
Chapter 1
On the PLS algorithm for multiple regression
(PLS1)

Yoshio Takane and Sèbastien Loisel

Abstract Partial least squares (PLS) was first introduced by Wold in the mid 1960’s
as a heuristic algorithm to solve linear least squares (LS) problems. No optimality
property of the algorithm was known then. Since then, however, a number of in-
teresting properties have been established about the PLS algorithm for regression
analysis (called PLS1). This paper shows that the PLS estimator for a specific di-
mensionality S is a kind of constrained LS estimator confined to a Krylov subspace
of dimensionality S. Links to the Lanczos bidiagonalization and conjugate gradient
methods are also discussed from a somewhat different perspective from previous
authors.

Key words: Krylov supspace, NIPALS, PLS1 algorithm, Lanczos bidiagonaliza-
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1.1 Introduction

Partial least squares (PLS) was first introduced by Wold (1966) as a heuristic al-
gorithm for estimating parameters in multiple regression. Since then, it has been
elaborated in many directions, including extensions to multivariate cases [1, 4] and
structural equation modeling [8, 15]. In this paper, we focus on the original PLS
algorithm for univariate regression (called PLS1), and show its optimality given the
subspace in which the vector of regression coefficients is supposed to lie. Links to
state-of-the-art algorithms for solving a system of linear simultaneous equations,
such as the Lanczos bidiagonalization and the conjugate gradient methods, are also
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discussed from a somewhat different perspective from previous authors [5, 9]. We
refer the reader to [10] for more comprehensive accounts and reviews of new devel-
opments of PLS.

1.2 PLS1 as Constrained Least Squares Estimator

Consider a linear regression model

z = Gb+ e, (1.1)

where z is the N-component vector of observations on the criterion variable, G is
the N×P matrix of predictor variables, b is the P-component vector of regression
coefficients, and e is the N-component vector of disturbance terms. The ordinary LS
(OLS) criterion is often used to estimate b under the iid (independent and identi-
cally distributed) normal assumption on e. This is a reasonable practice if N is large
compared to P, and columns of G are not highly collinear (i.e., as long as the matrix
G′G is well-conditioned). However, if this condition is not satisfied, the use of OLS
estimators (OLSE) is not recommended, because then these estimators tend to have
large variances. Principal component regression (PCR) is often employed in such
situations. In PCR, principal component analysis (PCA) is first applied to G to find
a low rank (say, rank S) approximation, which is subsequently used as the set of
new predictor variables in a linear regression analysis. One potential problem with
PCR is that the low rank approximation of G best accounts for G but is not neces-
sarily optimal for predicting z. By contrast, PLS extracts components of G that are
good predictors of z. For the case of univariate regression, the PLS algorithm (called
PLS1) proceeds as follows:

PLS1 Algorithm

Step 1. Column-wise center G and z, and set G0 = G.
Step 2. Repeat the following substeps for i = 1, · · · ,S (S≤ rank(G)):

Step 2.1. Set wi = G′i−1z/‖G′i−1z‖, where ‖G′i−1z‖= (z′Gi−1G′i−1z)1/2.
Step 2.2. Set ti = Gi−1wi/‖Gi−1wi‖.
Step 2.3. Set vi = G′i−1ti.
Step 2.4. Set Gi = Gi−1− tiv′i = QGi−1wiGi−1 (deflation),

where QGi−1wi = I−Gi−1wi(w′iG′i−1Gi−1wi)
−1w′iG′i−1, and where ′ denotes the

transpose operation, and ||.|| denotes the L2 norm of a vector (i.e., ||x|| =
√

x′x,
see, e.g., [13], for details); vectors wi, ti, and vi are called (respectively) weights,
scores, and loadings, and are collected in matrices WS, TS, and VS. For a given S,
the PLS estimator (PLSE) of b is given by

b̂(S)
PLSE = WS(V′SWS)

−1T′Sz (1.2)
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(see, e.g., [1]). The algorithm above assumes that S is known and, actually, the
choice of its value is crucial for good performance of PLSE (a cross validation
method is often used to choose the best value of S). It has been demonstrated ([9])
that for a given value of S, the PLSE of b has better predictability than the corre-
sponding PCR estimator.

The PLSE of b can be regarded as a special kind of constrained LS estimator
(CLSE), in which b is constrained to lie in the Krylov subspace of dimensionality S
defined by

KS(G′G,G′z) = Sp(KS), (1.3)

where Sp(KS) is the space spanned by the column vectors of KS, and

Ks = [G′z,(G′G)G′z, · · · ,(G′G)S−1G′z] (1.4)

is called the Krylov matrix of order S. Because Sp(WS) = KS(G′G,G′z) (see [5],
proposition 3.1. and [9]) b can be re-parameterized as b = WSa for some a. Then
Equation (1.1) can be rewritten as

z = GWSa+ e. (1.5)

The OLSE of a is given by

â = (W′
SG′GWS)

−1W′
SG′z, (1.6)

from which the CLSE of b is found as

b̂(S)
CLSE = WSâ = WS(W′

SG′GWS)
−1W′

SG′z. (1.7)

To show that (1.7) is indeed equivalent to (1.2), we need several well-known
results in the PLS literature [3, 4, 5, 9]. First of all, WS is column-wise orthogonal,
that is,

W′
SWS = IS. (1.8)

Secondly, TS is also column-wise orthogonal,

T′STS = IS, (1.9)

and
TSLS = GWS, (1.10)

where LS is an upper bidiagonal matrix. Relations (1.8) through (1.10) imply that

W′
SG′GWS = L′SLS = HS, (1.11)

where HS is tridiagonal. Thirdly,

V′S = T′SG, (1.12)

so that
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LS = T′SGWS = V′SWS. (1.13)

Now it is straightforward to show that

b̂(S)
CLSE = WS(W′

SG′GWS)
−1W′

SG′z

= WSH−1
S L′ST′Sz

= WS(L′SLS)
−1L′ST′Sz

= WSL−1
S T′Sz

= WS(V′SWS)
−1T′Sz

= b̂(S)
PLSE , (1.14)

and this establishes the equivalence between Equations (1.7) and (1.2).
The PLSE of regression parameters reduces to the OLSE if S = rank(G) [when

rank(G) < P, we use the Moore-Penrose inverse of G, in lieu of (G′G)−1G in the
OLSE for regression coefficients].

1.3 Relations to the Lanczos Bidiagonalization Method

It has been pointed out [5] that PLS1 described above is equivalent to the following
Lanczos bidiagonalization algorithm:

The Lanczos Bidiagonalization (LBD) Algorithm

Step 1. Column-wise center G, and compute u1 = G′z/||G′z|| and q1 = Gu1/δ1,
where δ1 = ||Gu1||.
Step 2. For i = 2, · · · ,S (this is the same S as in PLS1),

(a) Compute γi−1ui = G′qi−1−δi−1ui−1.
(b) Compute δiqi = Gui− γi−1qi−1.

Scalars γi−1 and δi (i = 2, · · · ,S) are the normalization factors to make ||ui||= 1 and
||qi−1||= 1, respectively.

Let US and QS represent the collections of ui and qi for i = 1, · · · ,S. It has been
shown ([5] Proposition 3.1) that these two matrices are essentially the same as WS
and TS, respectively, obtained in PLS1. Here “essentially” means that these two
matrices are identical to WS and TS except that the even columns of US and QS are
reflected (i.e., have their sign reversed). We show this explicitly for u2 and q2 (i.e.,
u2 =−w2 and q2 =−t2). It is obvious from Step 1 of the two algorithms that

w1 = u1 and t1 = q1. (1.15)

Let α1 = ||G′z||. Then
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w2 ∝ G′QGw1z (from Step 2.4 of the PLS1 algorithm)

= G′z−G′Gw1(w′1G′Gw1)
−1w′1G′z

= α1(w1−G′Gw1/δ
2
1 ) (1.16)

∝−G′Gw1/δ1 +δ1w1, (1.17)

where ∝ means “proportional.” To obtain the last expression, we multiplied Equa-
tion (1.16) by δ1/α1 (> 0). This last expression is proportional to −u2, where
u2 ∝ G′Gu1/δ1 − δ1u1 from Step 2(a) of the Lanczos algorithm. This implies
u2 =−w2, because both u2 and w2 are normalized.

Similarly, define β 2
1 = w′1(G

′G)2w1. Then

t2 ∝ QGw1GG′QGw1z (from Step 2.2 of the PLS1 algorithm)

= α1(Gw1−GG′Gw1/δ
2
1 −Gw1 +

β 2
1

δ 4
1

Gw1) (1.18)

∝−GG′Gw1 +
β 2

1

δ 2
1

Gw1. (1.19)

To obtain Equation (1.19), we multiplied (1.18) by δ 2
1 /α1 (> 0). On the other hand,

we have

q2 ∝
1

δ1γ1
(GG′Gu1−δ

2
1 Gu1− γ

2
1 Gu1) (from Step 2(b) of the Lanczos algorithm)

∝ GG′Gu1− (δ 2
1 + γ

2
1 )Gu1. (1.20)

To show that q2 ∝−t2, it remains to show that

γ
2 +δ

2 = β
2
1 /δ

2
1 . (1.21)

From Step 2(a) of the Lanczos algorithm,

γ
2 = (G′Gu1/δ1−δ1u1)

′(G′Gu1/δ1−δ1u1)

= β
2/δ

2−δ
2, (1.22)

and so indeed (1.21) holds. Again, we have q2 = −t2, because both q2 and t2 are
normalized.

The sign reversals of u2 and q2 yield u3 and q3 identical to w3 and t3, respec-
tively, by similar sign reversals, and u4 and q4 which are sign reversals of w4 and
t4, and so on. Thus, only even columns of Us and Qs are affected (i.e., have their
sign reversed) relative to the corresponding columns of WS and TS, respectively. Of
course, these sign reversals have no effect on estimates of regression parameters.
The estimate of regression parameters by the Lanczos bidiagonaliation method is
given by

b̂(S)
LBD = Us(L∗S)

−1Q′Sz, (1.23)
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where
L∗S = Q′SGUS, (1.24)

which is upper bidiagonal, as is LS (defined in Equation 1.13). matrix L∗S differs
from matrix LS only in the sign of its super-diagonal elements. The matrices L−1

S
and (L∗S)

−1 are also upper bidiagonal, for which the super-diagonal elements are
opposite in sign, while their diagonal elements remain the same. Thus

WSL−1
S T′S =

s

∑
i=1

(`i,iwit′i + `i,i+1wit′i+1)

=
s

∑
i=1

(`∗i,iuiq′i + `∗i,i+1uiq′i+1)

= Us(L∗s )
−1Q′s, (1.25)

where `i, j and `∗i, j are the i j-th element of (respectively) LS and L∗S. Note that `i,i =
`∗i,i, wit′i = uiq′i, `i,i+1 =−`∗i,i+1, and wit′i+1 =−uiq′i+1.

It is widely known (see, e.g., [11]) that the matrix of orthogonal basis vectors gen-
erated by the Arnoldi orthogonalization of KS [2] is identical to US obtained in the
Lanczos algorithm. Starting from u1 = G′z/‖G′z‖, this orthogonalization method
finds ui+1 (i= 1, · · · ,S−1) by successively orthogonalizing G′Gui (i= 1, · · · ,S−1)
to all previous ui’s by a procedure similar to the Gram-Schmidt orthogonalization
method. This yields US such that G′GUS = USH∗S, or

U′SG′GUS = L∗
′

S L∗S = H∗S, (1.26)

where H∗S is tridiagonal as is HS defined in Equation (1.11). The diagonal elements
of this matrix are identical to those of HS while its sub- and super-diagonal elements
have their sign reversed. Matrix H∗S is called the Lanczos tridiagonal matrix and it
is useful to obtain eigenvalues of G′G.

1.4 Relations to the Conjugate Gradient Method

It has been pointed out [9] that the conjugate gradient (CG) algorithm [7] for solv-
ing a system of linear simultaneous equations G′Gb = G′y gives solutions identical
to b̂(s)

PLSE [s = 1, · · · , rank(G)], if the CG iteration starts from the initial solution

b̂(0)
CG ≡ b0 = 0. To verify their assertion, we look into the CG algorithm stated as

follows:

The Conjugate Gradient (CG) Algorithm

Step 1. Initialize b0 = 0. Then, r0 = G′z−G′Gb0 = G′z = d0. (Vectors r0 and d0
are called initial residual and initial direction vectors, respectively.)
Step 2. For i = 0, · · · ,s−1, compute:
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(a) ai = d′iri/d′iG′Gdi = ||ri||2/d′iG′Gdi.
(b) bi+1 = bi +aidi.
(c) ri+1 = G′z−G′Gbi+1 = ri − aiG′Gdi = Q′di/G′Gri, where Qdi/G′G = I−

di(d′iG′Gdi)
−1d′iG′G is the projector onto the space orthogonal to Sp(G′Gdi) along

Sp(di) (Its transpose, on the other hand, is the projector onto the space orthogonal
Sp(di) along Sp(G′Gdi)).

(d) bi =−r′i+1G′Gdi/d′iG′Gdi = ||ri+1||2/||ri||2.
(e) di+1 = ri+1 +bidi = Qdi/G′Gri+1.

Let R j = [r0, · · · ,r j−1] and D j = [d0, · · · ,d j−1] for j ≤ S. We first show that

Sp(R j) = Sp(D j) = K j(G′G,G′z) (1.27)

by induction, where, as before, Sp(A) indicates the space spanned by the column
vectors of matrix A. It is obvious that r0 = d0 = G′z, so that Sp(R1) = Sp(D1) =
K1(G′G,G′z). From Step 2(c) of the CG algorithm, we have

r1 = Q′di/G′Gr0 = r0−G′Gd0c0 (1.28)

for some scalar c0, so that r1 ∈ K2(G′G,G′z) because G′Gd0 ∈ K2(G′G,G′z).
From Step 2(e), we also have

d1 = Qd0/G′Gr1 = r1−d0c∗0 (1.29)

for some c∗0, so that d1 ∈ K2(G′G,G′z). This shows that Sp(R2) = Sp(D2) =
K2(G′G,G′z). Similarly, we have r2 ∈K3(G′G,G′z) and d2 ∈K3(G′G,G′z), so
that Sp(R3) = Sp(D3) = K3(G′G,G′z), and so on.

The property of D j above implies that Sp(WS) is identical to Sp(DS), which in
turn implies that

b̂(S)
CG = DS(D′SGGDS)

−1D′SGz (1.30)

is identical to b̂(S)
CLSE as defined in Equation (1.7), which in turn is equal to b̂(S)

PLSE

defined in Equation (1.2) [9] by virtue of Equation 1.14. It remains to show that b̂(S)
CG

defined in (1.30) coincides with bS generated by the CG algorithm. By the G′G-
conjugacy of d j’s (the orthogonality of d j’s with respect to G′G, i.e., d′iG′Gd j = 0
for any i 6= j, as will be shown later), Equation 1.30 can be rewritten as

b̂(S)
CG =

S−1

∑
i=0

di(d′iG
′Gdi)

−1d′iG
′z. (1.31)

From Step 2(b) of the CG algorithm, on the other hand, we have

b1 = d0(d′0G′Gd0)
−1d′0r0 = d0(d′0G′Gd0)

−1d′0Gz = b̂(1)
CG, (1.32)

and
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b3 = b̂(1)
CG +d1(d′1G′Gd1)

−1d′1r1,

= b̂(1)
CG +d1(d′1G′Gd1)

−1d′1G′z = b̂(2)
CG, (1.33)

since d′1r1 = d′1Q′d0/G′Gr0 = d′1r0 = d′1Gz. (The second equality in the preceding
equation holds again due to the G′G-conjugacy of d1 and d0.) Similarly, we obtain

b3 = b̂(2)
CG +d2(d′2G′Gd2)

−1d′2r2,

= b̂(2)
CG +d2(d′2G′Gd2)

−1d′2G′z = b̂(3)
CG, (1.34)

since d′2r2 = d′2Q′d1/G′Gr1 = d′2r1 = d′2Q′d0/G′Gr0 = d′2r0 = d′2Gz. This extends to S
larger than 3. This proves the claim made above that (1.30) is indeed identical to bS
obtained from the CG iteration.

It is rather intricate to show the G′G-conjugacy of direction vectors (i.e., d′jG′Gdi
= 0 for j 6= i), although it is widely known in the numerical linear algebra literature
[6]. The proofs given in [6] are not very easy to follow, however. In what follows,
we attempt to provide a step-by-step proof of this fact. Let R j and D j be as defined
above. We temporarily assume that the columns of D j are already G′G-conjugate
(i.e., D′jG′GD j is diagonal). Later we show that such construction of D j is possible.

We first show that
d′j−1r j = 0. (1.35)

From Step 2(c) of the CG algorithm, we have

d′j−1r j = d′j−1Q′d j−1/G′Gr j−1 = d′j−1(I−G′Gd j−1(d′j−1G′Gd j−1)
−1d′j−1)r j−1 = 0,

(1.36)
as claimed above. We next show that

d′j−2r j = 0, (1.37)

based on (1.35). From Step 2(c) of the algorithm, we have

d′j−2r j = d′j−2Q′d j−1/G′Gr j−1

= d′j−2(I−G′Gd j−1(d′j−1GGd j−1)
−1d′j−1)r j−1

= d′j−2r j−1 = 0, (1.38)

as claimed. Note that d′j−2G′Gd j−1 = 0 by the assumption of the G′G-conjugacy
(among the column vectors) of D j. The last equality in (1.38) holds due to (1.35). By
repeating essentially the same process, we can prove that d′j−kr j = 0 for k = 3, · · · , j,
which implies

D′jr j = 0, (1.39)

and
R′jr j = 0, (1.40)
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since Sp(D j) = Sp(R j) = K j(G′G,G′z). These relations indicate that in the CG
method, the residual vector r j is orthogonal to all previous search directions as well
as all previous residual vectors.

We are now in a position to prove that

d′j−1G′Gd j = 0. (1.41)

To do so, we first need to show that

d′jr j = ||r j||2, (1.42)

and also that
d′jr j−1 = ||r j||2. (1.43)

For Equation 1.42, we note that

d′jr j = r′jQ
′
d j−1/G′Gr j (by Step 2(e))

= ||r j||2− r′jG
′Gd j−1(d′j−1G′Gd j−1)

−1d′j−1)r j = ||r j||2, (1.44)

due to Equation 1.35. For Equation 1.43, we have

d′jr j−1 = r′jr j−1 +b j−1d′j−1r j−1 (by Step 2(e))

= 0+(||r j||2/||r j−1||2)||r j−1||2 = ||r j||2. (1.45)

To show that (1.41) holds is now straightforward. We note that

r′jd j = r′j−1d j−a j−1d′j−1G′Gd j (1.46)

by Step 2(c), and that r′jd j = r′j−1d j = ||r j||2 by Equations 1.42 and 1.43. Since
a j−1 6= 0, this implies that d′j−1G′Gd j = 0. That is, d j is G′G-conjugate to the
previous direction vector d j−1.

We can also show that d j is G′G-conjugate to all previous direction vectors de-
spite the fact that at any specific iteration, d j is taken to be G′G-conjugate to only
d j−1. We begin with

d′j−2G′Gd j = 0. (1.47)

We first note that

r′j−2d j = r′j−2r j +b j−1r′j−2d j−1 (by Step 2(e))

= 0+(||r j||2/||r j−1||2)||r j−1||2 (by (1.43))

= ||r j||2. (1.48)

We also have
r′j−1d j = r′j−2d j−a j−2d′j−2G′Gd j (1.49)
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by Step 2(c). Since r′j−1d j = r′j−2d j = ||r j||2 and a j−2 6= 0, this implies (1.47). We
may follow a similar line of argument as above, and show that d′j−kG′Gd j = 0 for
k = 3, · · · , j. This shows that D′jG′Gd j = 0, as claimed.

In the proof above, it was assumed that the column vectors of D j were G′G-
conjugate. It remains to show that such construction of D j is possible. We have
D′1r1 = d′0r1 = 0 by (1.35). This implies that R′1r1 = 0 (since Sp(D1) = Sp(R1)),
which in turn implies that D′1G′Gd1 = d′0G′Gd1 = 0. The columns of D2 = [d0,d1]
are now shown to be G′G-conjugate. We repeat this process until we reach D j
whose column vectors are all G′G-conjugate. This process also generates R j whose
columns are mutually orthogonal. This means that all residual vectors are orthogonal
in the CG method. The CG algorithm is also equivalent to the GMRES (General-
ized Minimum Residual) method [12], when the latter is applied to the symmetric
positive definite (pd) matrix G′G.

It may also be pointed out that RS is an un-normalized version of WS obtained
in PLS1. This can be seen from the fact that the column vectors of both of these
matrices are orthogonal to each other, and that Sp(WS) = Sp(RS) =KS(G′G,G′z).
Although some columns of RS may be sign-reversed as are some columns of Us in
the Lanczos method, it can be directly verified that this does not happen to r2 (i.e.,
r2/||r2||= w2). So it is not likely to happen to other columns of RS.

1.5 Concluding Remarks

The PLS1 algorithm was initially invented as a heuristic technique to solve LS prob-
lems [14]. No optimality properties of the algorithm were known at that time, and
for a long time it had been criticized for being somewhat ad-hoc. It was later shown,
however, that it is equivalent to some of the most sophisticated numerical algorithms
to date for solving systems of linear simultaneous equations, such as the Lanczos
bidiagonalization and the conjugate gradient methods. It is amazing, and indeed
admirable, that Herman Wold almost single-handedly reinvented the “wheel” in a
totally different context.
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