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Abstract: 

The interface between n-type GaN and V-based contacts was characterized by soft x-ray 

spectroscopy. We have investigated the chemical interface structure before and after a rapid 

thermal annealing (RTA) step, which is crucial for the formation of an Ohmic contact. X-ray 

photoelectron and x-ray excited Auger electron spectra suggest that RTA induces an 

accumulation of metallic Ga at the surface. Using x-ray emission spectroscopy, we find that the 

probed nitrogen atoms are in a VN-like environment, indicating that vanadium interacts with 

nitrogen atoms from the GaN to form VN.  
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III-nitride semiconductors are important materials because of their increased use in 

optoelectronic devices such as light emitting diodes. Their performance depends on a low contact 

resistance. Thus, forming Ohmic contacts to nitrides is critical. Traditionally, Ti-based contacts 

were used [1]; more recently, good (i.e., Ohmic) V-based contacts to n-type GaN and n-AlGaN 

alloys result in better contact resistances [2, 3] at lower annealing temperatures [2]. Since Galesic 

and Kolbesen [4] demonstrated the “nitridation” of metallic vanadium films (i.e., the formation 

of VN) by rapid thermal annealing (RTA) in N2 atmosphere, it has been hypothesized that VN is 

also formed at the interface between V-based contacts and n-AlxGa1-xN after RTA treatment [3]. 

VN is stable [5] and has a low work function [6], thus it is suitable to form Ohmic contacts to n-

GaN (whose electron affinity is about 4.0 eV) and n-AlxGa1-xN (whose electron affinity is less 

than 4.0 eV) [7]. It was found that AlxGa1-xN samples need higher RTA temperatures than pure 

GaN samples for optimal contact resistance [3]. It is speculated that VN is formed at lower 

temperatures for GaN (or greater Ga content in the alloy) [3], presumably since the bond lengths 

in GaN are longer than in AlN [8], and hence the bond is expected to be weaker.  

The interface between the nitride layer and metal contacts after heat treatment has 

previously been investigated by (among others) energy dispersive x-ray spectroscopy [9, 10], 

glancing-angle x-ray diffraction [10], and Auger electron spectroscopy sputter depth profiling 

[10, 11]. A detailed photoemission investigation of the interface chemistry between low work 

function metals and GaN was performed by Wu and Kahn [12]. However, the chemical 

properties of the interface between V-based contacts and GaN, in particular the potential 

formation of VN, have yet to be explored. We have used surface sensitive x-ray photoelectron 

spectroscopy (XPS), x-ray excited Auger electron spectroscopy (XAES), and surface-near bulk 

sensitive x-ray emission spectroscopy (XES) to investigate the interface between a V/Al/V/Au 
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metal contact scheme (where Au is the top-most layer) and n-GaN before and after RTA 

treatment.  

  Si-doped GaN samples were grown on c-plane sapphire wafers by molecular beam 

epitaxy. The samples were chemically treated and V-based contacts were deposited by electron 

beam evaporation [3]. Two sets of metal contacts were analyzed (referred to as “thin” and 

“thick”): V(15Å)/Al(80Å)/V(20Å)/Au(100Å) and V(150Å)/Al(800Å)/V(200Å)/Au(1000Å), 

respectively. Both the thin and thick contacts on n-GaN were annealed by RTA at 650°C for 30 

seconds in N2 atmosphere. The specific contact resistivity was found to be on the order of 10-6 Ω 

cm2 [3].  

All samples were sealed in inert atmosphere at Boston University and loaded into ultra-

high vacuum (UHV, base pressure in the 10-10 mbar range) at UNLV via a N2-filled glove box 

(i.e., avoiding any air exposure). XPS and XAES were performed using Mg Kα and Al Kα 

radiation and a Specs PHOIBOS 150MCD electron analyzer. The electron spectrometer was 

calibrated using XPS and Auger line positions of Au, Ag, and Cu [13]. XES was performed at 

the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, on Beamline 8.0.2. 

using a variable line spacing spectrometer [14]. The energy resolution is E/∆E>1200 and the 

spectrometer was calibrated using elastic scattered peaks at different energies (Rayleigh lines). 

For the XES experiments, the samples were briefly exposed to air prior to introduction into 

UHV. 

Before RTA treatment, the XPS survey scans (not shown) of the n-GaN/V/Al/V/Au 

samples are dominated by Au features, as expected. After RTA treatment, elements from initially 

buried layers (e.g., V, Ga, and N) can be observed in the survey scans. 
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The Ga 2p3/2 XPS and Ga L3M4,5M4,5 XAES detail spectra from the bare (i.e., contact 

free) n-GaN and the RTA-treated thick and thin samples are shown in Fig. 1(a) and 1(b), 

respectively. The Ga spectral features differ between the RTA-treated thick and thin samples, 

and both deviate significantly from the corresponding bare n-GaN reference. The Ga 2p3/2 lines 

(Fig. 1a) of the RTA-treated samples are broader (than the n-GaN line). Furthermore, the thick 

RTA sample shows a pronounced shoulder at higher binding energies which is attributed to the 

presence of (at least) a second Ga species. We have thus performed a peak fit analysis (to be 

described in the following) that indeed indicates that both RTA-treated samples need to be 

described with (at least) two different Ga species (labeled I’ and II), while the bare n-GaN 

reference can be well described with a single species (labeled I). For species I and I’, we chose a 

Voigt line shape to describe Ga in compound semiconductor environments (GaN and Ga2O3, 

respectively). For feature II, we chose a Doniach-Šunjić (DS) line shape to describe Ga in a 

metallic environment. This choice of line shape and the assignment of species I, I’, and II was 

motivated by the respective observed binding energies, the XAES spectra, and the modified 

Auger parameters (to be discussed below). We find that the overall quality of the fit improves by 

selecting the DS line shape for species II (compared to a Voigt). The fits on all three samples 

employed a linear background and were performed simultaneously by coupling the full width at 

half maximum (FWHM; Gaussian and Lorentzian for the Voigt line shape and overall FWHM 

for the DS line shape) and asymmetry factor (DS). The results of the fits are shown in Fig 1(a) as 

solid lines. The contribution of species II is dominant at the thick RTA sample surface, while the 

thin RTA sample surface is dominated by species I’. Both species (I’ and II) in the Ga 2p3/2 

spectra of the RTA-treated samples show an energy shift compared to species I in the n-GaN 

spectrum. This energetic shift can be explained by a change in the Ga chemical environment 
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(from GaN to Ga2O3) after contact formation, as will be discussed below. Also, an interface-

induced band bending due to the formation of a metal/semiconductor interface could be present. 

The XAES Ga L3M4,5M4,5 spectra are shown in Fig. 1(b). The spectrum of the bare n-

GaN shows only one contribution to the Ga L3M4,5M4,5 transition (I), while the XAES spectra of 

both RTA-treated samples show (at least) two  different contributions (species I’ and II).  As in 

the case of XPS, the thick RTA-treated sample has a dominant contribution at higher kinetic 

energies (II), though a small contribution at lower kinetic energies (I’) is observed. In contrast, 

the spectrum of the thin RTA-treated sample is a superposition of two species (I’ and II), 

dominated by species I’. 

 To identify the two Ga species present, the modified Auger parameter (α’) was computed 

(using the sum of the Ga 2p3/2 and Ga L3M4,5M4,5 lines).  α’ is independent of the Fermi level 

position (i.e., independent of band bending and charging). Our α’ values are plotted and 

compared to previously published results for Ga-containing compounds [15] in Fig. 1(d). For the 

bare n-GaN, we find α’= 2181.5 ± 0.1 eV. This lies between the previously reported values of 

GaN and Ga2O3. The O 1s XPS signal of all three samples is shown in Fig. 1(c). We note that the 

signal for the bare n-GaN is relatively small when compared to the RTA-treated samples. Thus, 

we interpret the observed α’ of n-GaN (species I) to be indicative of a GaN surface, possibly 

modified by some adsorbed water and/or OH formation at the surface from the above-mentioned 

chemical treatment. 

 For the two RTA-treated samples, a pair of α’ values can be derived (i.e., for species I’ 

and II). For the thin RTA sample, we find α’ values of 2180.6 ± 0.1 eV and 2184.7 ± 0.1 eV for 

species I’ and II, respectively. For the thick RTA sample, we find α’ values of 2181.0 ± 0.1 eV 

and 2184.6 ± 0.1 eV for species I’ and II, respectively. While species I’ agrees well with 
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previously published values for Ga2O3, species II agrees well with metallic Ga [15], as shown in 

Fig. 1(d). The assignment of species I’ to an oxide species is supported by the XPS O 1s signal 

increase for the RTA-treated samples (Fig. 1c). Besides the line shape analysis (as discussed 

earlier), our interpretation of species II as metallic Ga is further supported by Ref. 11, which 

reported that Ga is released from GaN when Al/n-GaN is annealed. 

To investigate the potential formation of VN at the interface, XES was used to resolve the 

chemical environment of nitrogen and vanadium atoms at the buried interface between the V-

based contacts and n-GaN. In Fig. 2(a), the N K XES spectra of the thick contact on n-GaN 

before and after RTA treatment are shown, along with reference materials (n-GaN and VN 

powder). The N K XES spectrum of the untreated contact sample is similar to that of bare n-

GaN, as expected. Note the large magnification factor for the spectrum of the untreated contact 

sample (×470), which is due to the fact that the n-GaN is buried under V/Al/V/Au layers with a 

total nominal thickness of 215 nm. In the spectrum of bare n-GaN (Fig. 2a, bottom), a weak 

emission feature at ~377 eV can be observed, which stems from Ga 3d valence electrons relaxing 

into N 1s core holes (see enlarged inset in Fig. 2a). This feature indicates the presence of N-Ga 

bonds [16] (note that for the untreated contact sample, it is weaker than the noise level of the 

spectrum). In contrast to the untreated sample being similar to the n-GaN sample, the thick RTA 

sample is predominantly in a VN chemical environment. The feature indicative of N-Ga bonds 

(inset, Fig. 2a) and the prominent GaN shoulder at about 388.5 eV are absent in the thick RTA 

sample. A detailed noise-level analysis suggests that, for the thick RTA sample, the fraction of N 

atoms in a GaN environment (within the probing volume) is less than 20%. Thus, we find direct 

evidence for the formation of VN at the contact/GaN interface.  
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The RTA-induced formation of VN at the interface is also supported by the V L2,3 XES  

spectra in Fig. 2(b). The untreated sample displays a similar spectral shape to that of a V metal 

foil. The thick RTA sample shows an additional feature between 504 and 508 eV similar to the 

VN powder (Fig. 2b, top). To ascertain whether the spectrum of the thick RTA sample contains a 

VN contribution, the spectrum of the untreated sample (weighted by a factor of 0.6) was 

subtracted from the RTA-treated sample spectrum (Fig. 2b, 2nd from top). The difference 

spectrum shows two emission features which are similar to that of VN. Thus, we find that the V 

in the thick RTA sample exists in two forms: “unconverted” as metallic V and “reacted” as VN. 

Our observation of a GaN to VN transformation is also thermodynamically supported since the 

heat of formation of VN (∆H298 = -217.3 kJ/mol) is favored over that of GaN (∆H298 = -109.7 

kJ/mol) [17]. The presence of metallic V is likely due to characteristics of the contact scheme: 

while the upper V layer remains metallic, the lower V layer at the V-GaN interface undergoes 

VN formation. Consequently, the metallic Ga signal in XPS and XAES is greater for the thick 

RTA sample than for the thin RTA sample (see Fig. 1a and 1b) since it has more V atoms 

available at the interface to form VN and hence able to “release” Ga. 

In conclusion, we have investigated the interface formation between V/Al/V/Au contacts 

and n-GaN using soft x-ray spectroscopy. Our findings clearly show VN formation as a result of 

RTA treatment of V-based contacts on n-GaN. The presence of metallic Ga indicates that GaN 

serves as the nitrogen source for the observed VN formation. These findings provide new insight 

into the contact formation of GaN-based devices and the improved performance of V-based 

contacts. 
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Figure Captions 

Fig. 1. Bare and RTA-treated thin and thick contacts on n-GaN: (a) Ga 2p3/2 XPS spectra (dots) 

with respective fits (solid) and residuals, (b) Ga L3M4,5M4,5 XAES spectra [for the thin RTA 
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contact sample the experimental data (dots) and a smoothed (solid red) line are shown], (c) O 1s 

XPS spectra, and (d) the corresponding modified Ga Auger parameters. In (d), hatched areas 

denote previously published values of Ga, GaN, and Ga2O3 [14]. 

Fig. 2. (a) XES N K and (b) V L2,3 spectra of  n-GaN, thick contact sample before (“Untreated”) 

and after RTA, and VN powder as well as a V metal reference. The XES V L2,3 spectrum labeled 

“Diff.” is the difference between the “RTA” spectrum and the “Untreated” spectrum (the latter 

multiplied by 0.6). For all spectra, multiplication factors are given that normalize the maximum 

count rate of all spectra to the same value. For the “Untreated” sample, the experimental data 

(dots) and a smoothed (solid red) line are shown. The inset in (a) shows the magnified region of 

the Ga 3d → N1s transition for the RTA-treated and n-GaN samples.  
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