(including atrial septostomy), initiation of intravenous
therapy due to worsening PAH, and worsening of function
(i.e., worsening World Health Organization functional class
and a decrease in 6MWD). Recently completed trials in
PAH suggest that “clinical worsening” may be a more
suitable and meaningful primary endpoint than 6MWD,
particularly as new trials will be studying patients on back-
ground therapies and for longer periods of observation.

ALTERNATIVE ENDPOINTS FOR ADULT AND PEDIATRIC PAH

TRIALS. Individual measures that are potential phase 3 trial
primary endpoints include:

1. Overall survival (all-cause mortality);
2. Hospitalization for worsening PAH and death caused

by PAH;
3. Exercise capacity measures;
4. Functional class; and
5. PROs
ded Fr
� Level of successful social interactions with peers
� 36-Item Short Form Health Survey
� Borg Dyspnea Score
� Days of work (or “school” in pediatric setting)

missed for health-related reasons.
Composite measures are of interest in both adult and
pediatric PAH settings. For example, changes in 4 symptom
categories comprising the endpoint could be: dyspnea, chest
pain, dizziness/syncope, and fatigue/activity level. Properly
developed instruments would be needed for the assessment
of these symptoms, and the appropriate time post-
randomization for endpoint assessment would also need to
be defined.

The Dana Point TTCW composite endpoint, which is
the time to the first event, could be enhanced to include
a component that would be based on these same 4 PAH
symptoms cited in the previous text. These symptom vari-
ables are especially important as, for PAH, death is rarely the
om: http://content.onlinejacc.org/ on 01/24/2014
first clinical event. For example, this TTCW composite
might be defined as:

1. Death
2. Lung transplantation
3. Hospitalization for worsening PAH (including atrial

septostomy)
4. Initiation of intravenous therapy due to worsening

PAH
5. Worsening of function (i.e., worsening functional

class and exercise capacity)
6. Worsening of PAH symptoms (i.e., worsening of at

least 2 of the 4 symptoms: dyspnea, chest pain,
dizziness/syncope, fatigue/activity level)
Future Targets for Therapeutics

The future of clinical research in PAH will likely consist of
3 major approaches. First, the identifying and testing of
newly identified targets of pathogenesis. Of these, vaso-
constriction, inflammation, abnormal growth, and angio-
genesis are the most extensively studied at present. Second,
optimization of treatment targeting pathways known to be
important in PAH, for example, developing more potent,
less toxic drugs that target the endothelin, nitric oxide, and
prostacyclin pathways, or establishing whether combination
therapy is more efficacious than monotherapy and, if so,
determining the timing and choice of agents. Third, the
development of devices aimed at improving or supporting
right ventricular (RV) function. The next section will discuss
these in more detail (Table 1).
Vasodilators. NITRIC OXIDE. Nitric oxide (NO) is a potent
vasodilator and an inhibitor of platelet activation and
vascular smooth muscle proliferation. Intact NO signaling is
critical to maintaining the appropriate pulmonary vascular
tone both before and after birth (16). There are 3 isoforms of
the NO synthase family of enzymes: endothelial nitric oxide
synthase (eNOS), inducible NO synthase, and neuronal NO
synthase; all are expressed in the lung (17). Both eNOS and
inducible NO synthase deficiency are associated with
elevated basal pulmonary vascular tone in animal models
(18,19).

InhaledNO is a familiar agent that is an effective pulmonary
vasodilator. Inhaled NOworks well in the setting of increased
pulmonary vascular tone due to pulmonary vasoconstriction
and has minimal effects in healthy subjects (20). Inhaled NO
is potentially useful for PAH by limiting RV hypertrophy
and enhancing downstream signaling targets, such as soluble
guanylate cyclase and cyclic guanosine monophosphate, to
attenuate pulmonary vascular remodeling (21–23). Nitrite is
a physiological signaling molecule with roles in intravascular
endocrine NO transport, hypoxic vasodilation, signaling, and
cytoprotection after ischemia-reperfusion. Evaluation of
inhalednitrite forPAHis in progress aswell (NCT01431313),
understanding that rebound after withdrawal of inhaled
NO and inhaled nitrite is a concern.

http://www.clinicaltrials.gov/ct2/show/NCT01431313?term=NCT01431313&amp;rank=1
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Beta-blockers. Unlike left-sided heart failure, the effects of
beta-blocker therapy on PAH-induced right heart failure
have not been thoroughly investigated (24). Concern
regarding the use of beta-blockers in PAH is based primarily
on their potential to produce negative inotropic effects;
additionally, PAH patients are dependent on heart rate to
maintain cardiac output, and these agents are likely to affect
this compensatory mechanism (25,26). However, many of
the original studies used first-generation, nonselective beta-
blockers that have more bronchial and myocardial depressive
effects than currently available more selective agents (26,27).
In support of further study of their use in PAH is the
demonstration that chronic adrenergic overdrive, which is
present in PAH, can result in myocardial depression and
cardiac compromise (28).

In animal models of PH, selective beta-blockers appear
to improve RV function and myocardial remodeling (29,30).
For example, carvedilol (a1/b1/b2-adrenergic receptor an-
tagonist) improved RV contractility and hemodynamics in
the Su-5416 (sugen)/hypoxia derived PAH-rat model (30),
and bisoprolol (cardioselective b1-adrenergic receptor
antagonist) delayed progression toward right heart failure by
preventing RV inflammation and decreased RV fibrosis in
the monocrotaline PAH rat model (31). A phase 2 clinical
study to investigate the safety and efficacy of bisoprolol in
PAH patients (NCT01246037) has been initiated.
Sympathetic nervous system and renin-angiotensin-
aldosterone system. The sympathetic nervous system and
renin-angiotensin-aldosterone system (RAAS) are
both activated in PAH patients, but the value of these
systems as therapeutic targets is unclear (32,33). Hypona-
tremia is an indirect marker of RAAS activation and may
be a useful surrogate biomarker of disease severity (33).
Aldosterone inhibition reduces pulmonary pressure and
pulmonary vascular resistance without systemic hypotension
in the Su-5416/hypoxia and monocrotaline animal models
(34). These studies provide support for the evaluation of
aldosterone antagonist therapy in PAH (NCT01712620).

The release of arginine vasopressin is an additional factor
contributing the sodiumandwater retention that is common in
PAH. In patients with heart failure, plasma arginine vaso-
pressin levels are elevated out of proportion to serum osmo-
larity, resulting in water retention and hyponatremia (35,36).
Conivaptan, a vasopressin receptor antagonist, improves signs
of left heart failure and is being studied in the treatment of
PAH-induced right heart failure (NCT00811486).

Catheter-guided ablation to alter the RAAS pathway is
also being investigated for PAH. Pulmonary vein ablation
has been used to treat resistant atrial fibrillation, and more
recently, renal sympathetic nerve ablation has shown pro-
mise in the treatment of refractory systemic hypertension
(37). A recent pilot study from China demonstrated marked
reductions in pulmonary artery pressure and vascular resis-
tance in 13 PAH patients after catheter-based denervation
of the pulmonary artery (38), but this has not yet been
confirmed by other investigators.
ded From: http://content.onlinejacc.org/ on 01/24/2014
Vascular remodeling. METABOLIC ALTERATIONS: DICHLORO-

ACETATE. The vascular remodeling in PAH is partially charac-
terized by a state of apoptosis resistance. As in cancer, a switch
from the antiapoptotic glycolytic metabolism to the pro-
apoptotic oxidative phosphorylation metabolism causes
regression of vascular remodeling in several PH animal
models (39–41). Mitochondrial-metabolic abnormalities
have been proposed in PAH, including disruption in
pyruvate dehydrogenase kinase-mediated inhibition of
pyruvate dehydrogenase, which increases aerobic glycolysis
in the lungs and RV (42). By inhibiting mitochondrial
pyruvate dehydrogenase kinase and pyruvate dehydrogenase,
dichloroacetate increases pyruvate entry into the mitochon-
dria, promotes glucose oxidation over glycolysis (39), and
restores Kv channel function and expression in pulmonary
artery smooth muscle cells, leading to the inhibition of
voltage-gated calcium channels, a decrease in intracellular
calcium, an inhibition of vasoconstriction, and a reduction
in pulmonary artery smooth muscle cell proliferation (43–45).
Based on PH regression in animal models (43,44),
a phase 1, safety and tolerability, 2-center study of
dichloroacetate in functional class III to IV PAH patients
on background therapy is ongoing in Canada and in
England (NCT01083524).
METABOLIC ALTERATIONS: RANOLAZINE. Reactivation of pyruvate
dehydrogenase kinase to promote glucose oxidation can be
achieved by activating the Randle cycle, using inhibitors of
fatty acid oxidation (FAO) (42). FAO is increased in RV
hypertrophy produced by pulmonary arterial banding in
animals (46). Accordingly, it has been proposed that agents
that inhibit FAO could improve RV hemodynamics in
PAH. Ranolazine, an FAO inhibitor approved to treat
refractory angina, improves cardiac work by inhibiting FAO
through activation of pyruvate dehydrogenase and stimu-
lating glucose oxidation (47,48). An acute, randomized,
placebo-controlled, single-center safety and efficacy study
with ranolazine for PAH is currently enrolling in the United
States (NCT01757808).
Anti-inflammatory agents. Inflammation occurs in PAH
with different levels of severity dependent on the subtype.
Mononuclear cells, including T cells, B cells, and macro-
phages, surround plexiform lesions in pathologic specimens.
Clinically, PAH patients have elevated cytokine levels of
interleukin-1B, -6, and -8 and chemokines CCL2/MCP-1,
CCL5/RANTES CX3CCL-1, and CXC3CL1/fractalline
(49–54).

RHO-KINASE INHIBITORS. A wide variety of cellular actions,
including proliferation, apoptosis, motility, migration,
inflammation, and vasoconstriction, are influenced and
regulated by the Rho/Rho-kinase signaling pathway (55,56),
a pathway that appears to play an important pathogenetic
role in PH (57). Rho/Rho-kinase inhibitors, such as fasudil
and Y-27632, effectively inhibit the development of PH
when administered to animals prior to the induction of PH;
when given to animals with established PH, these agents
improve endothelial cell function, decrease arterial

http://www.clinicaltrials.gov/ct2/show/NCT01246037?term=NCT01246037&amp;rank=1
http://www.clinicaltrials.gov/ct2/show/NCT01712620?term=NCT01712620&amp;rank=1
http://www.clinicaltrials.gov/ct2/show/NCT00811486?term=NCT00811486&amp;rank=1
http://www.clinicaltrials.gov/ct2/show/NCT01083524?term=NCT01083524&amp;rank=1
http://www.clinicaltrials.gov/ct2/show/NCT01757808?term=NCT01757808&amp;rank=1
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neomuscularization, and improve RV function (58–60).
Small studies evaluating fasudil in PAH thus far have
demonstrated a nonselective reduction in both pulmonary
and systemic vascular resistances (58,61,62). This potential
decrease in systemic blood pressure is of concern and
requires careful consideration during its drug development.

RITUXIMAB. Rituximab is a chimeric monoclonal antibody
that binds the B-cell surface protein CD20. It has proven
efficacy in a number of diseases characterized by increased
B-cell numbers or aberrant function, including lymphomas,
leukemias, and autoimmune disorders (63,64). The potential
role of autoimmune and inflammatory mechanisms in PAH
has raised interest in the use of rituximab in PAH, and
specifically in the treatment of sclerodema-associated PAH.
Since infusion of rituximab can result in hypotension, this
will be a closely watched potential adverse event in a trial
currently in progress (NCT01086540).

VASOACTIVE INTESTINAL PEPTIDE. Vasoactive intestinal
peptide (VIP) is a neuropeptide in the glucagon growth
hormone-releasing factor secretion superfamily with a wide
range of effects, including anti-inflammatory and immune-
modulatory roles as well as vasodilation of the pulmonary
vasculature and inhibition of pulmonary artery smooth
muscle cell proliferation (65–67). Administration of VIP to
patients with PAH by inhalation improved hemodynamics
and exercise tolerance in a small, uncontrolled 3-month
study (68). However, a randomized, placebo-controlled,
double-blinded phase 2 trial showed no effects of inhaled
VIP in the doses studied (69,70).
Tyrosine kinase inhibitors. Tyrosine kinase inhibitors
(TKIs) are pharmaceutical agents derived to inhibit tyrosine
kinases, and a number of these agents have proven to be
markedly effective antitumor and antileukemic treatments
(71). PAH and cancer share elements of pathophysiology.
As part of the pulmonary vascular remodeling, endothelial
cells in a monoclonal expansion form plexiform lesions
that express angiogenic vascular endothelial growth factor
(VEGF) and VEGF receptors. The cells become resistant to
apoptosis and contribute to the microvascular obstruction.
Thus, cross-purposing anticancer therapies for PAH is an
opportunity for novel therapeutics.

Imatinib is an example of such an agent that has completed
phase 3 development for advanced PAH. It is a well-
established inhibitor of the kinase BCR-ABL, the receptor
for the stem cell factor c-KIT and the platelet derived growth
factor (PDGF) receptor (72), and it is approved for the
treatment of chronic myelogenous leukemia and gastroin-
testinal stromal tumors (73,74). Because of the putative role
of PDGF in the development of PAH, this agent has been
investigated as a possible therapeutic agent for PH (75,76).

In the IMPRES (Imatinib in Pulmonary Arterial
Hypertension, a Randomized Efficacy Study) (77), a
multicenter, randomized, placebo-controlled trial of ima-
tinib for the treatment of PAH, patients had modest
improvements in 6MWD and reductions in PVR with no
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differences in TTCW or survival between groups; but, of
particular concern, subdural hematomas occurred in 8
patients in the treatment arm (2 in the core study and 6 in
the extension study). As a result, development of imatinib
for PAH has been discontinued.

The multikinase inhibition, by definition, can add to the
off-target effects of these drugs, which may be unpredictable
and devastating (78). Sorafenib, a Raf-1, VEGF-R2, and
PDGF receptor-b inhibitor evaluated in a phase 1 dosing
safety study, demonstrated some improvement in exercise
capacity but no improvement in cardiac output (79), and
development of sunitinib for PAH was halted after drug-
induced cardiotoxicity was observed in oncology trials.

Cardiotoxicity with TKIs is a serious concern, with reports
of cardiac ischemia, left ventricular (LV) dysfunction, and
hypertension occurring with VEGF inhibition and as an off-
target consequence (80–87). LV dysfunction is potentially
fatal in a PAH patient, and is difficult to diagnose prior to
symptoms. Research of the oncology data demonstrates often
idiosyncratic, nondose-dependent decreases in cardiac func-
tion with sunitinib, sorafenib, and imatinib (81,83–87).
Adding to this concern are case reports implicating the multi-
TKI dasatinib as a potential inducer of PAH (88).
Stem cells. Regeneration of lung microvasculature is
a novel therapeutic strategy for restoring pulmonary hemo-
dynamics in patients with advanced PAH. Evidence in
experimental models of lung vascular disease has suggested
that, as in systemic arterial beds, stem cells may also induce
the regeneration of pulmonary microvessels. The adminis-
tration of mesenchymal stem cells (MSCs) may be a thera-
peutic option for PAH. Despite the progress in stem cell
biology, a number of hurdles still need to be overcome,
including the difficulty of ex vivo expansion, the poor
delivery efficiency (<5% of transplanted cells are retained
after transplantation), and their uncertain fate in vivo.
Gene therapy. The pulmonary endothelium is accessible
through the pulmonary and bronchial circulations, whereas
the epithelial linings of alveoli can be accessed through the
airways. The pathology of PH suggests several distinct
genetic targets; gene therapy delivered through either the
airway or vasculature may be feasible.
Cell therapy. Both endothelial progenitor cells (EPCs) and
MSCs have been evaluated in pre-clinical studies as therapy
for PAH on the basis of their abilities to repair and regen-
erate damaged pulmonary vasculature. A small clinical trial
using autologous EPCs showed improvements of both
pulmonary hemodynamics and clinical performance
(6MWD) (89). MSCs allow for allogeneic cell therapy
because they are considered immune privileged. However, in
contrast to EPCs, there have been no human studies eval-
uating MSC transplantation in established PAH.

GENE-ENHANCED CELL THERAPY. MSCs may represent
a more convenient platform for cell-based gene therapy as
a result of their potential for allogeneic transplantation as
well as their ability to expand in culture.

http://www.clinicaltrials.gov/ct2/show/NCT01086540?term=NCT01086540&amp;rank=1
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The use of syngeneic bone marrow–derived early-
outgrowth EPCs engineered to overexpress eNOS may
represent an innovative approach to improving the function
of pulmonary endothelium. Early outgrowth EPCs over-
expressing eNOS not only prevented the progression of
PAH, but also reversed established disease in the MCT rat
model, even when delivered 3 weeks after MCT injury (90).
These studies provided evidence to support a phase 1 clinical
trial using autologous EPC-based eNOS gene therapy,
PHACeT (Pulmonary Hypertension and eNOS Cell
Therapy Trial; NCT00469027).
Devices. CARDIAC RESYNCHRONIZATION THERAPY. Ven-
tricular dyssynchrony is seen in progressive stages of PAH-
induced right heart failure. PAH patients with severe disease
have interventricular mechanical asynchrony, evidenced by
delayed peak shortening and prolonged duration of short-
ening of the RV free wall compared with LV free wall (91).
This pattern of interventricular dyssynchrony in PAH is
associated with impaired RV systolic function (RV overload)
and LV underfilling. Recent work performed in experi-
mental models of PAH suggest that RV free wall pacing
improves right heart function (increased maximal rate of rise
of RV pressure) and diminishes adverse interventricular
diastolic interaction (without detrimental effects on LV or
coronary perfusion), thereby potentially delaying develop-
ment of RV failure (92). These acute changes have recently
been confirmed in a pilot study of patients with right heart
failure and ventricular asynchrony due to chronic thrombo-
embolic PH (93).

EXTRACORPOREAL LIFE SUPPORT. Cardiogenic shock in
PAH patients is an acute decompensation of their under-
lying chronic RV failure. The use of extracorporeal life
support as a bridge to recovery and/or as a bridge to lung
transplantation is now clinically utilized (94). The 3 most
common extracorporeal life support approaches include: 1)
venoarterial extracorporeal membrane oxygenation
(ECMO) for hypoxia or hemodynamic failure; 2) venove-
nous ECMO for hypercapnia or hypoxemia; and 3)
pumpless arteriovenous extracorporeal lung assist (Nova-
lung, Hechingen, Germany). ECMO is predominantly used
for intubated patients, but it can be used in awake, non-
intubated patients as a bridge to transplantation (95–97). A
venovenous ECMO experience early in acute RV failure
may prove beneficial and, with the Avalon Elite Bicaval
Dual Lumen catheter (Avalon Laboratories, Los Angeles,
California) allowing a single cannulation site, can avoid
multiple access sites and the need for ECMO (98,99). The
Novalung assist device is a pumpless, low resistance
oxygenator designed for pulsatile blood flow drive by the
patient’s cardiac output (100). The Novalung device is
connected between the pulmonary artery and the left atrium,
producing an oxygenated right-to-left shunt, reducing RV
afterload (94,95). After the procedure, patients can be
ambulatory while awaiting lung transplantation. The main
disadvantages are a sternotomy for central cannulation, often
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with the need for bypass stabilization, and the risk
of bleeding, thromboembolism, and infection (94,95).

Ethical/Global Issues in Drug Development
for an Orphan Disease

Multicenter pivotal clinical trials in PAH are now being
conducted worldwide. Training of centers in less-developed
nations on the standards of clinical practice is challenging,
not only because of language barriers, but also due to
differences in political climates and regulatory practices. In
addition, standard of care, facilities, and quality of care is
quite diverse. Clinical trial sites must have sufficient
manpower and training to ensure that patients’ rights and
safety are not compromised by trial enrollment (101,102).
Many countries have limited funds for treating patients with
orphan diseases and, thus, cannot approve all therapeutics.

Summary

There is an ongoing need to develop new treatment strate-
gies for PAH. Advancements in molecular biology and
therapeutics have identified novel targets, but not all of these
can realistically be studied, given the small number of PAH
patients worldwide. New trial designs may enhance the
development of new therapies without compromising the
adequate assessments of both safety and efficacy. Many of
the potential new targets have been identified using animal
models of PAH, but these models have thus far not proven
to be reliable models of human disease. Other study
approaches, such as ex vivo studies of cellular and molecular
events from tissue obtained from affected patients, may be
more productive in generating new disease pathways to
target with new drugs.
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