ON GENERALIZATIONS OF PRIME SUBMODULES

M. EBRAHIMPOUR AND R. NEKOOEI*

Communicated by Siamak Yassemi

Abstract

Let R be a commutative ring with identity and M be a unitary R-module. Let $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function, where $S(M)$ is the set of submodules of M. Suppose $n \geq 2$ is a positive integer. A proper submodule P of M is called ($n-$ $1, n)-\phi$-prime, if whenever $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$ and $a_{1} \ldots a_{n-1} x \in P \backslash \phi(P)$, then there exists $i \in\{1, \ldots, n-1\}$ such that $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$ or $a_{1} \ldots a_{n-1} \in(P: M)$. In this paper we study $(n-1, n)-\phi$-prime submodules $(n \geq 2)$. A number of results concerning $(n-1, n)-\phi$-prime submodules are given. Modules with the property that for some ϕ, every proper submodule is $(n-1, n)-\phi$-prime, are characterized and we show that under some assumptions ($n-1, n$)-prime submodules and $(n-1, n)-\phi_{m^{-}}$ prime submodules coincide ($n, m \geq 2$).

1. Introduction

We assume throughout the paper that all rings are commutative with $1 \neq 0$ and modules are unital. We will denote the set of maximal ideals of R by $\operatorname{Max}(R)$.

Suppose that M is an R-module. We will denote the set of submodules of M by $S(M)$. For an ideal I of R and a submodule N of M, let \sqrt{I} denote the radical of I and $\left(N:_{R} M\right)=\{r \in R: r M \subseteq N\}$, which is

[^0]clearly an ideal of R. The R-module M is called faithful if $(0: M)=0$. We say that N is a radical submodule of M if $\sqrt{\left(N:_{R} M\right)}=\left(N:_{R} M\right)$.

Prime ideals play a central role in commutative ring theory. One of the natural generalizations of prime ideals which have attracted the interest of several authors in the last two decades is the notion of prime submodules (see for example $[11,13,14,15,19]$). These have led to more information on the structure of the R-module M. A proper submodule P of M is called prime if $r \in R$ and $x \in M$, with $r x \in P$ implies that $r \in\left(P:_{R} M\right)$ or $x \in P$. It is easy to show that if P is a prime submodule of M, then $\left(P:_{R} M\right)$ is a prime ideal of R.

Anderson and Smith in [7]; defined a weakly prime ideal, i.e., a proper ideal P of R with the property that for $a, b \in R, 0 \neq a b \in P$ implies $a \in P$ or $b \in P$. Weakly prime elements were introduced by Galovich in [12], and used by the authors in [2], to study the unique factorization in rings with zero-divisors.

Nekooei in [17], extended this concept to weakly prime submodule, i. e., a proper submodule P of M with the property that whenever $r \in R$ and $x \in M$ and $0 \neq r x \in P$, then $x \in P$ or $r \in(P: M)$.

To study unique factorization domains, Bhatwadekar and Sharma in [10] defined the notation of almost prime ideal, i.e., a proper ideal I with the property that if $a, b \in R$ and $a b \in I \backslash I^{2}$, then either $a \in I$ or $b \in I$. Thus a weakly prime ideal is almost prime and any proper idempotent ideal is also almost prime. Anderson and Bataineh in [6], extended these concepts to ϕ-prime ideals as follows: Let $S(R)$ be the set of ideals of R and $\phi: S(R) \rightarrow S(R) \cup\{\emptyset\}$ a function. Then a proper ideal I of R is ϕ-prime if for $x, y \in R, x y \in I \backslash \phi(I)$ implies $x \in I$ or $y \in I$.

Zamani in [19] extended this concept to ϕ-prime submodule. For a function $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$, a proper submodule P of M is called ϕ-prime if whenever $r \in R, x \in M$ and $r x \in P \backslash \phi(P)$, then $r \in(P: M)$ or $x \in P$. Let P be a submodule of M. Since $P \backslash \phi(P)=P \backslash(P \cap \phi(P))$, without loss of generality, throughout the paper we will assume $\phi(P) \subseteq$ P. For two functions $\psi_{1}, \psi_{2}: S(M) \rightarrow S(M) \cup\{\emptyset\}$, we write $\psi_{1} \leq \psi_{2}$ if $\psi_{1}(N) \subseteq \psi_{2}(N)$, for each $N \in S(M)$. For the following functions $\phi_{\alpha}: S(M) \rightarrow S(M) \cup\{\emptyset\}$ the corresponding ϕ_{α}-prime submodules are:

ϕ_{\emptyset}	$\phi(N)=\emptyset$	prime submodule
ϕ_{0}	$\phi(N)=0$	weakly prime submodule
ϕ_{1}	$\phi(N)=N$	any module
ϕ_{2}	$\phi(N)=(N: M) N$	almost prime submodule
$\phi_{n}(n \geq 2)$	$\phi(N)=(N: M)^{n-1} N$	n-almost prime submodule
ϕ_{ω}	$\phi(N)=\bigcap_{i=1}^{\infty}(N: M)^{i} N$	ω-prime submodule

Observe that $\phi_{\emptyset} \leq \phi_{0} \leq \phi_{\omega} \leq \cdots \leq \phi_{n+1} \leq \phi_{n} \leq \cdots \leq \phi_{2} \leq \phi_{1}$. Then it is clear that ϕ_{\emptyset}-prime and ϕ_{0}-prime submodules are prime and weakly prime submodules respectively. Zamani in [19] defined almost prime submodule by the function $\phi(N)=(N: M) N$ and ϕ_{n}-prime submodule by the functions $\phi_{n}(N)=(N: M)^{n} N(n \geq 2)$. In this paper if $\phi(N)=(N: M)^{n-1} N$, then we say that N is n-almost prime submodule.

We recall from [5] that a proper ideal I of R is called an n-absorbing ideal if whenever $x_{1} x_{2} \ldots x_{n+1} \in I$ for $x_{1}, \ldots, x_{n+1} \in R$, then there are n of the x_{i} 's whose product is in I. For $n \geq 2$, we denote an $(n-1)$ absorbing ideal I of R by $(n-1, n)$-prime. Let $\phi: S(R) \rightarrow S(R) \cup\{\emptyset\}$ be a function. We say that a proper ideal I of R is $(n-1, n)-\phi$-prime if $a_{1} \ldots a_{n} \in I \backslash \phi(I)\left(a_{1}, \ldots, a_{n} \in R\right)$, implies $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} \in I$, for some $i \in\{1, \ldots, n\}$.

In this paper we extend this concept to $(n-1, n)-\phi$-prime submodules.

Let $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function and P be a proper submodule of M. We say that P is $(n-1, n)-\phi$-prime if $a_{1} \ldots a_{n-1} x \in P \backslash \phi(P)$, $\left(a_{1}, \ldots, a_{n-1} \in R\right.$ and $\left.x \in M\right)$, implies $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$, for some $i \in\{1, \ldots, n-1\}$ or $a_{1} \ldots a_{n-1} \in(P: M)$. If $\phi=\phi_{\emptyset}$, then $(n-1, n)-\phi_{\emptyset}$-prime submodule is called $(n-1, n)$-prime submodule. If $\phi=\phi_{0}$, then a $(n-1, n)-\phi_{0}$-prime submodule is called a $(n-1, n)$ weakly prime submodule and if $\phi=\phi_{m}$, then a $(n-1, n)-\phi_{m}$-prime submodule is called a $(n-1, n)-m$-almost prime submodule $(n, m \geq 2)$.

Let $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function. We show (Theorem 2.1) that a $(n-1, n)-\phi$-prime submodule P that is not $(n-1, n)$ prime satisfies $(P: M)^{n-1} P \subseteq \phi(P)$. In particular, if $\phi=\phi_{0}$ and M is faithful, Then $(P: M)^{n-1}=0$, and thus $(P: M) \subseteq \sqrt{0}$. Among the many results in this paper, we show (Theorem 3.8) if $0 \neq M_{i}$ is a F_{i}-vector space, for every $i \in\{1, \ldots, n\}$ and $R=F_{1} \times \cdots \times F_{n}$ and $M=M_{1} \times \cdots \times M_{n}$, then every proper submodule of M is $(n-1, n)-$ weakly prime if and only if $\operatorname{dim} M_{i}=1$, for all i. We know that a
commutative ring R is Von Neumann regular if and only if every ideal of R is idempotent. Anderson and Bataineh used this concept [6], Theorem 17 , to characterize a commutative ring R that every proper ideal of R is almost prime. Recall from [3] that a submodule N of M is called idempotent if $(N: M) N=N$. An R-module M is a fully idempotent module if every submodule of M is idempotent. We use this concept to characterize modules M for which, every proper submodule is $(n-$ $1, n)-n$-almost prime (Theorem 3.10) or every proper submodule is n-almost prime (Theorem 3.11).

It is well known that, every proper ideal of R is a product of prime ideals if and only if R is a finite direct product of Dedekind domains and SPIRs. Such rings are called ZPI-rings. Anderson and Smith [7], Theorem 7, have shown that every proper ideal of R is a product of weakly prime ideals if and only if R is a ZPI-ring or (R, m) is quasilocal with $m^{2}=0$. Also, Anderson and Bataineh [6], Theorem 22, have shown that in a Noetherian ring R every proper ideal of R is a product of almost prime ideals if and only if R is a finite direct product of Dedekind domains, SPIRs, and SPAP-rings.

Let M be a multiplication module, i.e., An R-module M with the property that for every submodule N of M there exists an ideal I of R such that $N=I M$. In this paper we give a characterization of some multiplication modules in which every proper submodule is a product of almost prime submodules.

Some of the results in this paper are inspired by [6].

2. $(n-1, n)-\phi$-prime submodules

The following theorem asserts that under some conditions $(n-1, n)-$ ϕ-prime submodules are ($n-1, n$)-prime, $(n \geq 2)$.

Theorem 2.1. Let R be a commutative ring and M be an R-module. Let $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function and P be a $(n-1, n)-\phi$-prime submodule of M, that is not $(n-1, n)$-prime, then $(P: M)^{n-1} P \subseteq \phi(P)$. Hence a $(n-1, n)-\phi$-prime submodule P with $(P: M)^{n-1} P \nsubseteq \phi(P)$ is ($n-1, n$)-prime.

Proof. Suppose that $(P: M)^{n-1} P \nsubseteq \phi(P)$; we show that P is $(n-1, n)$ prime. Let $a_{1}, a_{2}, \ldots, a_{n-1} \in R$ and $x \in M$ with $a_{1} a_{2} \ldots a_{n-1} x \in P$. If $a_{1} a_{2} \ldots a_{n-1} x \notin \phi(P)$, then $a_{1} a_{2} \ldots a_{n-1} \in(P: M)$ or
$a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$, for some $i \in\{1,2, \ldots, n-1\}$. Now, let $a_{1} a_{2} \ldots a_{n-1} x \in \phi(P)$.

We can assume that $a_{1} a_{2} \ldots a_{n-k}(P: M)^{k-1} x \subseteq \phi(P)$, for all $k \in$ $\{1,2, \ldots, n-1\}$, because, if $a_{1} a_{2} \ldots a_{n-k}(P: M)^{k-1} x \nsubseteq \phi(P)$, then there exist $r_{1}, \ldots, r_{k-1} \in(P: M)$ such that $a_{1} a_{2} \ldots a_{n-k} r_{1} \ldots r_{k-1} x \notin$ $\phi(P)$. Hence $a_{1} a_{2} \ldots a_{n-k}\left(a_{n-k+1}+r_{1}\right) \ldots\left(a_{n-1}+r_{k-1}\right) x \in P \backslash \phi(P)$. Since P is $(n-1, n)-\phi$-prime, $a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$, for some $i \in\{1,2, \ldots, n-1\}$ or $a_{1} a_{2} \ldots a_{n-1} \in(P: M)$.

Likewise, we can assume that for all $\left\{i_{1}, \ldots, i_{n-k}\right\} \subseteq\{1,2, \ldots, n-1\}$, $a_{i_{1}} a_{i_{2}} \ldots a_{i_{n-k}}(P: M)^{k-1} x \subseteq \phi(P), 1 \leq k \leq n-1$. Also, we can assume that $a_{1} \ldots a_{n-k}(P: M)^{k-1} P \subseteq \phi(P)$, for all $k \in\{1, \ldots, n-1\}$, because, if $a_{1} \ldots a_{n-k}(P: M)^{k-1} P \nsubseteq \phi(P)$, then $a_{1} a_{2} \ldots a_{n-k} r_{1} r_{2} \ldots r_{k-1} p_{0} \notin$ $\phi(P)$, where $p_{0} \in P$ and $r_{1}, r_{2}, \ldots, r_{k-1} \in(P: M)$, and so $a_{1} a_{2} \ldots a_{n-k}\left(a_{n-k+1}+r_{1}\right) \ldots\left(a_{n-1}+r_{k-1}\right)\left(p_{0}+x\right) \in P \backslash \phi(P)$. Since P is $(n-1, n)-\phi$-prime, $a_{1} \ldots a_{n-1} \in(P: M)$ or $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in$ P, for some $i \in\{1,2, \ldots, n-1\}$. Likewise, we can assume that for all $\left\{i_{1}, i_{2}, \ldots, i_{n-k}\right\} \subseteq\{1,2, \ldots, n-1\}, a_{i_{1}} a_{i_{2}} \ldots a_{i_{n-k}}(P: M)^{k-1} P \subseteq \phi(P)$, $1 \leq k \leq n-1$. Since $(P: M)^{n-1} P \nsubseteq \phi(P)$, there exist $p_{0} \in P$ and $r_{1}, r_{2}, \ldots, r_{n-1} \in(P: M)$ with $r_{1} r_{2} \ldots r_{n-1} p_{0} \notin \phi(P)$. Then $\left(a_{1}+\right.$ $\left.r_{1}\right)\left(a_{2}+r_{2}\right) \ldots\left(a_{n-1}+r_{n-1}\right)\left(x+p_{0}\right) \in P \backslash \phi(P)$. Since P is $(n-1, n)-\phi$ prime, $a_{1} a_{2} \ldots a_{n-1} \in(P: M)$ or $a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$, for some $i \in\{1,2, \ldots, n-1\}$. So P is $(n-1, n)$-prime.

Corollary 2.2. Let R be a commutative ring, M be an R-module and P be a proper submodule of M. If P is a $(n-1, n)$-weakly prime submodule that is not $(n-1, n)$-prime, then $(P: M)^{n-1} P=0$.

Corollary 2.3. Let P be a $(n-1, n)-\phi$-prime submodule where $\phi \leq$ ϕ_{n+1}. Then P is $(n-1, n)-\omega$-prime $(n \geq 2)$.

Proof. If P is $(n-1, n)$-prime, then P is $(n-1, n)-\omega$-prime. Suppose that P is not $(n-1, n)$-prime. By Theorem 1.1, $(P: M)^{n-1} P \subseteq \phi(P) \subseteq$ $(P: M)^{n} P$. Hence $\phi(P)=(P: M)^{k} P$, for each $k \geq n-1$. Thus P is $(n-1, n)-\omega$-prime.

Let R_{i} be a commutative ring with identity and M_{i} be an R_{i}-module, for $i=1,2$. Let $R=R_{1} \times R_{2}$. Then $M=M_{1} \times M_{2}$ is an R-module and each submodule of M is of the form $N=N_{1} \times N_{2}$ for some submodules N_{1} of M_{1} and N_{2} of M_{2}.
let $P_{1} \times M_{2}$ be a $(n-1, n)$-weakly prime submodule of M. Let $r_{1}, \ldots, r_{n-1} \in R_{1}$ and $x_{1} \in M_{1}$, with $r_{1} \ldots r_{n-1} x_{1} \in P_{1}$. Let $0 \neq x_{2} \in M_{2}$. Then $\left(r_{1}, 1\right) \ldots\left(r_{n-1}, 1\right)\left(x_{1}, x_{2}\right) \in P_{1} \times M_{2} \backslash\{0\}$. By assumption, this gives that $r_{1}, \ldots, r_{n-1} \in\left(P_{1}: M_{1}\right)$ or $r_{1} \ldots r_{i-1} r_{i+1} \ldots r_{n-1} x_{1} \in P_{1}$, for some $i \in\{1, \ldots, n-1\}$. Therefore, P_{1} is a $(n-1, n)$-prime submodule of M_{1}. So, if P_{1} is a $(n-1, n)$-weakly prime submodule of M_{1}, then $P_{1} \times M_{2}$ need not be a $(n-1, n)$-weakly prime submodule of M.

Next we show that, if P is a $(n-1, n)$-weakly prime submodule of M_{1}, then $P_{1} \times M_{2}$ is a $(n-1, n)-\phi$-prime submodule if $\{0\} \times M_{2} \subseteq \phi\left(P_{1} \times M_{2}\right)$.

Proposition 2.4. Let R_{i} be a commutative ring and M_{i} be an R_{i} module, for $i=1,2$. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ and $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function. Suppose that P_{1} is a $(n-1, n)$ weakly prime submodule of M_{1} such that $\{0\} \times M_{2} \subseteq \phi\left(P_{1} \times M_{2}\right)$. Then $P_{1} \times M_{2}$ is a $(n-1, n)-\phi$-prime submodule of $M_{1} \times M_{2}(n \geq 2)$.

Proof. We have $P_{1} \times M_{2} \backslash \phi\left(P_{1} \times M_{2}\right) \subseteq P_{1} \times M_{2} \backslash\{0\} \times M_{2}=\left(P_{1} \backslash\{0\}\right) \times$ M_{2}. Let $\left(a_{1}, b_{1}\right) \ldots\left(a_{n-1}, b_{n-1}\right)\left(x_{1}, x_{2}\right)=\left(a_{1} \ldots a_{n-1} x_{1}, b_{1} \ldots b_{n-1} x_{2}\right) \in$ $P_{1} \times M_{2} \backslash \phi\left(P_{1} \times M_{2}\right)$, where $\left(a_{1}, b_{1}\right) \ldots\left(a_{n-1}, b_{n-1}\right) \in R$ and $\left(x_{1}, x_{2}\right) \in$ M.
So $\left(a_{1} \ldots a_{n-1} x_{1}, b_{1} \ldots b_{n-1} x_{2}\right) \in\left(P_{1} \backslash\{0\}\right) \times M_{2}$. Then $a_{1} \ldots a_{n-1} x_{1} \in$ $P_{1} \backslash\{0\}$ and by the assumption on P_{1} we have $a_{1} \ldots a_{n-1} \in\left(P_{1}: M_{1}\right)$ or $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x_{1} \in P_{1}$, for some $i \in\{1,2, \ldots, n-1\}$. This gives that $\left(a_{1}, b_{1}\right) \ldots\left(a_{n-1}, b_{n-1}\right)=\left(a_{1} \ldots a_{n-1}, b_{1} \ldots b_{n-1}\right) \in\left(P_{1} \times M_{2}\right.$: $\left.M_{1} \times M_{2}\right)$ or $\left(a_{1}, b_{1}\right) \ldots\left(a_{i-1}, b_{i-1}\right)\left(a_{i+1} b_{i+1}\right) \ldots\left(a_{n-1}, b_{n-1}\right)\left(x_{1}, x_{2}\right) \in$ $P_{1} \times M_{2}$. Therefore, $P_{1} \times M_{2}$ is a $(n-1, n)-\phi$-prime submodule of M.

Corollary 2.5. With the same notations as in Proposition 2.4, let ϕ be a function such that $\phi_{\omega} \leq \phi$. Then for any $(n-1, n)$-weakly prime submodule P_{1} of $M_{1}, P_{1} \times M_{2}$ is a $(n-1, n)-\phi$-prime submodules of $M(n \geq 2)$.

Proof. If P_{1} is a $(n-1, n)$-prime submodule of M_{1}, then $P_{1} \times M_{2}$ is $(n-1, n)$-prime and so $(n-1, n)-\phi$-prime submodule of M. Suppose that P_{1} is not $(n-1, n)$-prime. Then by Corollary 2.2 , we have $\left(P_{1}\right.$:
$\left.M_{1}\right)^{n-1} P_{1}=0$. This gives that

$$
\begin{aligned}
\phi_{\omega}\left(P_{1} \times M_{2}\right) & =\bigcap_{i=2}^{\infty}\left[\left(P_{1} \times M_{2}: M\right)^{i-1}\left(P_{1} \times M_{2}\right)\right] \\
& =\bigcap_{i=2}^{\infty}\left(\left[\left(P_{1} \times M_{2}: M\right)^{i-1} \times R_{2}\right] P_{1} \times M_{2}\right)=0 \times M_{2} \\
\Rightarrow & \phi_{\omega}\left(P_{1} \times M_{2}\right)=0 \times M_{2} \subseteq \phi\left(P_{1} \times M_{2}\right)
\end{aligned}
$$

The result follows by Proposition 2.4.

In the next theorem we give a characterization of $(n-1, n)-\phi$-prime submodules ($n \geq 2$).

Theorem 2.6. Let P be a proper submodule of M and $\phi: S(M) \rightarrow$ $S(M) \cup\{\emptyset\}$ be a function. Then the following are equivalent:
(i) P is $(n-1, n)-\phi$-prime.
(ii) For $a_{1}, \ldots, a_{n-2} \in R$ and $x \in M$ with $a_{1} a_{2} \ldots a_{n-2} x \in M \backslash P$;

$$
\begin{gathered}
\left(P: a_{1} \ldots a_{n-2} x\right)=\bigcup_{i=1}^{n-2}\left(P: a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-2} x\right) \\
\cup\left(P: a_{1} \ldots a_{n-2} M\right) \cup\left(\phi(P): a_{1} \ldots a_{n-2} x\right)
\end{gathered}
$$

Proof. (i) \Rightarrow (ii) Let $a_{1} \ldots a_{n-2} x \in M \backslash P$. Assume that $r \in\left(P: a_{1} \ldots a_{n-2} x\right)$; so $r a_{1} a_{2} \ldots a_{n-2} x \in P$. If $r a_{1} \ldots a_{n-2} x \notin$ $\phi(P)$, then $r a_{1} \ldots a_{n-2} \in(P: M)$. So $r \in\left(P: a_{1} \ldots a_{n-2} M\right)$ or $r a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-2} x \in P$, for some $i \in\{1,2, \ldots, n-2\}$. Hence $r \in\left(P: a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-2} x\right)$. If $r a_{1} \ldots a_{n-2} x \in \phi(P)$, then $r \in$ $\left(\phi(P): a_{1} \ldots a_{n-2} x\right)$. So

$$
\begin{gathered}
\left(P: a_{1} \ldots a_{n-2} x\right) \subseteq \bigcup_{i=1}^{n-2}\left(P: a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-2} x\right) \\
\cup\left(P: a_{1} \ldots a_{n-2} M\right) \cup\left(\phi(P): a_{1} \ldots a_{n-2} x\right)
\end{gathered}
$$

The other containment always holds (remember we are assuming that $\phi(P) \subseteq P)$.
(ii) \Rightarrow (i) Let $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$ with $a_{1} \ldots a_{n-1} x \in P \backslash \phi(P)$. If $a_{1} \ldots a_{n-2} x \in P$, then there is nothing to prove.
So we can assume that $a_{1} \ldots a_{n-2} x \notin P$. Thus $\left(P a_{1} \ldots a_{n-2} x\right)=\bigcup_{i=1}^{n-2}(P$: $\left.a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-2} x\right) \cup\left(P: a_{1} \ldots a_{n-2} M\right) \cup\left(\phi(P): a_{1} \ldots a_{n-2} x\right)$.

Since $a_{1} \ldots a_{n-1} x \in P$, we have $a_{n-1} \in\left(P: a_{1} \ldots a_{n-2} x\right)$. But $a_{n-1} \notin$ $\left(\phi(P): a_{1} \ldots a_{n-2} x\right)$, hence $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-2} a_{n-1} x \in P$, for some $i \in\{1,2, \ldots, n-2\}$ or $a_{n-1} \in\left(P: a_{1} \ldots a_{n-2} M\right)$ (so $a_{1} \ldots a_{n-1} \in(P$: $M)$). Thus P is $(n-1, n)-\phi$-prime.

Let S be a multiplicatively closed subset of R. We know [18], 9.11 (v), that each submodule of $S^{-1} M$ is of the form $S^{-1} N$ for some submodule N of M. Also it is well known that there is a one-to-one correspondence between the set of all prime submodules P of M with $(P: M) \cap S=\emptyset$ and the set of all prime submodules of $S^{-1} M$, given by $P \rightarrow S^{-1} P$, see [16], Theorem 3.4. Furthermore, it is easy to see that if P is a weakly prime submodule of M with $S^{-1} P \neq S^{-1} M$, then $S^{-1} P$ is a weakly prime submodule of $S^{-1} M$. In the next theorem we want to generalize this fact for $(n-1, n)-\phi$-prime submodules. Let $N(S)=$ $\{x \in M: \exists s \in S, s x \in N\}$. We know that $N(S)$ is a submodule of M containing N and $S^{-1}(N(S))=S^{-1} N$. Let $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function and define $\left(S^{-1} \phi\right): S\left(S^{-1} M\right) \rightarrow S\left(S^{-1} M\right) \cup\{\emptyset\}$ by $\left(S^{-1} \phi\right)\left(S^{-1} N\right)=S^{-1}(\phi(N(S)))$ if $\phi(N(S)) \neq \emptyset$ and $\left(S^{-1} \phi\right)\left(S^{-1} N\right)=\emptyset$ if $\phi(N(S))=\emptyset$. Since $\phi(N) \subseteq N$, hence $\left(S^{-1} \phi\right)\left(S^{-1} N\right) \subseteq S^{-1} N$.

We next show that if $\left(S^{-1}(\phi(N)) \subseteq\left(S^{-1} \phi\right)\left(S^{-1} N\right)\right.$, then $(n-1, n)-$ ϕ-primeness of P together with $S^{-1} P \neq S^{-1} M$ imply that $S^{-1} P$ is $(n-1, n)-\left(S^{-1} \phi\right)$-prime $(n \geq 2)$. For a submodule L of M, let ϕ_{L} : $S\left(\frac{M}{L}\right) \rightarrow S\left(\frac{M}{L}\right) \cup\{\emptyset\}$ be defined by $\phi_{L}\left(\frac{N}{L}\right)=\frac{\phi(N)+L}{L}$ for $L \subseteq N$ and \emptyset for $\phi(N)=\emptyset$.

Theorem 2.7. Let M be an R-module and $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function. Let P be a $(n-1, n)-\phi$-prime submodule of M.
(i) If $L \subseteq P$ is a submodule of M, then $\frac{P}{L}$ is a $(n-1, n)-\phi_{L}$-prime submodule of $\frac{M}{L} \quad(n \geq 2)$.
(ii) Suppose that S is a multiplicatively closed subset of R such that $S^{-1} P \neq S^{-1} M$ and $S^{-1}(\phi(P)) \subseteq\left(S^{-1} \phi\right)\left(S^{-1} P\right)$. Then $S^{-1} P$ is a $(n-1, n)-\left(S^{-1} \phi\right)$-prime submodule of $S^{-1} M(n \geq 2)$.

Proof. (i) Let $a_{1}, \ldots, a_{n-1} \in R, x+L \in \frac{M}{L}$ with $a_{1} \ldots a_{n-1}(x+L) \in$ $\frac{P}{L} \backslash \phi_{L}\left(\frac{P}{L}\right)$. By definition of ϕ_{L}, we have $a_{1} \ldots a_{n-1} x \in P \backslash \phi(P)$.
Since P is $(n-1, n)-\phi$-prime, we have $a_{1} \ldots a_{n-1} \in\left(\frac{P}{L}: \frac{M}{L}\right)$ or $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1}(x+L) \in \frac{P}{L}$, for some $i \in\{1, \ldots, n-1\}$. Thus $\frac{P}{L}$ is $(n-1, n)-\phi_{L}$-prime.
(ii) Let $\frac{a_{1}}{s_{1}}, \ldots, \frac{a_{n-1}}{s_{n-1}} \in S^{-1} R$ and $\frac{x}{t} \in S^{-1} M$ with $\frac{a_{1}}{s_{1}} \ldots \frac{a_{n-1}}{s_{n-1}} \frac{x}{t} \in$ $S^{-1} P \backslash\left(S^{-1} \phi\right)\left(S^{-1} P\right)$, where $a_{1}, \ldots, a_{n-1} \in R, s_{1}, \ldots, s_{n-1}, t \in S, x \in$ M. Then by assumption, $\frac{a_{1} \ldots a_{n-1} x}{s_{1} \ldots s_{n-1} t} \in S^{-1} P \backslash S^{-1}(\phi(P))$. So there exists $u \in S$ such that $u a_{1} \ldots a_{n-1} x \in P \backslash \phi(P)$. Thus $\frac{a_{1}}{s_{1}} \ldots \frac{a_{n-1}}{s_{n-1}} \in$ $S^{-1}(P: M) \subseteq\left(S^{-1} P: S^{-1} M\right)$ or $\frac{a_{1}}{s_{1}} \ldots \frac{a_{i-1}}{s_{i-1}} \frac{a_{i+1}}{s_{i+1}} \ldots \frac{a_{n-1}}{s_{n-1}} \frac{x}{t} \in S^{-1} P$, for some $i \in\{1, \ldots, n-1\}$. Hence $S^{-1} P$ is a $(n-1, n)-\left(S^{-1} \phi\right)$-prime submodule of $S^{-1} M$.

Proposition 2.8. Let $R=R_{1} \times \cdots \times R_{n}$ and $M=M_{1} \times \cdots \times M_{n}$ be an R-module, where R_{i} is a commutative ring and M_{i} is an R_{i}-module, for $i \in\{1,2, \ldots, n\}$. Let $P=P_{1} \times \cdots \times P_{n}$ be a $(n-1, n)-\phi$-prime submodule of M, where P_{i} is a submodule of M_{i} and let $\psi_{i}: S\left(M_{i}\right) \rightarrow S\left(M_{i}\right) \cup\{\emptyset\}$ and $\phi(P)=\psi_{1}\left(P_{1}\right) \times \psi_{2}\left(P_{2}\right) \times \cdots \times \psi_{n}\left(P_{n}\right)$. Then P_{j} is a $(n-1, n)-\psi_{j}$ prime submodule of M_{j}, for each j with $P_{j} \neq M_{j}$.

Proof. Let $P_{j} \neq M_{j}, x_{j} \in M_{j}$ and $a_{1}, \ldots, a_{n-1} \in R_{j}$ such that $a_{1} \ldots a_{n-1} x_{j} \in P_{j} \backslash \psi_{j}\left(P_{j}\right)$. Thus $\left(1, \ldots, 1, a_{1}, 1, \ldots, 1\right)\left(1, \ldots, 1, a_{2}, 1, \ldots, 1\right) \ldots$ $\left(1, \ldots, 1, a_{n-1}, 1, \ldots, 1\right)\left(0, \ldots, 0, x_{j}, 0, \ldots, 0\right)=$ $\left(0, \ldots, 0, a_{1} \ldots a_{n-1} x_{j}, 0, \ldots, 0\right) \in P \backslash \phi(P)$.
Therefore, $\left(1, \ldots, 1, a_{1} \ldots a_{n-1}, 1, \ldots, 1\right) \in(P: M)$. So $a_{1} \ldots a_{n-1} \in$ $\left(P_{j}: M_{j}\right)$ or $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x_{j} \in P_{j}$, for some $i \in\{1, \ldots, n-1\}$. Thus P_{j} is $(n-1, n)-\psi_{j}$-prime.

Corollary 2.9. Let $R=R_{1} \times \cdots \times R_{n}$ and $M=M_{1} \times \cdots \times M_{n}$ and $P=P_{1} \times \cdots \times P_{n}$, where R_{i} is a commutative ring and M_{i} is an R_{i} module and P_{i} is a submodule of M_{i}, for $i \in\{1, \ldots, n\}$. Let P be a $(n-1, n)-\phi_{m}$-prime submodule of M. Then P_{j} is $a(n-1, n)-\phi_{m}$ prime submodule of M_{j}, for each j with $P_{j} \neq M_{j}(n, m \geq 2)$.

Proof. We have

$$
\begin{aligned}
\phi_{m}(P) & =(P: M)^{m-1} P=\left(P_{1}: M_{1}\right)^{m-1} P_{1} \times \cdots \times\left(P_{n}: M_{n}\right)^{m-1} P_{n} \\
& =\phi_{m}\left(P_{1}\right) \times \cdots \times \phi_{m}\left(P_{n}\right) .
\end{aligned}
$$

So the result follows by the Proposition 2.8.
It is clear that every $(n-1, n)$-weakly prime submodule is $(n, n+1)$ weakly prime. We show that the converse is not true in general.

Example 2.10. a) Let $R=\mathbf{Z}_{8}$ and $M=R$ as R-module. By [9], Example 3.5 (a), every nonzero proper submodule of M is (2,3)-prime, and hence ($n-1, n$)-weakly prime, for all $n \geq 3$. Now consider $N=$ $\{\overline{0}, \overline{4}\}$. We have $\overline{0} \neq \overline{2} \cdot \overline{2} \in N$ but $\overline{2} \notin N$. So N is not a weakly prime submodule.
b) Let $R=\frac{\mathbf{R}[|x, y|]}{\left(x y, x^{2}-y^{2}, x^{3}, y^{3}\right)}$ and $M=R$ as R-module. $B y[9]$, Example 3.5(b), every nonzero proper submodule of M is (2,3)-prime and so ($n-1, n$)-weakly prime, for all $n \geq 3$. Consider
$N=\frac{\left(x y, x^{2}, y^{2}\right)}{\left(x y, x^{2}-y^{2}, x^{3}, y^{3}\right)}$. We have $0 \neq \bar{x}^{2} \in N$, but $\bar{x} \notin N$, where $\bar{x}^{i}=x^{i}+\left(x y, x^{2}-y^{2}, x^{3}, y^{3}\right)$, for $i=1,2$. So N is not weakly prime.
3. $(n-1, n)-\phi_{\alpha}$-prime submodules

Theorem 3.1. Let M be an R-module and $0 \neq x \in M$ such that $R x \neq$ M and $\left(0:_{R} x\right)=0$. If $R x$ is not a $(n-1, n)$-prime submodule of M, then $R x$ is not $(n-1, n)-m$-almost prime submodule of $M(n, m \geq 2)$.
Proof. Since $R x$ is not $(n-1, n)$-prime, there exist $a_{1}, \ldots, a_{n-1} \in R$ and $y \in M$ such that $a_{1} \ldots a_{n-1} \notin(R x: M)$ and $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} y \notin$ $R x$, for all $i \in\{1,2, \ldots, n-1\}$. But $a_{1} \ldots a_{n-1} y \in R x$. If $a_{1} \ldots a_{n-1} y \notin$ $(R x: M)^{m-1} R x$, then by definition $R x$ is not $(n-1, n)-m$-almost prime. So let $a_{1} \ldots a_{n-1} y \in(R x: M)^{m-1} x$. We have $\left(a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1}\right)$ $(y+x) \notin R x$, for all $i \in\{1,2, \ldots, n-1\}$ and $a_{1} \ldots a_{n-1}(y+x) \in R x$. If $a_{1} \ldots a_{n-1}(y+x) \notin(R x: M)^{m-1} x$, then again by definition $R x$ is not $(n-1, n)-m$-almost prime. So let $a_{1} \ldots a_{n-1}(y+x) \in(R x: M)^{m-1} x$, then $a_{1} \ldots a_{n-1} x \in(R x: M)^{m-1} x$, which gives that $a_{1} \ldots a_{n-1} x=r x$, for some $r \in(R x: M)^{m-1}$. Since $\left(0:_{R} x\right)=0$, it gives that $a_{1} \ldots a_{n-1}=$ $r \in(R x: M)^{m-1} \subseteq(R x: M)$, which contradicts our assumption.
Corollary 3.2. Let $0 \neq x \in M$, where M is an R-module and $\left(0:_{R}\right.$ $x)=0$ and $R x \neq M$. Then $R x$ is a $(n-1, n)$-prime submodule of M if and only if $R x$ is a $(n-1, n)$ - m-almost prime submodule of M ($n, m \geq 2$).
Corollary 3.3. Let the assumptions be as in the Corollary 3.2. Then $R x$ is $(n-1, n)$-almost prime if and only if $R x$ is $(n-1, n)-m$-almost prime ($n, m \geq 2$).
Proof. Let $R x$ be $(n-1, n)-m$-almost prime. So $R x$ is $(n-1, n)$-almost prime. Conversely, let $R x$ be ($n-1, n$)-almost prime. By Corollary 3.2
(for $m=2$) $R x$ is $(n-1, n)$-prime. So again by Corollary $3.2 R x$ is ($n-1, n$) - m-almost prime.

We give an example of a $(n-1, n)-n$-almost prime submodule that is not $(n-2, n-1)-(n-1)$-almost prime $(n \geq 3)$.

Example 3.4. Let K be a field and $R=K[|x|]$. We know that $m=$ (x) is the unique maximal ideal of R. Put $\bar{R}=\frac{R}{m^{n}}$ and $M=\bar{R}$ as \bar{R}-module. We have $\bar{m}^{n}=0$. Let N be a proper submodule of M. We have $\left(N^{n-1}\right)^{n}=N^{n^{2}-n} \subseteq \bar{m}^{n^{2}-n} \subseteq \bar{m}^{n}=0$. Suppose that $a_{1}, \ldots, a_{n-1} \in \bar{R}, a_{n} \in M$ and $0 \neq a_{1} \ldots a_{n} \in N^{n-1}$. Since $\bar{m}^{n}=0$, there exists $i \in\{1, \ldots, n\}$ such that $a_{i} \notin \bar{m}$ and hence a_{i} is a unit. Thus $a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n} \in N^{n-1}$ and N^{n-1} is $(n-1, n)-n$-almost prime. We now show that \bar{m}^{n-1} is not $(n-2, n-1)-(n-1)$-almost prime. Since $\left(\bar{m}^{n-1}\right)^{n-1}=\bar{m}^{2 n-2}=0$, we have $0 \neq \bar{x}^{n-1} \in \bar{m}^{n-1}$. Hence $\bar{x}^{n-1} \in \bar{m}^{n-1} \backslash\left(\bar{m}^{n-1}\right)^{n-1}$. But $\bar{x}^{n-2} \notin \bar{m}^{n-1}$. So \bar{m}^{n-1} is not ($n-2, n-1)-(n-1)$-almost prime.

Theorem 3.5. Let M be an R-module and a be an element of R such that $a M \neq M$. Suppose that $\left(0:_{M} a\right) \subseteq a M$. Then $a M$ is $(n-1, n)$ almost prime submodule of M if and only if it is $(n-1, n)$-prime $(n \geq 2)$.

Proof. $\Leftarrow)$ is clear.
\Rightarrow) Suppose that $a M$ be $(n-1, n)$-almost prime. Let $b_{1}, \ldots, b_{n-1} \in R$ and $x \in M$ with $b_{1} \ldots b_{n-1} x \in a M$. If $b_{1} \ldots b_{n-1} x \notin(a M: M) a M$, then $b_{1} \ldots b_{n-1} \in(a M: M)$ or $b_{1} \ldots b_{i-1} b_{i+1} \ldots b_{n-1} x \in a M$, for some $i \in\{1,2, \ldots, n-1\}$. So suppose that $b_{1} \ldots b_{n-1} x \in(a M: M) a M$. Now $\left(b_{1}+a\right) b_{2} \ldots b_{n-1} x \in a M$. If $\left(b_{1}+a\right) b_{2} \ldots b_{n-1} x \notin(a M: M) a M$, then, $a M$ is $(n-1, n)$-almost prime, then $b_{1} \ldots b_{n-1} \in(a M: M)$ or $b_{1} \ldots b_{i-1} b_{i+1} \ldots b_{n-1} x \in a M$, for some $i \in\{1,2, \ldots, n-1\}$. So assume that $\left(b_{1}+a\right) b_{2} \ldots b_{n-1} x \in(a M: M) a M$. Then $b_{1} \ldots b_{n-1} x \in(a M:$ $M) a M$ gives that $a b_{2} \ldots b_{n-1} x \in(a M: M) a M$. Hence there exist $r \in$ $(a M: M)$ and $y \in M$ such that $a b_{2} \ldots b_{n-1} x=r a y$ and so $b_{2} \ldots b_{n-1} x-$ $r y \in\left(0:_{M} a\right)$. This gives that $b_{2} \ldots b_{n-1} x \in\left(0:_{M} a\right)+a M \subseteq a M$.

Lemma 3.6. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ where R_{i} is a commutative ring, for all $i \in\{1,2, \ldots, n\}$. If P is a $(n-1, n)$-weakly prime ideal of R, then either $P=0$ or $P=P_{1} \times P_{2} \times \cdots \times P_{i-1} \times R_{i} \times P_{i+1} \times \cdots \times P_{n}$ for some $i \in\{1,2, \ldots, n\}$ and if $P_{j} \neq R_{j}($ for $j \neq i)$, then P_{j} is $(n-1, n)$-prime in R_{j}.

Proof. Let $P=P_{1} \times P_{2} \times \cdots \times P_{n}$ be a $(n-1, n)-$ weakly prime ideal of R. So there exists $(0, \ldots, 0,0) \neq\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in P$ and hence

$$
\left(a_{1}, 1,1, \ldots, 1\right)\left(1, a_{2}, 1, \ldots, 1\right) \ldots\left(1,1, \ldots, 1, a_{n}\right)=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in P
$$

Since P is $(n-1, n)$-weakly prime; we have
$\left(a_{1}, a_{2}, \ldots, a_{i-1}, 1, a_{i+1}, \ldots, a_{n}\right) \in P$, for some $i \in\{1,2, \ldots, n\}$. Hence $(0,0, \ldots, 0,1,0,0, \ldots, 0) \in P$. So $P=P_{1} \times P_{2} \times \cdots \times P_{i-1} \times R_{i} \times P_{i+1} \times$ $\cdots \times P_{n}$. If $P_{j} \neq R_{j}$ (for $j \neq i$), we claim that P_{j} is $(n-1, n)-$ prime. Suppose that $i<j$. Let $b_{1} b_{2} \ldots b_{n} \in P_{j}$, we have

$$
\begin{aligned}
& 0 \neq\left(0,0, \ldots, 0,1,0, \ldots, 0, b_{1} b_{2} \ldots b_{n}, 0, \ldots, 0\right) \\
= & \left(0, \ldots, 0,1,0, \ldots, 0, b_{1}, 0, \ldots, 0\right)\left(0, \ldots, 0,1,0, \ldots, 0, b_{2}, 0, \ldots, 0\right) \\
& \ldots\left(0, \ldots, 0,1,0, \ldots, 0, b_{n}, 0, \ldots, 0\right) \in P
\end{aligned}
$$

Since P is $(n-1, n)$-weakly prime, we have

$$
\left(0,0, \ldots, 0,1,0, \ldots, 0, b_{1} b_{2} \ldots b_{k-1} b_{k+1} \ldots b_{n}, 0, \ldots, 0\right) \in P
$$

for some $k \in\{1,2, \ldots, n\}$. So $b_{1} b_{2} \ldots b_{k-1} b_{k+1} \ldots b_{n} \in P_{j}$. Thus P_{j} is ($n-1, n$)-prime. The proof $j<i$ is similar.

Proposition 3.7. Let $R=R_{1} \times \cdots \times R_{n}$, where R_{i} is a commutative ring, for all $i \in\{1, \ldots, n\}$ and every proper ideal of R is $(n-1, n)$-weakly prime. Let $M=M_{1} \times \cdots \times M_{n}$, where $0 \neq M_{j}$ is an R_{j}-module, for all $j \in\{1, \ldots, n\}$. If $0 \neq P$ is a $(n-1, n)$-weakly prime submodule of M such that $(P: M) \neq 0$, then $P=P_{1} \times P_{2} \times \cdots \times P_{i-1} \times M_{i} \times P_{i+1} \times \cdots \times P_{n}$ for some $i \in\{1, \ldots, n\}$ and if $P_{j} \neq M_{j}($ for $j \neq i)$, then P_{j} is a $(n-1, n)$ prime submodule of M_{j}.

Proof. Let $P=P_{1} \times \cdots \times P_{n}$, where P_{i} is a submodule of M_{i}, for $i \in\{1, \ldots, n\} .0 \neq(P: M)=\left(P_{1}: M_{1}\right) \times \cdots \times\left(P_{n}: M_{n}\right)$ is a nonzero proper ideal of R. So it is $(n-1, n)$-weakly prime, by assumption. We have by Lemma $3.6\left(P_{i}: M_{i}\right)=R_{i}$, for some $i \in\{1, \ldots, n\}$ and so $P_{i}=M_{i}$. Thus $P=P_{1} \times \cdots \times P_{i-1} \times M_{i} \times P_{i+1} \times \cdots \times P_{n}$. If $P_{j} \neq M_{j}$ (for $j \neq i$). We claim that P_{j} is $(n-1, n)$-prime. Suppose that $i<j$. Let $a_{1}, \ldots, a_{n-1} \in R_{j}$ and $x \in M_{j}$ such that $a_{1} \ldots a_{n-1} x \in P_{j}$. There exists $0 \neq y \in M_{i}$. We have

$$
\begin{aligned}
0 & \neq \\
= & \left(0, \ldots, 0, y, 0, \ldots, 0, a_{1} \ldots a_{n-1} x, 0, \ldots, 0\right) \\
= & \left(0, \ldots, 0,1,0, \ldots, 0, a_{1}, 0, \ldots, 0\right) \ldots\left(0, \ldots, 0,1,0, \ldots, 0, a_{n-1}, 0, \ldots, 0\right) \\
& \times(0, \ldots, 0, y, 0, \ldots, 0, x, 0, \ldots, 0) \in P .
\end{aligned}
$$

Since P is $(n-1, n)$-weakly prime, we have $a_{1} \ldots a_{n-1} \in\left(P_{j}: M_{j}\right)$ or $a_{1} \ldots a_{k-1} a_{k+1} \ldots a_{n-1} x \in P_{j}$, for some $k \in\{1, \ldots, n-1\}$. Thus P_{j} is ($n-1, n$)-prime. The proof $j<i$ is similar.

It was shown by Anderson and Smith [7], Theorem 8, that every proper ideal of R is weakly prime if and only if R is a direct product of two fields or (R, M) is quasi-local with $M^{2}=0$. Now we extend this result to ($n-1, n$)-weakly prime modules.

Theorem 3.8. Let $R=F_{1} \times \cdots \times F_{n}$, where F_{i} is a field and $0 \neq M_{i}$ is a F_{i}-vector space, for all $i \in\{1, \ldots, n\}$ and $M=M_{1} \times \cdots \times M_{n}$. Every proper submodule of M is $(n-1, n)$-weakly prime if and only if $\operatorname{dim} M_{i}=1$, for all i.

Proof. (\Leftarrow) Let $\operatorname{dim} M_{i}=1$, for each $i \in\{1, \ldots, n\}$ and $N=N_{1} \times \cdots \times N_{n}$ be a proper submodule of M, where N_{i} is a submodule of M_{i}. So $N_{j}=0$, for at least one $j \in\{1, \ldots, n\}$ (because N is a proper submodule). It is easy to show that N is $(n-1, n)$-weakly prime.
(\Rightarrow) Suppose that every proper submodule of M is $(n-1, n)$-weakly prime. We claim that $\operatorname{dim} M_{i}=1$, for all $i \in\{1, \ldots, n\}$. Let $\operatorname{dim} M_{i}>1$, for some $i \in\{1, \ldots, n\}$. So there exists a proper submodule $0 \neq N_{i}$ of M_{i}. We have by assumption that $P=0 \times \cdots \times 0 \times N_{i} \times 0 \times \cdots \times 0$ is $(n-1, n)$-weakly prime. Let $0 \neq x_{i} \in N_{i}$ and $0 \neq x_{j} \in M_{j}$ (for each $j \neq i$. We have

$$
\begin{aligned}
0 & \neq\left(0, \ldots, 0, x_{i}, 0 \ldots, 0\right)=(0, \ldots, 0,1,0, \ldots, 0)\left(x_{1} \ldots x_{n}\right) \\
& =\left(a_{11}, \ldots, a_{i-11}, 1, a_{i 1}, \ldots, a_{n-11}\right)\left(a_{12}, \ldots, a_{i-12}, 1, a_{i 2}, \ldots, a_{n-12}\right) \\
& \ldots\left(a_{1 n-1}, \ldots, a_{i-1 n-1}, 1, a_{i n-1}, \ldots, a_{n-1 n-1}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P
\end{aligned}
$$

Where x_{i} and ones are in the $i^{\prime} t h$ place and $a_{j j}=0$ and $a_{j k}=1$, for each $k \neq j$ and $j \in\{1, \ldots, n-1\}$. Since $M_{j} \neq 0$, for each $j \neq i$, we have $\left(0: M_{j}\right)=0$. Since N_{i} is a proper submodule of M_{i}, we have $\left(N_{i}: M_{i}\right)=$ 0 . Thus $(P: M)=(0, \ldots, 0)$. So $\left(a_{11}, \ldots, a_{i-11}, 1, a_{i 1}, \ldots, a_{n-11}\right) \ldots$ $\left(a_{1 n-1}, \ldots, a_{i-1 n-1}, 1, a_{i n-1}, \ldots, a_{n-1 n-1}\right) \notin(P: M)$, where the number 1 has appeared in the $i^{\prime} t h$ place and for each $j \neq i(i<j)$, we have $(0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots, 0)\left(x_{1}, \ldots, x_{n}\right)$
$=\left(0, \ldots, 0, x_{i}, 0, \ldots, 0, x_{j}, 0, \ldots, 0\right) \notin P$, where the first one is in the $i^{\prime} t h$ place and the second one is in the $j^{\prime} t h$ place, which is impossible. The proof for $j<i$ is similar.

It was shown by Anderson and Smith [7], Theorem 8, that every proper ideal of R is weakly prime if and only if R is a direct product
of two fields or (R, M) is quasi-local with $M^{2}=0$. Now we extend this result to $(n-1, n)$-weakly prime modules.

Theorem 3.9. Let $R=F_{1} \times \cdots \times F_{n}$, where F_{i} is a field and $0 \neq M_{i}$ is a F_{i}-vector space, for all $i \in\{1, \ldots, n\}$ and $M=M_{1} \times \cdots \times M_{n}$. Every proper submodule of M is $(n-1, n)$-weakly prime if and only if $\operatorname{dim}_{i}=1$, for all i.

Proof. (\Leftarrow) Let $\operatorname{dim} M_{i}=1$, for each $i \in\{1, \ldots, n\}$ and $N=N_{1} \times \cdots \times N_{n}$ be a proper submodule of M, where N_{i} is a submodule of M_{i}. So $N_{j}=0$, for at least one $j \in\{1, \ldots, n\}$ (because N is a proper submodule). It is easy to show that N is $(n-1, n)$-weakly prime.
(\Rightarrow) Suppose that every proper submodule of M is $(n-1, n)$-weakly prime. We claim that $\operatorname{dim} M_{i}=1$, for all $i \in\{1, \ldots, n\}$. Let $\operatorname{dim} M_{i}>1$, for some $i \in\{1, \ldots, n\}$. So there exists a proper submodule $0 \neq N_{i}$ of M_{i}. We have by assumption that $P=0 \times \cdots \times 0 \times N_{i} \times 0 \times \cdots \times 0$ is $(n-1, n)$-weakly prime. Let $0 \neq x_{i} \in N_{i}$ and $0 \neq x_{j} \in M_{j}$ (for each $j \neq i$). We have

$$
\begin{aligned}
0 & \neq\left(0, \ldots, 0, x_{i}, 0 \ldots, 0\right)=(0, \ldots, 0,1,0, \ldots, 0)\left(x_{1} \ldots x_{n}\right) \\
& =\left(a_{11}, \ldots, a_{i-11}, 1, a_{i 1}, \ldots, a_{n-11}\right)\left(a_{12}, \ldots, a_{i-12}, 1, a_{i 2}, \ldots, a_{n-12}\right) \\
& \ldots\left(a_{1 n-1}, \ldots, a_{i-1 n-1}, 1, a_{i n-1}, \ldots, a_{n-1 n-1}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P
\end{aligned}
$$

Where x_{i} and ones are in the i^{\prime} th place and $a_{j j}=0$ and $a_{j k}=1$, for each $k \neq j$ and $j \in\{1, \ldots, n-1\}$. Since $M_{j} \neq 0$, for each $j \neq i$, we have $\left(0: M_{j}\right)=0$. Since N_{i} is a proper submodule of M_{i}, we have $\left(N_{i}: M_{i}\right)=$ 0 . Thus $(P: M)=(0, \ldots, 0)$. So $\left(a_{11}, \ldots, a_{i-11}, 1, a_{i 1}, \ldots, a_{n-11}\right)$ $\ldots\left(a_{1 n-1}, \ldots, a_{i-1 n-1}, 1, a_{i n-1}, \ldots, a_{n-1 n-1}\right) \notin(P: M)$, where the number 1 has appeared in the $i^{\prime} t h$ place and for each $j \neq i(i<j)$, we have $(0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots, 0)\left(x_{1}, \ldots, x_{n}\right)$
$=\left(0, \ldots, 0, x_{i}, 0, \ldots, 0, x_{j}, 0, \ldots, 0\right) \notin P$, where the first one is in the $i^{\prime} t h$ place and the second one is in the $j^{\prime} t h$ place, which is impossible. The proof for $j<i$ is similar.

Recall from [3] that a submodule N of M is called idempotent if $N=(N: M) N$. We know that a commutative ring R is Von Neumann regular if and only if every ideal of R be idempotent. Ansari-Toroghy and Farshadifar in [8] defined a fully idempotent module i.e., an R-module M with the property that every submodule of M is idempotent.

Lemma 3.10. Let $n \geq 1$ be a natural number. An R-module M is regular if and only if $(N: M)^{n} N=N$, for every submodule N of M.

Proof. (\Rightarrow) Let M be a regular R-module and N be a submodule of M. We have $(N: M) N=N$. So $(N: M)^{n} N=N$.
(\Leftarrow) Let N be a submodule of M. We have $N=(N: M)^{n} N \subseteq(N$: $M) N \subseteq N$. So $N=(N: M) N$ and M is regular.

Theorem 3.11. Let $R=R_{1} \times \cdots \times R_{n}$, where R_{i} is a commutative ring and $0 \neq M_{i}$ be an R_{i}-module, for all $i \in\{1, \ldots, n\}$. Let $M=$ $M_{1} \times \cdots \times M_{n}$. Every proper submodule of M is $(n-1, n)-n$-almost prime if and only if M is a regular R-module ($n \geq 2$).

Proof. (\Leftarrow) Let M be a regular R-module and N be a proper submodule of M. So $(N: M)^{n-1} N=N$. Since $N \backslash(N: M)^{n-1} N=\emptyset$, we have N is $(n-1, n)-n$-almost prime.
(\Rightarrow) Let every proper submodule of M be $(n-1, n)-n$-almost prime. We show that M_{i} is regular, for all $i \in\{1, \ldots, n\}$, hence M is regular. Suppose that M_{1} is not regular, so there exists a submodule N_{1} of M_{1} such that $\left(N_{1}: M_{1}\right)^{n-1} N_{1} \neq N_{1}$. By hypothesis $N_{1} \times 0 \times \cdots \times 0$ must be $(n-1, n)-n$-almost prime. But, since $\left(N_{1}: M_{1}\right)^{n-1} N_{1} \neq N_{1}$, there exists $x_{1} \in N_{1} \backslash\left(N_{1}: M_{1}\right)^{n-1} N_{1}$. Let $0 \neq x_{i} \in M_{i}$, for all $i \geq 2$. We have

$$
\begin{aligned}
&\left(x_{1}, 0, \ldots, 0\right)=(1,0,1, \ldots, 1)(1,1,0,1, \ldots, 1) \cdots(1,1, \ldots, 1,0) \\
&\left(x_{1}, \ldots, x_{n}\right) \in\left(N_{1} \times 0 \times \cdots \times 0\right) \backslash\left(N_{1} \times 0 \times \cdots \times 0: M\right)^{n-1} \\
&\left(N_{1} \times 0 \times \cdots \times 0\right)
\end{aligned}
$$

Since $N_{1} \times 0 \times \cdots \times 0$ is $(n-1, n)-n$-almost prime, we have $1 \in\left(N_{1}: M_{1}\right)$ or $x_{i} \in(0)$, for some $i \geq 2$, which is impossible. So M_{1} is regular. Likewise, M_{i} is regular, for all $i \in\{2, \ldots, n\}$.

Theorem 3.12. Let $R=R_{1} \times \cdots \times R_{m}$ and $M=M_{1} \times \cdots \times M_{m}$, where R_{i} is a commutative ring and $0 \neq M_{i}$ is an R_{i}-module, for all $i \in\{1, \ldots, m\}$. Then every proper submodule of M is n-almost prime if and only if M is regular ($n, m \geq 2$).

Proof. (\Leftarrow) Let M be a regular module and N be a proper submodule of M. So $(N: M)^{n-1} N=N$, hence N is n-almost prime.
(\Rightarrow) Suppose that every proper submodule of M is n-almost prime. So every proper submodule of M is almost prime. We show that M_{i} is regular, for all $i \in\{1,2, \ldots, m\}$, hence M is regular. If M_{1} is not regular, then there exists a proper submodule N_{1} of M_{1} such that (N_{1} : $\left.M_{1}\right) N_{1} \neq N_{1}$. So there exists $x_{1} \in N_{1} \backslash\left(N_{1}: M_{1}\right) N_{1}$. Let $0 \neq x_{i} \in M_{i}$,
for all $i \geq 2$. We have

$$
\begin{aligned}
\left(x_{1}, 0, \ldots, 0\right)= & (1,0, \ldots, 0)\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in\left(N_{1} \times 0 \times \cdots \times 0\right) \backslash \\
& \left(N_{1} \times 0 \times \cdots \times 0: M\right)\left(N_{1} \times 0 \times \cdots \times 0\right)
\end{aligned}
$$

By hypothesis $N_{1} \times 0 \times \cdots \times 0$ must be almost prime. $\operatorname{But}(1,0, \ldots, 0) \notin$ $\left(N_{1} \times 0 \times \cdots \times 0: M\right)$ and $\left(x_{1}, \ldots, x_{m}\right) \notin N_{1} \times 0 \times \cdots \times 0$. So M_{1} is regular. Likewise, M_{i} is regular, for all $i \in\{2, \ldots, m\}$.
Corollary 3.13. Let $m, n \geq 2$ be natural numbers and $R=R_{1} \times \cdots \times R_{m}$ and $M=M_{1} \times \cdots \times M_{m}$, where R_{i} is a commutative ring and M_{i} is an R_{i}-module, for all $i \in\{1, \ldots, m\}$. Then, every proper submodule of M is n-almost prime if and only if every proper submodule of M is ($n+1$)-almost prime.

Proof. (\Leftarrow) It is clear.
(\Rightarrow) Let every proper submodule of M be n-almost prime. We get that M is regular by Theorem 3.11. But $n+1>2$, hence by Theorem 3.11, we obtain that every proper submodule of M is $(n+1)$-almost prime.
4. Multiplication modules and $(n-1, n)-\phi_{\alpha}$-prime submodules

Let R be a commutative ring and M an R-module. We know that M is called a multiplication module if every submodule N of M has the form $I M$ for some ideal I of R. Note that $I \subseteq(N: M)$, hence $N=I M \subseteq(N: M) M \subseteq N$, so that $N=(N: M) M$. We use this concept in the next results.

Theorem 4.1. (i) Let R be a commutative ring and M_{1}, M_{2} be two R-modules. Let P be a $(n-1, n)$-weakly prime submodule of M_{1}. Then $Q=P \times M_{2}$ is a $(n-1, n)-\phi$-prime submodule of $M=M_{1} \times M_{2}$, for each ϕ with $\phi_{\omega} \leq \phi \leq \phi_{1}(n \geq 2)$.
(ii) Let R be a commutative ring, M be an R-module and P be a finitely generated faithful multiplication submodule of M. Suppose that P is $(n-1, n)-\phi$-prime, where $\phi \leq \phi_{n+1}$ and $(P: M)$ is a finitely generated ideal of R. Then either P is $(n-1, n)$-weakly prime or (P : $M)^{n-1} P \neq 0$ and M decomposes as $M_{1} \times M_{2}$, where $M_{2}=(P: M)^{n-1} M$ and $P=Q \times M_{2}$, where Q is $(n-1, n)$-weakly prime. Hence P is ($n-1, n$)- ϕ-prime, for each ϕ with $\phi_{\omega} \leq \phi \leq \phi_{1}$.
Proof. (i) If P is $(n-1, n)$-prime then Q is $(n-1, n)$-prime, hence is ($n-1, n$) - ϕ-prime, for all ϕ. Suppose that P is not $(n-1, n)$-prime.

Then by Corollary 2.2, $(P: M)^{n-1} P=0$. We have $\left(Q:_{R} M\right)=$

$$
\begin{aligned}
& \left(P:_{R} M_{1}\right) \text {. So } \phi_{\omega}(Q)=\bigcap_{i=1}^{\infty}(Q: M)^{i-1} Q=\bigcap_{i=1}^{\infty}\left(P: M_{1}\right)^{i-1}\left(P \times M_{2}\right)= \\
& 0 \times \bigcap_{i=1}^{\infty}\left(P: M_{1}\right)^{i-1} M_{2} \text {. Thus } Q \backslash \phi_{\omega}(Q)=P \times M_{2} \backslash 0 \times \bigcap_{i=1}^{\infty}\left(P: M_{1}\right)^{i-1} M_{2}= \\
& (P \backslash\{0\}) \times M_{2} \backslash \bigcap_{i=1}^{\infty}\left(P: M_{1}\right)^{i-1} M_{2} \text {. Thus } \\
& \\
& \quad a_{1} \ldots a_{n-1}(x, y) \in Q \backslash \phi_{\omega}(Q) \\
& \quad \Rightarrow \quad a_{1} \ldots a_{n-1} x \in P \backslash\{0\} \\
& \quad \Rightarrow \quad a_{1} \ldots a_{n-1} \in\left(P: M_{1}\right)=(Q: M) \\
& \quad \text { or } a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P \text { for some } i \in\{1, \ldots, n\} \\
& \Rightarrow \quad a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1}(x, y) \in Q .
\end{aligned}
$$

So Q is $(n-1, n)-\phi_{\omega}$-prime and hence $(n-1, n)-\phi$-prime.
(ii) If P is $(n-1, n)$-prime, then P is not $(n-1, n)$-weakly prime. So we can assume that P is not $(n-1, n)$-prime. Then $(P: M)^{n-1} P \subseteq$ $\phi(P)$; and hence $(P: M)^{n-1} P \subseteq \phi_{n+1}(P)=(P: M)^{n} P$. So $(P$: $M)^{n-1} P=(P: M)^{2(n-1)} P$. Thus by [1], Theorem 3.1, we have (P : $M)^{n-1}=(P: M)^{2(n-1)}$. Hence $(P: M)^{n-1}$ is idempotent. Since $(P: M)^{n-1}$ is finitely generated, $(P: M)^{n-1}=(e)$ for some idempotent element $e \in R$. Suppose $(P: M)^{n-1} P=0$. So $\phi(P)=0$ and hence P is $(n-1, n)$-weakly prime. Assume that $(P: M)^{n-1} P \neq 0$. Put $M_{2}=(P: M)^{n-1} M=(e) M$ and $M_{1}=(1-e) M$; hence M decomposes as $M_{1} \times M_{2}$. Let $Q=(1-e) P$, so $P=Q \times M_{2}$. We show that Q is $(n-1, n)$-weakly prime. Let $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M_{1}$ and $0 \neq$ $a_{1} \ldots a_{n-1} x \in Q$; so $a_{1} \ldots a_{n-1}(x, 0)=\left(a_{1} \ldots a_{n-1} x, 0\right) \in Q \times M_{2}=P$. We have $(P: M)^{n-1} P=\{0\} \times M_{2}$ and $\phi(P) \subseteq(P: M)^{n-1} P$. Hence $P \backslash(P: M)^{n-1} P \subseteq P \backslash \phi(P)$. Since P is $(n-1, n)-\phi$-prime, so

$$
\begin{aligned}
& \left(a_{1}, \ldots, a_{n-1} x, 0\right) \in P \backslash \phi(P) \\
\Rightarrow & a_{1} \ldots a_{n-1}(x, 0) \in P \backslash \phi(P) \\
\Rightarrow & a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in Q \text { for some } i \in\{1, \ldots, n-1\}
\end{aligned}
$$

or $a_{1}, \ldots, a_{n-1} \in(P: M)=\left(Q: M_{1}\right)$. Hence Q is $(n-1, n)$-weakly prime.

Theorem 4.2. Let (R, m) be a quasi local ring with $m^{n}=0$. If M is a multiplication R-module, Then every proper submodule of M is $(n-1, n)$ weakly prime ($n \geq 2$).

Proof. Since every multiplication module over a quasi-local ring is cyclic [1], Theorem 2.8, there exists $y \in M$ such that $M=R y$. Suppose that N is a proper submodule of M. Let $r_{1}, \ldots, r_{n-1} \in R$ and $x \in M$ and $0 \neq r_{1} \ldots r_{n-1} x \in N$. There exists $s \in R$ such that, $x=s y$ and hence $0 \neq r_{1} \ldots r_{n-1} s y \in N$. Since $m^{n}=0$, we have $r_{1} \ldots r_{i-1} r_{i+1} \ldots r_{n-1} x \in$ N, for some $i \in\{1, \ldots, n-1\}$ or $r_{1} \ldots r_{n-1} \in(N: M)$. Thus N is ($n-1, n$)-weakly prime.

The converse of Theorem 4.2, is not true in general. For example let M be a vector space over the field F with $\operatorname{dim} M \geq 2$. We know that M is not a multiplication module. Every proper submodule of M is prime and so is $(n-1, n)$-weakly prime $(n \geq 2)$.

In the following lemma, we will characterize the almost prime submodules of a finitely generated faithful multiplication module.

Lemma 4.3. Let R be a commutative ring and M be a finitely generated faithful multiplication R-module and let P be an ideal of R.
(i) If $P M$ is a n-almost prime submodule of M, then P is a n-almost prime ideal of $R(n \geq 2)$.
(ii) If P is an almost prime ideal of R and for every $Q \in \operatorname{Max}(R)$ with $P \subset Q ; P \cap Q^{2}=0$ and $\bigcap_{n \geq 1} Q^{n}=0$, then $P M$ is an almost prime submodule of M.

Proof. (i) Suppose that $P M$ is a n-almost prime submodule of M and $r, s \in R$ with $r s \in P \backslash P^{n}$. Since $N=P M=(N: M) M$, we have by [1], Theorem 3.1, $P=(N: M)=(P M: M)$. So $(P M: M)^{n-1} P M=$ $P^{n} M$. If $r s M \subseteq P^{n} M$, then $(r s) \subseteq P^{n}$ by [1], Theorem 3.1, which is impossible. So $(r)[(s) M] \subseteq P M$ and $(r)[(s) M] \nsubseteq P^{n} M$. Thus we have by [19], Theorem 2.11, $(r) \subseteq P$ or $(s) M \subseteq P M$. So $r \in P$ or $s \in P$ by [1], Theorem 3.1, and hence P is n-almost prime.
(ii) Suppose that P is an almost prime ideal of R. If $P M=P$, then there exists $a \in P$, such that $(1-a) M=0$. Hence $a=1$, which is impossible. So $P M \neq M$. Let $a \in R$ and $x \in M$ with $a x \in P M \backslash P^{2} M$. If $a \in P$, then $a \in(P M: M)$. Thus we may assume that $a \notin P$. Put $K=\{r \in R \mid r x \in P M\}$. If $K=R$, then $x \in P M$. Let $K \neq R$. So there exists $Q \in \operatorname{Max}(R)$ with $K \subseteq Q$. Since $a \in K \subseteq Q$, we
have $P \subset Q$. Since M is multiplication, by [1], Theorem $1.2, M=$ $\{m \in M \mid \exists q \in Q,(1-q) m=0\}$ or there exists $q \in Q$ and $m \in M$ such that $(1-q) M \subseteq R m$. If $M=\{m \in M \mid \exists q \in Q,(1-q) m=0\}$, then $(1-q) x=0$ and so $(1-q) \in K \subseteq Q$, a contradiction. Now assume that there exists $m \in M$ and $q \in Q$, such that $(1-q) M \subseteq R m$. Hence $(1-q) x=s m$, for some $s \in R$. We have $a x \in P M$ and so $(1-q) a x \in(1-q) P M \subseteq P m$. Therefore there exists $p \in P$ such that $(1-q) a x=p m$ and so $a s m=p m$. Again, $[(1-q) \operatorname{ann}(m)] M=0$ and hence $(1-q) \operatorname{ann}(m)=0$. Therefore $(1-q)(a s-p)=0$. So $(1-q)$ as $=(1-q) p \in P$. If $(1-q) p \notin P^{2}$, then $(1-q)$ as $\in P \backslash P^{2}$. Since $a \notin P$ and P is almost prime, so $(1-q) s \in P$. Since $(1-q) p \notin P^{2}$, $(1-q) s \in P \backslash P^{2}$. Therefore $(1-q) \in P \subset Q$, (a contradiction), or $s \in P$. If $s \in P$, then $(1-q) x \in P M$ and so $(1-q) \in K \subseteq Q$, a contradiction.

It follows that $(1-q) p \in P^{2}$. Since $P \subseteq Q$ we have $p \in Q \cap P^{2}=0$. So $(1-q) a x=p m=0$ and hence $a x=q a x=q^{2} a x=\ldots$. So $a x \in$ $\bigcap_{n \geq 1}\left(Q^{n} M\right)=\left(\bigcap_{n \geq 1} Q^{n}\right) M=0$ by [1], Theorem 1.6, which is impossible.

Anderson and Bataineh [6], Theorem 22, have shown that in a Noetherian ring R every proper ideal of R is a product of almost prime ideals if and only if R is a finite direct product of Dedekind domains, SPIRs, and SPAP-rings. Recall that R is an SPAP-ring, if (R, m) is quasilocal and satisfies the following two conditions: (i) for each $x \in m \backslash m^{2}$, $\left(x^{2}\right)=m^{2}$ and (ii) $m^{3}=0$.

Let M be a multiplication R-module and N_{1} and N_{2} be submodules of M. There exist ideals I_{1} and I_{2} of R such that $N_{1}=I_{1} M$ and $N_{2}=I_{2} M$. Ameri in [4] defined the product of N_{1} and N_{2} by $N_{1} N_{2}=I_{1} I_{2} M$. We use this notion and extend the result in the above paragraph to some modules.

Theorem 4.4. Let R be a commutative Noetherian ring and for each almost prime ideal P of R and each $Q \in \operatorname{Max}(R)$ with $P \subset Q ; Q^{2} \cap P=0$ and $\bigcap_{n \geq 1} Q^{n}=0$. Let M be a finitely generated faithful multiplication R module. Every proper submodule of M is a product of almost prime submodules if and only if R is a finite direct product of Dedekind domains, SPIRs, and SPAP-rings.

Proof. (\Rightarrow) Suppose that every proper submodule of M is a product of almost prime submodules. Let I be a proper ideal of R. We have IM is
a proper submodule of M by [1], Theorem 3.1. Since $N=I M=(N$: $M) M$, so $I=(N: M)$. By hypothesis $N=\left(I_{1} M\right) \ldots\left(I_{n} M\right)$, where $I_{i} M$ is an almost prime submodule of M, for all $i \in\{1, \ldots, n\}$. So $I M=\left(I_{1} \ldots I_{n}\right) M$. Thus $I=I_{1} I_{2} \ldots I_{n}$ by [1], Theorem 3.1. Now I_{i} is an almost prime ideal of R, for all $i \in\{1, \ldots, n\}$; by Lemma 4.3 (i). So every proper ideal of R is a product of almost prime ideals. Therefore R is a finite direct product of Dedekind domains, SPIRs, and SPAP-rings; by [6], Theorem 22.
(\Leftarrow) Let R be a finite direct product of Dedekind domains, SPIRs, and SPAP-rings. So every proper ideal of R is a product of almost prime ideals, by [6], Theorem 22. Let N be a proper submodule of M. So $N=I M$, for some proper ideal I of R. Thus $I=I_{1} I_{2} \ldots I_{n}$, where I_{i} is an almost prime ideal of R, for each $i \in\{1, \ldots, n\}$. Now we have $I_{i} M$ is an almost prime submodule of M by Lemma 4.3 (ii) and $N=I_{1} \ldots I_{n} M=I_{1} M \ldots I_{n} M$.

Acknowledgments

The authors would like to thank the referee for his/her useful suggestions that improved the presentation of the paper. This research has been supported by the Linear Algebra and Optimization Center of Excellence of Shahid Bahonar University of Kerman.

References

[1] Z. Abd El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755-779.
[2] A. G. Aḡargun, D. D. Anderson and S. Valdes-Leon, Unique factorization rings with zero divisors, Comm. Algebra 27 (1999), no. 4, 1967-1974.
[3] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra 36 (2008), no. 12, 4620-4642.
[4] R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci 27 (2003), no. 27, 1715-1724.
[5] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), no. 5, 1646-1672.
[6] D. D. Anderson and M. Bataineh, Generalization of prime ideals, Comm. Algebra 36 (2008), no. 2, 686-696.
[7] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831-840.
[8] H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidempotent modules, Bull. Iranian Math. Soc. 38 (2012), no. 4, 987-1005.
[9] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429.
[10] S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra 33 (2005), no. 1, 43-49.
[11] J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1978) 156-181.
[12] S. Galovich, Unique factorization rings with zero divisors, Math. Mag. 51 (1978), no. 5, 276-283.
[13] C. P. Lu, Prime submodules, Comm. Math. Univ. St. Paul 33 (1984), no. 1, 61-69.
[14] R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra 20 (1992), no. 6, 1803-1817.
[15] R. L. Mc Casland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math. 23 (1993), no. 3, 1041-1062.
[16] M. E. Moore and S. J. Smith, Prime and radical submodules of modules over commutative rings, Comm. Algebra 30 (2002), no. 10, 5037-5064.
[17] R. Nekooei, Weakly prime submodules, Far East J. Math. Sci. (FJMS) 39 (2010), no. 2, 185-192.
[18] R. Sharp, Steps in Commutative Algebra, Cambridge University Press, Cambridge, 2000.
[19] N. Zamani, ϕ-prime submodules, Glasg. Math. J. 52 (2010), no. 2, 253-259.
M. Ebrahimpour

Department of Mathematics, Shahid Bahonar University of Kerman, P.O.Box 76169133, Kerman, Iran
Email: m.ebrahimpour@vru.ac.ir

R. Nekooei

Department of Mathematics, Shahid Bahonar University of Kerman, P.O.Box 76169133, Kerman, Iran
Email: rnekooei@uk.ac.ir

[^0]: MSC(2010): Primary: 13C05; Secondary:13C13.
 Keywords: $(n-1, n)-\phi$-prime submodule, $(n-1, n)-m$-almost prime submodule, $(n-1, n)$ weakly prime submodule, local ring, multiplication module.
 Received: 29 June 2011, Accepted: 18 August 2012.
 *Corresponding author
 (C) 2013 Iranian Mathematical Society.

