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Abstract

We study entanglement properties of all eigenstates of the Heiseflei model, and find that the entanglement and
mixedness for a pair of nearest-neighbor qubits are completely determined by the corresponding eigenenergies. Specifically,
the negativity of the eigenenergy implies pairwise entanglement. From the relation between entanglement and eigenenergy,
we obtain finite-size behaviors of the entanglement. We also study entanglement and mixedness versus energy in the quantum
Heisenberg{Y model.
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Quantum entanglement lies at the heart of quantum a direct relation is established between the concur-
mechanics, and can be emjibd to accomplish some  renceC [20] quantifying the two-qubit entanglement
physical tasks such as quantum teleportafin In and the ground-state energy per si¢d10,21,22]
this sense, it can be regarded assaurce, just like en- . _
ergy. As pointed out by Osborne and Nielgeh, the Co(N) = max{0, —Eo(N)/N] = max{0, —eo(N) ],

similarity between entangient and energy turns out @)
to be more than superficial. It is interesting to explore Where C refers to the concurrence for two nearest-

the relationship between dse two resources, entan- Neighbor qubits, ané is the ground-state energy. For

glement and energy. a pair of qubits, the entanglement of formation can be
Recently, the study of entanglement properties in obtained from the concurrence

many-body systems have received much attention 14+4/1—C2

[3-19] Specifically, for the ground state (zero tem- £of = <ﬁ) (2

perature) of a ring ofN qubits interacting via the whereh(x) = —xlogy x — (1 — x)logy(1 — x). The

antiferromagnetic isotropic Heisenberg Hamiltonian, . . :
concurrence itself is a good measure of two-qubit en-
tanglement, and we adopt it as our measure of pairwise
E-mail address: xgwang@zimp.zju.edu.cfX. Wang). entanglement.
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For the case of finite temperature, the concurrence  When an energy level of our system is non-dege-
for two nearest qubits in the thermal state of the ring nerate, the corresponding eigenstate is pure. When a
was found to be related to the thermodynamical func- kth energy level is degenerate, we assume that the

tion, the internal energy via [21,22] corresponding state is an equal mixture of all eigen-
states with energy;. Thus, the state correspoding to
C(N) =max0, —U/N), 3 the kth level with degeneracy becomes a mixed other

) i ) i than pure, keeping all symmetries of the Hamiltonian.
which connects the microscopic quantity, the concur- A degenerate ground state is called thermal ground

rence, and the macroscopic quantity, the internal en- gia4e"in the sense that it can be obtained from the
ergy. Egs(1) and (3show that the two-qubit entangle- thermal state exp-H /(kzT)]/Z by taking the zero-
ment and energies are closely related in the isotropic temperature limi{2]. Here, k is the Boltzman con-

Heisenberg model. stant,T the temperature, and the partition function.

Having known the relations between entanglement 1,4, eigenstatey can be considered as the thermal
and energy for ground states and thermal states of theground state of the non-linear Hamiltoni&H given
X X X model, further questions arise that what are the

entanglement properties of excited states, and what are
the relation_ships between entanglement ar)d excite_d-H/ = (H — &)2. (5)
state energies. We will address the question in this
Letter. To study entanglement of excited states is not Note that HamiltonianH” inherits all symmetries of
only interesting itself, but also help to understand the Hamiltonian#.
entanglement at finite terepatures. We also consider Due to the translational invariance of the system, all
the entanglement versus energy in the quaniim nearest-neighbour entanglements are identical. Thus,
model, and show that the entanglement exhibits a sym- from now on, we consider the entanglement between
metry, distinct from that in th&( X X model. qubit 1 and 2, representing nearest-neighbour pair-

There exists another concept, the mixedness of aWise entanglement. Another important SU(2) symme-
state, related to entanglement, is also central in quan-try of the Hamiltonian guarantees that the reduced
tum information theory23]. For instance, Bose and density matrixo,ﬁlz) =Tr3.a, ~n(px) for kth eigenstate
Vedral have shown that entangled states become useis given by
less for quantum telepotian on exceeding a certain
degree of mixedned24]. For a pure bipartite state, w0 0 0
the mixedness of one subsystem is equal to that of pi2 = 8 U= 2k 8
another one, and can be used to quantify bipartite en- 0 Zok ”’6*
tanglement. In this case, entanglement and mixedness Ukt
are equivalent. We will study both entanglement and in the standard bas{$00), |01), |10), |11)}, with
mixedness properties.

Entanglement and eigenenergy. We consider a k= (1£Gi%)/4,  z=Gi'/2. @)
physical model of a ring ofV qubits interacting via
the isotropic Heisenberg X X Hamiltonian

(6)

Here, Gy = Tr(o1a02¢ 01), @ € {x, y, z} are correla-
tion functions which are equal due to the SU(2) sym-
No1 metry.
H=7J Z Siit1+ ISy 1, 4) From Ha_lmlltonlanH, a sm_1p|e and useful relafuon
between eigenenergy per sitg and the correlation

function is obtained as
whereS; j11 = %(1 +0; - 0;+1) is the swap operator 143G%
between qubit andj, 6; = (0ix, 0iy, 0i;) is the vec- ek =&/N=—"k (8)
tor of Pauli matrices, and is the exchange constant. 2
Positive and negativd correspond to the antiferro- Therefore, from EqH6)—(8) the reduced density ma-
magnetic and ferromagnetic case, respectively. Note trix is completely determined by the eigenenetgy
that we have assumed theriodic boundey condition. As all information about pairwise entanglement and

i=1
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mixedness ofp1? are contained irp}?, the eigenen-  Table 1
ergy completely determines the entanglement and The concurrences of the ground state, first and second excited states
mixedness. Next, we give a quantitative relation be- for the number of qubits from 3 to 16

tween the concurrence and the eigenenergy. N 3 4 5 6 7 8 9
From the two-qubit reduced density mat(®), the Co 00 05 0.2472 04343 03158 04128 03438
concurrence for two nearest qubits is obtainefll@$ €1 00 00 00 02060 00161 02821 01525
Cy - 00 00 00 00055 01749 01342

Ci(N) =2max(0, |z| — u+) N 10 11 12 13 14 15 16
=max0, |G{*| - Gi*/2—1/2) Co 04031 03580 03979 03661 03948 03712 03928
= max(0, —3G¥*/2 — 1/2) C1 03184 02258 03386 02695 03509 02976 03590

Cp 0.2541 02100 02962 02570 03212 02877 Q3371

= max0, —eg). 9

The third equality follows from the inequality;*| <

1, which is a special case of a more general result
that |[(A)] < 1 for any Hermitian operatoA satisfy-

ing A2 = 1. The last equality is obtained by using
Eq. (8). Thus, we get a simple relation between the
pairwise entanglement of two nearest qubits and the o
corresponding eigenenergy. A necessary condition for O
non-zero entanglement is that eigenenergy is negative,
i.e., the negativity of eigenenergy implies pairwise en-
tanglement. We also see that the ground state exhibits
largest entanglement.

Now we apply the above result to investigate finite-
size behaviors of the entanglement. Conformal invari-
ance theory predicts the finite size behavior of the
ground state and the first excited stgaB]

Fig. 1. The concurrence versus energy level indebor different
€1(N) — eo(N) ~ %b/N? (10) number of qubits.

with b being identified with the central charge. From

the above equation and E@), we immediately have in Fig. 1, we plot the concurrences versus energy level

index k for different N. It is evident that for a fixed
C1(N) — Co(N) ~ —72b/N?, (11) N the concurrence decreases monotonically with the
which is the finite size behaviour of the entanglement. increase ofk, and whenk is equal or Iarggr than a
. threshold valueky, the entanglement vanishes. The
In Table 1 we give the concurrences of the ground .
. . threshold valueg, is N-dependent, and the larger the
states, first and second excited states for the number of .
: number of qubits, the larger the threshold value. More
qubits from 3 to 16. The ground state becomes entan- :
. and more excited states become entangled when the
gled whenN > 4 [21,22] However, the first (second) o
number of qubits increases.

i > . .
excited state becomes entangled whep: 6 (N > 7). Next, we study the mixedness properties of all

The concurrence of the ground state decreases (in- . . .
. eigenstates. The mixedness of a stat&an be quanti-
creases) as eveN (odd N) increases. However, the . i
fied by the linear entropy given by

concurrence of the first excited states increases as even
N or odd N increases. This fact also holds for the g _1_ Tr(gz). (12)
second excited states. We see that the entanglement )
properties of the excited states are distinct from those Then, from Eqs(6)—(8), and (12)the linear entropy
of the ground states. of the two-qubit state? is obtained as

To clearly display behaviours of the pairwise en- 1
tanglement corresponding to different energy levels, Ex(N)=1— é[éf(N) —e(N)+1], (13)
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Fig. 2. The linear entropy versusfor different N.

which is determined solely by the eigeneneegyper
site. Obviously, the linear entropy takes its maximum
3/4 whene, = 1/2.

In Fig. 2, we plot the linear entropy versusfor
different number of qubits. Ag increases, the linear
entropy monotonically in&ases and reaches a maxi-
mum, then monotonically decreases. In contrast to the
concurrence, the linear gopy takes its maximum in
the middle of energy levels, other than at the ground-
state level. For instance, whew = 6, there are 13
levels and the linear entropy takes its maximum when
k = 6. There are some eigenstates which are non-
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Fig. 3. The concurrence versus eigenenergy peksiter different
number of qubits in th&Y model.

where the periodic boundary condition is assumed
again.

An interesting feature of this system is that for even
N if £ is an eigenenergy;-£ is an eigenenergy too.
Thus, the eigenspectrum exhibits a symmetry, which
is different from that in th& X X model. The reason is
that for evenV HamiltonianHxy anticommutes with
the following operator

A, =01, 003 ®  QON_1;. (15)

It is natural to ask if the entanglement and mixedness

degenerate, and thus pure. In this case, the entangle€xhibit a similar symmetry. The answer is yes as we

ment of between the two qubits and the rest quantified
by the linear entropy is equivalent to the mixedness
of the two-qubit state. For instance, whah= 6, the

will see below.
By exact diagonalization method, we compute the
concurrence and mixedness numerically in &

ground state, the second excited state, and the 10th eximodel. InFig. 3, we plot the concurrences for two

cited state are non-degenerate.
In the isotropic Heisenberg model described above,

nearest qubits versus eigenenergy pereitdt is ev-
ident that the concurrence shows a symmetry with re-

both entanglement and mixedness of an eigenstate arespect to the point o€, = 0, which arises due to the

completely determined by the corresponding eigenen-
ergy. This result is due to the many symmetries in the
model. For other models, the relation between entan-
glement and energy may become more complicated.
We now consider another well-established model, i.e.,
the HeisenbergY model. TheXY Hamiltonian is
written as

N

J
Hxy = E E l((T,'x & 0jr1x + Oiy ®Ui+1y)»
i=

(14)

fact that the operatoni, is a local unitary operator,
and the entanglement properties of the eigenstate with
energy€ are the same as those of the eigenstate with
energy—¢&. If we restrict ourselves to the half part of
the eigenspectrung{ < 0), the behaviour of the con-
currence is similar to that in th€ X X model, i.e., the
concurrence monotonically decreaseskaisicreases
and there also exist threshold valugs

The linear entropy quantifying the mixedness of the
two-qubit states is plotted iRig. 4. It also exhibits a
symmetry with respect te; = 0. And it seems that
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() (o) chaos system. The study of eigenvalue statistics and
0.7 0.7 eigenvectors statistics naturally motivate us to study
ui 06 Ned 0.6 Net entanglement statistics, which is under consideration.
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