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1.0 INTRODUCTION 
Software packages in accelerator physics have relatively long life cycles. They had been 

developed and used for a wide range of accelerators in the past as well as for the cur­

rent projects. For example, the basic algorithms written in the first accelerator program 

TRANSPORT1 are actual for design of most magnet systems. Most of these packages had 

been implemented on Fortran. But this language is rather inconvenient as a basic language 

for large integrated projects that possibly could include real-time data acquisition, data 

base access, graphic user interface modules (GUI), and other features. 

Some later accelerator programs had been based on object-oriented tools (primarily, 

C++ language). These range from systems for advanced theoretical studies10,12 to control 

system software.13 For the new generations of accelerators it would be desirable to have 

an integrated platform in which all simulation and control tasks will be considered with 

one point of view. 

In this report the basic principles of an object-oriented platform for accelerator research 

software (PAC++) are suggested and analyzed. Primary objectives of this work are to 

enable efficient self-explaining realization of the accelerator concepts and to provide an 

integrated environment for the updating and the developing of the code. C++ language 

increases portability and clarity of Fortran-based programs and also provides some new 

features in comparison with the traditional approaches: 

• All accelerator formalisms are considered from a common position. Transition from 

one paradigm to another is performed with one assignment operator =(Pac& P). 

PAC++ itself could be considered as a shell for some old accelerator algorithms as 

well as a tool for developing new ones. 

• Overloaded aritlunetic and assignment operators provide the user with a powerful 

method of accelerator description that is an integral part of C++ source code. Each 

operation has an intuitive physical sense. Addition enables one to construct an 

element from some simple bricks while multiplication is a concatenation of elements 

and lines. 

• PAC++ is implemented as an open hierarchy of classes that enables one to derive 

new paradigms while preserving compatibility with the old ones. This makes pos­

sible to link PAC++ applications with the lattice databases and uses them in the 

control systems. Users could also create their own libraries including in them specific 

accelerator lattices and algorithms. 

• "Time function" concept enables one to simulate changing accelerator features and 

to receive a more valid understanding of the real physical processes. 



2.0 INPUT LANGUAGE 

Traditionally programs for the lattice design in accelerator physics had been written 

in the some standard input language3 that was then interpreted by the package. This 

approach in particular stemmed from the desire to write basic algorithms as simple and 

portable as possible, and from the inability of Fortran to provide suitable language con­

structions. The powerful mechanisms of object-oriented programming (such as polymor­

phism, inheritance etc.) now allow one to write accelerator algorithms directly in C++ 

language without damaging program clarity. 

This report considers the object-oriented description of accelerator structure. Basically 

we suggest overloading arithmetic and assignment operators and describing the lattice 

element as a member of some linear space E. In Appendixes C and D the simplified 

implementation of the Low Energy Booster,19 based on the MAD input language and 

PAC++ syntax respectively, is presented. 

2.1 Linear Space E 
In PAC++ lattice elements are considered as instances of C++ class Element and 

declared as : 

Element id( "Name of the element"); 

where id is any valid C++ identifier and "Name ofthe element" is some symbolic name of this 

element. We do not utilize specific keywords (Rbend, Quadrupole, Kicker etc.) for the 

type of element but rather describe each element with definite. (systematic) parameters as 

a member of a linear space E8 , which contains a subset of instances of C++ class Element 

(Appendix A). The basis class ElementParameter defines objects with a single nonzero 

MAD parameter (L, ANGLE etc.) and forms a basis of this linear space. Then an arbitrary 

element may be presented as their superposition. For example, the basic magnet for the 

LEB will be defined as: 

where L and ANGLE are instances of class ElementParameter and element hb is an 

object whose length is equal to 1.940 m and bend angle is 2 * PI /96 rad. A total list of 

ElementParameters and their relations with MAD keywords is presented in Appendix 

B. The module structure of PAC++ allows one to easily modify this set by adding new def­

initions for old objects (e.g., M for L, RAD for ANGLE etc.) or include new parameters. 

This approach enables one to describe an element without splitting it into some auxiliary 

parts and also forms the lattice in direct accordance with the sequence of real elements. 

We developed ideas, first suggested for the code TEAPOT,4 and included "nonstandard" 
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TEAPOT parameter IR that defines internal representation of the element. Certainly, 

the rules and algorithms of this transformation should be determined in the chosen code 

(Subsection 4.1). 

To represent the root mean square (rms) of random error for specific elements, we define 

C++ class Error. Class Error is derived from the class ElementParameter, inherits its 

arithmetic operators, and determines similar linear space £: (Appendix A). For example: 

Error glRmsShift = 0.0004 * (DX + DY); 

Error hbRmsMlt = 5.82e-05 * K[l] + 2.56e-05 * KT[l]+ 

= 5.70e-04 * K[2] + 2.6ge-04 * KT[2]; 

PAC++ enhances the standard MAD input language and includes the additional Error 

variable and corresponding arithmetic operators in class Element. It allows one to con­

sider instances of this class as members of some extended linear space £ that is a direct 

sum of linear spaces £8 and £r: 

hb + = hbSysMlt + hbRmsMlt + glRmsShift; 

Access functions hb.sysValue(K[l]) and hb.rmsValue(K[l]) return the systematic and 

rms values of the MAD parameter Kl. To print out all information about arbitrary element 

hb the standard C++ I/O operator may be used: 

cout ~ hb; 

One of the additional features of PAC++ is the inclusion of arbitrary time functions 

in the description of element to simulate the real physical processes (magnetic field ramp, 

power supply ripple etc.): 

Element rfcavity = O.024*VOLT*sinj 

It enables one to design the object-oriented implementation of ESME7 and develop some 

special operators of different accelerator codes (e.g., Adiabatic variations in DIMAD5 ). We 

did not use it for the Low Energy Booster (Appendixes C and D) because TEAPOT as­

sumes that rf voltage has to be constant and matches different rf parameters in accordance 

with its own algorithm. 
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2.2 Line 
In accordance with the MAD terminology, lines in PAC++ are defined as a sequence 

of elements and other lines that form the accelerator structure. We consider them as 

instances of C++ class Line and their concatenation as multiplication of Element and 

Line variables. For example, superperiod of the LEB will be defined as (Appendix C): 

Line arc, strSection; 

Line superPeriod = arc*strSection; 

where superPeriod is a instance of class Line. superPeriod includes pointers of the fac­

tors arc and strSection and all their modifications that may be made before or after this 

concatenation. It could be useful for lattice optimization or for inclusion of special sections 

(injection, extraction etc.) without changes in other parts of an accelerator structure: 

Line strSectionOl, strSection02; 

/ / Variant 1 

strSection - strSectionOl; 

/ / Variant 2 

strSection strSection02; 

/ / Study of physical parameters 

/ / of superPeriod 

/ / Study of physical parameters 

/ / of superPeriod 

As a consequence of the multiplicative operations, the repetition of elements and lines 

is considered as their raising to the power and described by the functions power (Ele­

ment& e, int n) and power(Line& I, int n). To reverse order in the sequences of elements 

and lines, the function re1lect(Line& 1) is used. This function satisfies the following rule: 

If el is an instance of class Element and 12 is an instance of class Line, then reflect 

(el *12) is equal to reflect {l2)*el. 

The optimal accelerator structures and their sections may be allocated in the different 

header files and used together to study common physical processes: 

mainO 

{ 

#include "LIN AC_LEB.icc" 

#include "LEB.icc" 
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Line injection = linac-Ieb*lebj 

} 

3.0 BASIC DEFINITIONS AND CLASSES 

As any physical object, accelerator and its elements are characterized by some set of 

input and output parameters: the linear transfer matrix and periodic twiss functions,14 the 

second order aberration coefficients,15 one-turn maps,17 position of closed orbit and particle 

coordinates referred to the ideal orbit, element coordinates in the global Cartesian system 

and all element parameters, described in the previous section. They are the important 

ingredients of all accelerator algorithms and may be considered as a set of C++ classes 

that form the platform for object-oriented implementation of modern accelerator programs 

(Appendix F). 

3.1 Particle or Position 
In PAC++ the position of the particle is determined by the standard canonical variables3 

and considered as C++ class Particle.t The subscripting operator [ ](inti) returns the 

reference to i-th variable and enables to use the instance of class Particle as usual vector: 

double x, px, y, py, dt, dEj 

Particle pj 

p[1] = Xj 

p[2] = pXj 

p[3] = Yj 

p[4] - PYj 

p[5] = dt; 

p[6] = dEj 

II Horizontal position x,[m] 

II Horizontal canonical momentum, divided 

II by the reference momentum: Px/po,[1] 

/ / Vertical position y,[m] 

/ / Vertical canonical momentum, divided 

/ I by the reference momentum: Py / Po, [1] 
/ / Velocity of light times the negative time difference with 

/ / respect to the reference particle: -c~t,[ml 

/ I Energy difference, divided by the reference momentum 

/ / times the velocity of light: 8 = ~E/poc,[1] 

t To describe the beam deviation in monitors or the position of closed orbit we use the alternative name 
Position. 
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If we will consider the accelerator as some object A of class Accelerator, the one-turn 

tracking may be defined as multiplication of this object A and phase space vector x: 

y=A*x; 

where x and yare the instances of class Particle and contain the particle coordinates 

before and after one turn, respectively. For multi particle tracking the arrays of Particles 

could be used: 

Particle** x' , 

for(int i = 1; i <= number Particles; i++) 

for(int j = 0; j < numberTurns; j++ ) 

x[i][j+l] = A *x[i][j]; 

The common beam parameters, such as energy, particle mass and charge, are located in 

C++ class Beam. Class Particle is derived from this class and shares all its static data 

members. The default particle type is proton, and the energy is equal to infinite value. 

To change them the corresponding variables ENERGY, MASS and CHARGE may be 

used: 

ENERGY = 1.538; / / Beam energy, [GeV] 

This set of parameters could be developed to include in our model some additional physical 

effects (e.g., number of particles for simulation of space charge). 

3.2 Rmatrix 
The position x of the particle after some magnet transport system may be expressed by 

means of Taylor expansion as: 

Xi = L Rij * XjO + L Tijk * XjO * XkO + higher order, (1) 
j=1,6 j,k=1,6 

where Rij and Tijk are first and second order Taylor coefficients and vector xo is the vector 
of initial particle coordinates. The transfer matrix R (or the Courant-Snyder matrix14 ) 

is the fundamental object of accelerator optics. It allows one to represent the transport 

system and its elements in simple and convenient form that is described by standard 

mathematical formalism. 

We implement the Courant-Snyder matrix R as C++ class Rmatrix. Since its coeffi­

cients are determined by the physical parameters of the element or magnet system, data 
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members of class Rmatrix may be initialized by the corresponding objects Element El 

or Line L2: 

Rmatrix Rl = El; 

Rmatrix R2 = L2; 

From the other side, for the investigation of dominant effects in complicated accelerator 

systems (e.g., interaction region (IR) in colliders) it is very useful to replace the long 

regular section by the single linear matrix and determine the object of class Line by the 

suitable Rmatrix variable R: 

Line IR; 

Line regularSection = R; 

Line Collider = IR *regularSection; 

Class Rmatrix overloads assignment and multiplicative (*, j) operators. For example, 

the transfer matrix R of the magnet system that consists of two elements El and E2 may 

be determined as: 

Rmatrix Rl = El; 

Rmatrix R2 = E2; 

Rmatrix R = R2*Rl; 

and a linear transformation of phase space vector xo as: 

x = R*xO; 

where x and xO are the instances of class Particle and contain the particle coordinates 

before and after this system, respectively. 

The subscripting operator [ ](int i) returns the reference to Particle, which represents 

i-th row of corresponding transfer matrix, and enables use of the instances of class Rmatrix 

as a usual matrix. 

We did not consider the second-order matrix because of the huge size of this material. 

The theory of aberration coefficients is exhaustively presented in several papers15,16 and 

may be implemented simultaneously with the corresponding accelerator programs.1,2,5,8 

3.3 Twiss 
In linear approximation the horizontal and vertical motion of the particle in a cir­

cular machine usually is considered independently and described by the Twiss periodic 
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functions.1 4 For example, the horizontal position of a particle with initial coordinates 1(0) 

after n turns at i-th element may be determined as: 

x( i) = ;:~~~ [cos (21T (~x( i) + nvx) ) + ctx(O) sin (21T (~x( i) + nvx) )] * (x(O) - Dx(0)8) 

+ J /3x( i)/3x(O) sin (21T (~x( i) + nvx) ) (x' (0) - D' x(0)8) + Dx( i)8, (2) 

where Vx is the horizontal tune and /3x( i), ctx( i), ~x( i), Dx( i), D' x( i) are Twiss parameters 

at the i-th element. 

We consider this pair of Twiss parameters as data members of C++ class Twiss. Their 

value in the injection point may be defined from the periodi.c condition of the linear motion 

and then transformed for the i-th element. In PAC++ syntax it may be expressed by 

assignment and multiplicative operators: t 

Twiss TWinj = Rtotal; 

Twiss TWi = Ri*TWinj; 

where Rtotal and Ri are the instances of class Rmatrix. and contain the coefficients of 

the transfer matrixes of one turn and the region between injection point and i-th element. 

Similar expressions may. be written for the calculation of linear approximation of closed 

orbit: 

Position closedOrbitinj = Rtotal; 

Position closedOrbiti = Ri*closedOrbitinj; 

From the other side, if we will include the momentum compaction ct = t.Yl in data 

members of class Twiss, its objects may be used for initialization of corresponding transfer 

matrixes: 

Rmatrix Ri = Twi; 

The similar class Couple could be considered for coupled betatron motion described in 

paper. 1S 

3.4 Pac 
In the various accelerator codes there are some common functions and parameters that 

we represent as class Pac. Then new accelerator programs may be implemented as its 

derived classes (Appendix F). One modifies only those access and virtual functions of 

t To determine Twiss parameter J.! we included a phase advance in the data members of class RIllatrix. 

8 



basis class Pac that are different. It enables one to reduce code size and concentrate all 

efforts on design of the specific algorithms. 

The instances of this classes could get initial values by using ordinary C ++ assignment 

operators. Operator =(Line& L) defines only one pointer Line* line. To identify each 

element in the accelerator structure we include the additional pointers Element** delta 

and Element** error and introduce second assignment operator =(Pac& P). It allows 

one to use the instances of class Pac as some bridge between different accelerator codes: 

Line leb; 

Pac lebPac = leb; 

/ / Design and Optimization of leb 

Mad* lebMadj lebMad = new Mad(lebPac); 

delete lebMad; 

/ / Tracking 

Teapot* lebTeapotj lebTeapot = new Teapot(lebPac); 

where classes Mad and' Teapot are the C++ implementations of programs MAD3 and 

TEAPOT.4 

The random errors for some elements hb, qf1h and qf2h may be distributed by means 

of the overloaded function set Error: 

Pac lebPac; 

/ / To initialize by external rms errors Erl and Er2 

lebPacosetError(seed, rmsEngine, Erl, hb); 

lebPacosetError(seed, rmsEngine, Er2, qf1h*qf2h); 

/ / To initialize by "own" rms errors 

lebPacosetError(seed, rmsEngine, hb); 

lebPacosetError(seed, rmsEngine, qf1h*qf2h); 

where seed is int argument for the random number generator rmsEngine. To use setEr­

ror in the derived accelerator programs we should modify only one protected virtual func-
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tion ownSetError(int n) that connects own data members with PAC parameters of n-th 

element. 

Because of memory problems instances of class Pac contain the second-order matrix only 

for the whole accelerator. It is returned by access function tmatrixO.t The corresponding 

parameters for i-th element may be calculated by the simil.ar function tmatrix(int i). 

To extract some specific set of elements from the accelerator structure, we introduce 

additional C++ class Set. It is derived from class Pac (Appendix E) and initialized by 

the public function set: 

Pac lebPac = leb; 

Set bpmH = lebPac.set(pm); 

where pm is the instance of class Element. The function set may have different argu­

ments, but it is defined by single virtual functions ownSet(int* numbers, int n), where 

numbers is an array of original element numbers. 

Besides the inherited data members, class Set includes for each element second-order 

matrix coefficients, closed orbit and beam position. It allows simplified access to the data 

and uses these objects in different optimization algorithms. 

4.0 SEQUELS 

In this report some common principles for object-oriented implementation of accelera­

tor algorithms were described. Our consideration was limited by the direct (element-by­

element) particle tracking and extraction of a one-turn Taylor map. As an example we 

present the initialization and tracking functions of two w:idespread programs TEAPOT4 

and Zmap.ll 

4.1 Teapot 
The program TEAPOT has been developed as a symplectic integrator that produces 

exact particle tracking in some approximate lattice. In accordance with PAC++ rules 

this program is implemented as C++ class Teapot. It is derived from class Pac and 

inherits all its public and protected data members and functions. Program TEAPOT 

introduces its own internal representation of lattice elements as sequences of drifts and 

thin multi poles. These parameters may be considered as data members of auxiliary class 

TeapotElement, which instances are included in class Teapot.§ To initialize them, 

the corresponding Pac virtual functions and assignment operators were modified. For 

t Now we use only the linear part of this object (Section 3.2). 

§ Different accelerator programs (such as MAD, DIMAD) could use instances of class Line to make similar 
element representation. 
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example, the operator =(Line& I) includes additional TEAPOT function survey, which 

determines the coordinates of multipole planes: 

Teapot::operator=(Line& 1) 

{ 

} 

Pac::initialize(I); 

survey (I); 

To optimize the tracking procedure, TEAPOT considers the sequence of several drift 

regions as one total section. It breaks the original order of elements and complicates the use 

of element parameters between different accelerator codes. The propagation of the particle 

through a drift region may be described by a few mathematical operators and will take an 

insignificant amount of CPU time. To check it we saved the original accelerator structure 

in the C++ version and used the example of LEB lattice presented in Appendixes D and E. 

4.2 Zmap 
A Taylor map U(z) in accelerator physics may be considered as the m-dimensional vector 

of power series U(z) and expressed as:9 

o 
U(z) = L ii(k)zk, 

where 

k=O 

Z-k = zk1 zk2 zkn 
- 1 2 ... n , 

n 

k = L ki' for 0 ~ ki ~ n. 
i=l 

(3) 

There are several accelerator packages6,10 that perform differential algebra through the 

operations of expanded power series and allow one to obtain one-turn Taylor maps. In this 

report the object-oriented implementation of program Zmapll is considered. Zmap trans­

lates the Teapot tracking algorithm into TPS operations through the calling statements 

of the corresponding Fortran subroutines of differential algebra library ZLIB.9 In the new 

object-oriented version ZLIB++,12 TPS and Taylor maps are implemented as C++ classes 

ZSeries and ZMap. They may be naturally linked with PAC++ classes and represent 

program Zmap as usual assignment operator =(Teapot& T): 
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Teapot lebTeapot = lebj 

Zmap lebZmap = lebTeapotj 

where class Zmap is derived from class ZMap. This operator determines one-turn 

transformation of some pseudo-particle whose coordinates are instances of class ZSeries. 

ZLIB++ overloaded additive (+ and -) and multiplicative (* and j) operators for these 

objects and introduced special rules for their usage. It allows one to simplify the Zmap 

program and directly copy the corresponding Teapot mathematical expressions. 4 As an 

example, in Appendix F we present Zmap function mltKick that determines the trans­

formation of ZSeries variables in a thin multi pole. 

5.0 APPLICATION ISOLATION CODE 

In order to provide easy read/write operations for the PAC++ constructions, a spe­

cific interface module between PAC++ and the Application Isolation Code (AIC) library 

has been designed. It would be especially fruitful for development of the integrated con­

trol systems that have to include distributed database access combined with simulation 

facilities. 13 

A typical module III the Simulation Facility consists of the three processes runmng 

simultaneously: 

1. display program to support interaction with an operator;, 

2. application itself which realizes specific algorithms in accordance with operator 

requests; 

3. simulator module to emulate a real accelerator. 

These processes are interactive only through the external database and so when the op­

erator activates some command, the display program places the request into the database 

and then the application reads the command and activates the simulator, also through the 

database request. This scheme was chosen to insure the maximum portability because for 

some database management systems (e.g., EPICS) display programs exist only as inde­

pendent tasks and cannot be directly incorporated into the source code of the application. 

Besides, this approach enables one to change realization of one process while not affecting 

two others. 

The application uses C++ Application Isolation Code (AIC) library13 to insure portable 

access to the database. AIC is realized as a set of C++ base classes that provide basic 

control data types and some operations for this data. Details of the database call interface 

are hidden from the High Level Application Code (HLAC). 
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AIC could utilize different underling database management systems. In particular, it 

could simply use a share memory model. Changing of the underling model would require 

only relinking of the application with another library. The AIC is to provide data concen­

tration and isolation functions. This allows accelerator physicists to concentrate on the 

physics and avoid the complications associated with data attributes, error conditions etc. 

AIC is intended to provide the following features: 

• a simple representation of control data in a structured manner; 

• independence of high level application from database and hardware related features; 

• portability of control code with respect to different operating systems as well as 

different database packages; 

• uniform approach to data retrieved from varIOUS sources (EPICS database, text 

file( s ), share memory). 

To utilize access to the external database, PAC++ applieation must declare instance of 

the access handler: 

Ale database; 

This will enable one to read/write PAC++ constructions to the database by C++ I/O 

operators: 
database ~ bpm; 

/ / Some calculations 

database ~ corr; 

where bpm and corr are instances of the class Set (Section 3.4). 

All specific features of the used database are hidden from the HLAC code and located 

in the AIC library that is linked to produce the executable file. 
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APPENDIX B 

List of the MAD Keywords and Element Parameter Variables 

MAD PAC++ 

Parameter Quantity Unit Object of Quantity Value 

keyword ElementParamet'er 

L length m L length 1m 

M " 1m 

- - - IR splitting 1 split 

ANGLE bend angle rad ANGLE bend angle 1 rad 

RAD " 1 rad 

El entrance edge rad El entrance edge 1 rad 

angle angle 

E2 exit edge rad E2 exit edge 1 rad 

angle angle 

FINT fringe field - - -

integral 

- - - FINT1 entrance 1 

f.integral 

- - - FINT2 exit 1 

f.integral 

HI entrance pole m- I HI entrance pole 1 m- I 

face curvature face curvature 

H2 exit pole m-1 HI exit pole 1 m-l 

face curvature face curvature 
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MAD PAC++ 

Parameter Quantity Unit Object of Quantity Value 

keyword ElementParameter 

HKICK horizontal kick rad HKICK horizontal kick 1 rad 

angle angle 

VKICK vertical kick rad VKICK vertical kick 1 rad 

angle angle 

KICK kick angle in rad - -

both planes 

Kn strength of m-(n+l) K[n] strength of 1 m-(n+l) 

normal normal 

multipole multipole 
1 anB 

Kn ="BPF 
1 anB 

k(n) = nrIJPF 
Kn,TILT strength of m-(n+l) KT[n] strength of 1 m-(n+l) 

skewed skewed 

multipole multipole 

K(tilt) _ 1 as B; 1 8nB 
n - Fa xn kt(n) = nrJJOF 

KnL integrated m-n KL[n] integrated 1 m-n 

strength strength 

of normal thin of normal 

multipole multipole 

KnL,Tn integrated m-n KLT[n] integrated 1 m-n 

strength strength 

of skewed thin of skewed 

multipole multipole 
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MAD PAC++ 

Parameter Quantity Unit Object of Quantity Value 

keyword ElementParameter 

K[n] integrated 1 m-n 

strength 

of normal thin 

multipole 

KT[n] integrated 1 -n ill 

strength 

of skewed thin 

multipole 

Tn tilt angle for rad T[n] tilt angle for 1 rad 

n-order n-order 

multipole multipole 

components components 

KS solenoid rad/m KS solenoid 1 rad/m 

strength strength 

KS=~ ks= ~ 

E electric field MV E electric field 1 MV 
m m 

strength strength 

VOLT peak rf voltage MV VOLT[n] peak rf voltage 1 MV 

MV[n] " 1 MV 

LAG phase lag of - LAG[nJ phase lag of 1 

rf cavity (* 271") rf cavity (* 271") 
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MAD PAC++ 

Parameter Quantity Unit Object of Quantity Value 

keyword ElementParameter 

HARMON harmonic - HARMON[n] harmonic 1 

number of number of 

rf cavity rf cavity 

FREQ[n] " 1 

XSIZE horizontal m XSIZE horizontal 1m 

half-aperture half-size 

of rect angle 

YSIZE vertical m YSIZE vertical 1m 

half-aperture half-size 

of rectangle 

- - - XAXIS horizontal 1m 

half-axis 

of ellipse 

- - - YAXIS vertical 1m 

half-axis 

of ellipse 

DX misalignment in m DX shift in the 1m 

the x-direction x-direction 

DY misalignment in m DY shift in the 1m 

the y-direction y-direction 

DS misalignment in m DS shift in the 1m 

the s-direction s-direction 
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MAD PAC++ 

Parameter Quantity Unit Object of Quantity Value 

keyword ElementParameter 

DPHI rotation around rad DPHI rotation 1 rad 

around 

the x-axis the x-axis 

DTHETA rotation around rad DTHETA rotation 1 rad 

around 

the y-axis the y-axis 

DPSI rotation rad DPSI rotation 1 rad 

around around 

the s-axis the s-axis 

TILT " rad TILT " 1 rad 
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APPENDIX C 

LEB Lattice. MAD Version 
title 
Teapot::New triangular LEB lattice updated on OCT. 28, 1992 

!************************************************************************ 

! Elements 
!************************************************************************ 

!************************************ 

! Dipole Magnet 
1************************************ 

para, twopi= 6.2831853071796 
para, nbend=96 
para, abend=twopi/nbend 
para, Ibend=1.940 
para, radb=lbend/abend 
para, kb=sin(abend/2.)/cos(abend/2.)/radb 

hb 
rob 

dbl 
db2 

hbL 

sbend, l=lbend, ANGLE=abend 
multipole, kl1=-kb 

drift, 1=0.1115 
drift, 1=0.1485 

line = (db2, rob, hb, rob, db1, db1, mb, hb, rob, db2) 

!************************************ 
! Main Quadrupoles 
!************************************ 

kq=0.3722 

qf1h 
qf2h 
qd1h 
qd2h 
qfs1h 
qfs2h 
qds1h 
qds2h 

quadrupole, 1=0.7564/2, k1=+kq, type=ir 
quadrupole, 1=0.5919/2, k1=+kq, type=ir 
quadrupole, 1=0.5983/2, k1=-kq, type=iJ: 
quadrupole, 1=0.6127/2, k1=-kq, type==ir 
quadrupole, 1=0.6568/2, k1==+kq, type"'ir 
quadrupole, 1=0.5552/2, k1=+kq, type==ir 
quadrupole, 1=0.6980/2, k1=-kq, type=ir 
quadrupole, 1=0.6858/2, k1=-kq, type=ir 

!************************************ 

! Norm Trim Quads 
!************************************ 

qtf 
qtdl 
qtd2 
qtfs1 
qtfs2 
qtds1 

quadrupole, 1=0.294, k1=+0.589E-02 
quadrupole, 1=0.294, k1=-0.116E-Ol 
quadrupole, 1=0.294, k1=-0.157E-01 
quadrupole, 1=0.294, k1=+0.425E-01 
quadrupole, 1=0.294, kl=+0.573E-Ol 
quadrupole, 1=0.294, kl=-0.663E-02 

27 



qtds2 quadrupole, 1=0.294, kl=-0.253E-Ol 

dqt drift, 1=0.048 

qtfL line (dqt, qtf, dqt) 
qtdlL line (dqt, qtdl, dqt) 
qtd2L line (dqt, qtd2, dqt) 
qtfslL line (dqt, qtfsl, dqt) 
qtfs2L line (dqt, qtfs2, dqt) 
qtdslL line (dqt, qtdsl, dqt) 
qtds2L line (dqt, qtds2, dqt) 

!************************************ 

! Norm Sextupoles 
1************************************ 

sextf sextupole, 1=0.3, k2=+1.07E+00 
sextdl sextupole, 1=0.3, k2=-1.94E+00 
sextd2 sextupole, 1=0.3, k2=-2.08E+00 

dsext drift, 1=0.05 

sextfL line (dsext, sextf, dsext) 
sextd1L line (dsext, sextd1, dsext) 
sextd2L line (dsext, sextd2, dsext) 

!************************************ 

! Position Monitors 
!************************************ 

bpm monitor, 1=0.15 

dbpm drift, 1=0.02 

bpmL line = (dbpm, bpm, dbpm) 

1************************************ 

! Correctors 
!************************************ 

ch hkick, 1=0.15 
cv vkick, 1=0.15 

dc drift, 1=0.06 

chL line (dc, ch, de) 
evL line (dc, cv, de) 

. 1************************************ 

! Drifts 
1************************************ 

dql : drift, 1=0.1 
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dareO drift, 1=0.4915 
dare1 drift, 1=0.4974 
dare2 drift, 1=0.2091 
dare3 drift, 1=0.3591 
dare4 drift, 1=0.2134 
dare5 drift, 1=2.6S14 
dare6 drift, 1=0.1900 
dare7 drift, 1=2.9514 
dareS drift, 1=0.2274 
dare9 drift, 1=0.1900 
dare10 drift, 1=0.4915 

dstrO drift, 1 6.4231 
dstr1 drift, 1 2.7976 
dstr2 drift, 1 7.4234 
dstr3 drift, 1 0.09 
dstr4 drift, 1 7.1534 

!************************************************~r*** ******************** 

! Lines 
!************************************************~r*** ******************** 

!************************************ 
! Arc 
!************************************ 

fstDBFBD: line = & 
(qds2h, (bpmL,qtds2L,dareO),hbL, (dare2,qtfL,bpmL) ,qf2h, & 
qf2h, (dq1, chL, dare3) ,hbL, (dare4, qtdlL, bpmL) , qd1h) 

DBFBD1 : line = & 
(qd2h, (bpmL,qtd2L,dare1),hbL, (dare2,qtfL,bpmL) ,qf2h, & 
qf2h, (dq1,ehL,dare3) ,hbL, (dare4,qtd1L,bpmL),qd1h) 

DOFOD : line = & 
(qd1h, (dq1,sextd1L,evL,dare5, ehL, sextfL ,bpmL), qf1h, & 
qf1h, (dare6,sextfL,dare7,evL,sextd2L,dq1) , qd1h) 

DBFBD2 : line = & 
(qd1h, (bpmL,qtd1L,dare4),hbL, (dare3,ehL,dq1) ,qf2h, & 
qf2h, (bpmL, qtfL, dare2) ,hbL, (dareS, eVL, qtd2L, d.are9), qd2h) 

lstDBFBD: line = & 
(qd1h, (bpmL, qtdlL, dare4), hbL, (dare3, ehL, dq1) ,qf2h, & 

aref 
arcs 
arcl 
arc 

qf2h, (bpmL, qtfL, dare2) ,hbL, (dare10, qtds2L, bpmL), qds2h) 

line 
line 
line 
line 

(fstDBFBD,DOFOD, DBFBD2) 
(DBFBD1 ,DOFOD, DBFBD2) 
(DBFBD1 ,DOFOD, lstDBFBD) 
(aref, 2*ares, arel) 
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1************************************ 

! Straight Section 
!************************************ 

DOFODl line = & 
(qds2h, (dql, cvL, dstrO, qtfslL, bpmL) , qfslh, & 

qfslh, (dql,chL,dstrl,qtdslL,bpmL),qdslh) 

DOFOD2 
(qdslh 
qfs2h 

str 

line = & 
, (dql, cvL, dstr2, qtfs2L, bpmL) ,qfs2h, 
, (dql, dstr3, qtfs2L, chL, dstr4, cvL, dql) , qdslh) 

line (DOFOD1, DOFOD2, -(DOFOD1)) 

period : line (are, str) 

& 

!************************************************~r*** ******************** 

! LEB 
!************************************************~r*** ******************** 

leb : line=(3*period) 

~************************************************~r*** ******************** 
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APPENDIX D 

LEB Lattice. PAC++ Version 

I I File 
II Description 
II Created 
II Authors 
II 
II 
II 
II 
II (C) Copyright 
II SSC Laboratory 
II 2550 Beckleymeade 
II Dallas, TX, 75237 

II Global Parameter 

ENERGY = 1.538; 

Error glRmsShift 

II Main Dipole Magnet 

LEB.icc 
This file contains the structure of LEB 
May 15, 1994 
George Bourianoff (gib@mesquite.ssc.gov) 
Nikolay Malitsky (malitsky@ivory.ssc.gov) 
Alexander Reshetov (reshetov@vernon.ssc.gov) 

Ave. 

0.0004*(DX + DY); 

Element hb ("Main Dipole"); 

int hbNumber = 96; 
double hbAngle 2*Pl/hbNumber; 

Element hbSysMlt 

Error hbRmsMlt 

-4.41e-04*K[2] + 
2.32e+00*K[4] -
4.0ge+03*K[6] + 
5.90e+06*K[8]; 

5.82e-05*K[1] + 2.56e-05*KT[1] + 
5.70e-04*K[2] + 2.6ge-04*KT[2] + 
8.96e-03*K[3] + 5.06e-03*KT[3] + 
7.04e-02*K[4] + 5.63e-02*KT[4] + 
3.78e+00*K[5] + 1.34e+00*KT[5] + 
3.58e+01*K[6] + 2.05e+01*KT[6]i 

hb 1. 940*M + hbAngle* (RAD + E1/2. + E2/2.) ,; 
hb += hbSysMlt + hbRmsMlt + glRmsShift; 

Element db1("DB1"); db1 
Element db2("DB2"); db2 

o . 1115*Mi 
0.1485*M; 

Line hbL = db2*hb*db1*db1*hb*db2; 

II Main Quadrupoles 

double qK = 0.3722; 
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Error qRmsMlt 7.28e-05*K[l] + 1.00e-18*KT[1] + 
3.36e-04*K[2] + 1.82e-04*KT[2] + 
1.0ge-02*K[3] + 7.28e-03*KT[3] + 
2.80e-02*K[4] + 3.64e-02*KT[4] + 
7.28e-Ol*K[5] + 1.0ge+00*KT[5]; 

Element qtmp 
Element qftmp 
Element qdtmp 

qRmsMlt + glRmsShift + 3*IR; 
qK*K[l] + qtmp; 

-qK*K(l] + qtmp; 

Element qflh ("QFIH"); 
Element qf2h("QF2H"); 
Element qdlh ("QDIH"); 
Element qd2h("QD2H")i 

Element qfs1h("QFS1H") i 
Element qfs2h ("QFS2H") i 
Element qds1h ("QDS1H") i 
Element qds2h ("QDS2H"); 

II Norm Trim Quads 

qf1h 
qf2h 
qdlh 
qd2h 

qfs1h 
qfs2h 
qds1h 
qds2h 

0.7564/2*M + qftmpi 
0.5919/2*M + qftmpi 
0.5983/2*M + qd.tmpi 
0.6127/2*M + qd.tmpi 

0.6568/2*M + qftmp; 
0.5552/2*M + qftmpi 
0.6980/2*M + qdtmpi 
0.6858/2*M + qdtmpi 

Element qt[7] = {"QTF", "QTD1", "QTD2", "QTFS1", "QTFS2", "QTDS1", "QTDS2"}; 
Line qtL [7] i 

static double qtLength 

qt [0] 
qt [1] 

qt[2] 
qt [3] 
qt [4] 

qt[5] 
qt [6] 

0.58ge-02*K[1]; 
-0.116e-01*K[l]i 
-0.157e-01*K[1]; 

0.425e-01*K[1]i 
0.573e-01*K[1]; 

-0.663e-02*K[1]i 
-0.253e-01*K[1]i 

Element dqt ("DQT"); dqt 

0.294i 

0.048*M; 

for(int iqt=Oi iqt < 7; iqt++) 
{ 

qt[iqt] 
qtL [iqt] 

+= qtLength*Mi 
dqt*qt [iqt] *dqti 

II Norm Sextupoles 

Element sext[3] {" SEXTF", "SEXTD1", "SEXTD2"} ,; 
Line sextL[3]; 

static double sextLength 0.3; 

sext[O] 
sext[l] 
sext[2] 

0.535*K[2]i 
-0.970*K[2]; 
-1.040*K[2]i 
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II 

II 

Element dsext("DSEXT"); dsext = 0.05*M; 

for(int isext=O; isext < 3; isext++) 
{ 

sext[isext] += sextLength*M; 
sextL[isext] dsext*sext[isext]*dsext; 

Beam Position Monitors 

Element bpm ("BPM") ; bpm 
Element dbpm ("DBPM") ; dbpm 
Line bpmL; bpmL 

Correctors 

Element 
Element 
Element 

Line 
Line 

ch ("CorH"); ch 
cv ("CorV") ; cv 
dc("DC") ; dc 

chL 
cvL 

dc*ch*dc; 
dc*cv*dc; 

0.15*M; 
0.02*M; 
dbpm*bpm*dbpm; 

O.15*M; 
O.lS*M; 
O.06*M; 

I I Drifts 

Element dq1 ("DQ1"); dq1 = 0.1 *M; 

Element dare[ll] = { O.4915*M, O.4974*M, O.2091*M, O.3591*M, O.2134*M, 
2.6814*M, O.1900*M, 2.9514*M, O.2274*M, O.1900*M, 
O. 4915*M}; 

Element dstr[5] 6.4231*M, 2.7976*M, 7.4234*M, O.0900*M, 7.1534*M}; 

II Lines 

II Arc 

Line fstDBFBD = qds2h*(bpmL*qtL[6]*dare[O])*hbL*(darc[2]*qtL[O]*bpmL)*qf2h* 

Line DBFBD1 

Line DOFOD 

qf2h *(dq1*ehL*dare[3]) *hbL*(dare[4]*qtL[l]*bpmL)*qd1h; 

qd2h* (bpmL*qtL [2] *darc [1] ) *hh:L* (dare [2] *qtL [0] *bpmL) *qf2h* 
qf2h*(dq1*ehL*dare[3]) *hbL* (dare[4] *qtL[l] *bpmL) *qd1h; 

qd1h* (dq1*sextL[l] *evL*dare[S] *chL*sextL[O] *bpmL) *qf1h * 
qf1h*(dare[6]*sextL[O]*dare[7]*evL*sextL[2]*dq1) *qd1h; 

Line DBFBD2 qd1h*(bpmL*qtL[l]*dare[4])*hbL*(dare[3]*ehL*dq1) *qf2h* 
qf2h*(bpmL*qtL[O]*dare[2])*hbL*(dare[8]*evL*qtL[2]*dare[9])*qd2h; 

Line lstDBFBD qdlh*(bpmL*qtL[l] *dare[4]) *hbL*(dare[3] *ehL*dql) *qf2h* 
qf2h* (bpmL*qtL[O]*dare[2]) *hbL* (dare[lO] *qtL[6] *bpmL) * qds2h; 

Line aref fstDBFBD*DOFOD*DBFBD2; 
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Line arcs 
Line arcl 

Line arc 

II Straight Section 

Line DOFODl 

Line DOFOD2 

Line strSection 

II SuperPeriod 

DBFBD1*DOFOD*DBFBD2; 
DBFBD1*DOFOD*lstDBFBD; 

arcf*arcs*arcs*arcl; 

qds2h* (dql*cvL*dstr[O] *qtL[3]*bpmL) *qfslh* 
qfslh*(dql*chL*dstr[l]*qtL[S]*bpmL)*qdslh; 

qdslh* (dql *cvL*dstr [2] *qtL [4] *bpmL). *qfs2h * 
qfs2h*(dql*dstr[3]*qtL[4] *chL*dstr[4] *cvL*dql)*qdslh; 

DOFOD1*DOFOD2*reflect(DOFOD1); 

Line superPeriod arc*strSection; 

II LEB 

Line leb("C++ version"); 
leb = power(superPeriod, 3); 

34 



APPENDIX E 

LEB Lattice. Exalnple of PAC++ Programming 

I I File 
II Description 
II 
II Created 
II Authors 
II 
II 
II 
II (C) Copyright 
II SSC Laboratory 
II 2550 Beckleymeade 
II Dallas, TX, 75237 

#include <time.h> 

LEB.cc 
This file contains the example of the direct 
tracking and one-turn ma.p extraction for LEB. 
May 15, 1994 
George Bourianoff (gib@mesquite.ssc.gov) 
Nikolay Malitsky (mali.tsky@ivory.ssc.gov) 
Alexander Reshetov (reshetov@vernon.ssc.gov) 

Ave. 

#include "Teapot/Teapot.hh" 
#include "zmap/Zmap.hh" 

double staticGenerator(int& s) { return(l.);} 

main () 
{ 

#include "LEB.icc" 

II Assignment 

Teapot lebTeapot("LEB: Teapot implementation"); 
lebTeapot = leb; 

II Set Error 

int seed = 1; 
lebTeapot.setError(seed, staticGenerator, hb); 
lebTeapot.setError(seed, staticGenerator, qflh*qf2h*qd1h*qd2h); 
lebTeapot.setError(seed, staticGenerator, qfs1h*qfs2h*qds1h*qds2h); 

II Tracking 

Particle p; 
for(int i=l; i <= 6; i++) p[ij = 1.0e-3; 

for(i=l; i <= 100; i++) p = lebTeapot*p; 

II Extract one-turn Taylor Map 

ZLIB_ORDER = 5; 
Zmap lebZmap = lebTeapot; 
cout « lebZmap; 
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public: 

Itrnatrix~ rrnatrixfyoiW; int* number; 
rna rlx rrna rlx m I ; 

~rnntrix* ro 
(j OSI Ion: dOrbito 

poslboii; ::T' OSI Ion 
~ 
"1 
eo+- > Line* line; 0 

Pac* pac; ..., "'C 
"'C "'C 

Elernent** delta; > trJ 
c..:> Elernent** error; (j Z 
-l + t::J 

Rrnatrix rTotal; + >< 
(j ~ -~ 
f/l 
f/l 
CD 
f/l 

Accelerator codes 



APPENDIX G 

Zmap. Function mltKick 

II File Zmap.cc 
II Description 
II 

This file contains the object-oriented 
implementation of program Zmap. 
May 1, 1994 II Created 

II Authors 
II 

Nikolay Malitsky (malitsky@ivory.ssc.gov) 
Alexander Reshetov (reshetov@vernon.ssc.gov) 

II 
II 
II (C) Copyright 
II SSC Laboratory 
II 2550 Beckleymeade 
II Dallas, TX, 75237 

Ave. 

void Zmap: :mltKick (TeapotElement& teapot, ZSeries* P, ZSeries* tmp) 
{ 

tmp [1] P [1] - teapot.delx; 
tmp [3] P[3] - teapot.dely; 

tmp[2] 0.0; 
tmp [4] 0.0; 
for (int i=teapot.mltOrder; i >= 0 i--) 
{ 

tmp [1] *tmp [2] ; tmp [0] 
tmp [0] 
tmp [4] 
tmp[4] += 
tmp[2] 

tmp[3]*tmp[4] - teapot.btw[i]; 
tmp [ 1] *tmp [ 4] ; 
tmp[3]*tmp[2] + teapot.atw[i]; 
tmp[O]; 

} 

tmp[2] += tmp[1]*teapot.btw01; 
tmp[4] += tmp[3]*teapot.atw01; 

P [2] tmp [2] ; 
P[4] += tmp[4]; 

tmp [0] = 1.; 
if(Zmap_DIM >= 6) tmp[O] tmp [ 6] *tmp [ 6] ; 

tmp [0) 

tmp[O) 
tmp [0) 

tmp[O) 
tmp[2] 
tmp[4] 

return; 

p [2) *p [2) ; 

P [4] *p [4] ; 

sqrt (tmp [0]); 

1./tmp [0] ; 
P [2] *tmp [0] ; 
P [4] * tmp [ 0] ; 
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II xdif 
II ydif 

II bytw 
II bxtw 

II px/pO 
II py/pO 

II ps/pO 

II vx/vs 
II vy/vs 




