
PAC++: Object-Oriented
Platform for Accelerator Codes

Superconducting Super Collider
Laboratory

SSCL-675
June 1994
Distribution Category: 414

N. Malitsky
A. Reshetov
G. Bourianoff

Disclaimer Notice

This report was prepared as an account of work sponsored by an agency of the United States

Govemment. Neither the United States Govemmen: or any agency thereof, nor any of their

employees, makes any warranty, express or Implied, or assumes any legal liability or responsibility

for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

disclosed, or represents that its use would not infringe privately owned rights. Reference herein to

any specfflc commercial product, process, or service by trade name, trademark, manufacturer, or

otherwise, does not necessarily constitute or Imply Its endorsement, recommendation, or favoring
by the Un~ed States Government or any agency thereof. The views and opinions of authors

expressed herein do not necessarily state or reflect those of the Un~ed States Govemment or any
agency thereof.

Super conducting Super Collider Laboratory is an equal opportunity employer.

SSCL-675

PAC++: Object-Oriented Platform for Accelerator Codes

N. Malitsky, A. Reshetov, and G. Bourianoff

Superconducting Super Collider Laboratory*
2550 Beckleymeade A venue

Dallas, Texas 75237

June 1994

• Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

1.0 INTRODUCTION
Software packages in accelerator physics have relatively long life cycles. They had been

developed and used for a wide range of accelerators in the past as well as for the cur­

rent projects. For example, the basic algorithms written in the first accelerator program

TRANSPORT1 are actual for design of most magnet systems. Most of these packages had

been implemented on Fortran. But this language is rather inconvenient as a basic language

for large integrated projects that possibly could include real-time data acquisition, data

base access, graphic user interface modules (GUI), and other features.

Some later accelerator programs had been based on object-oriented tools (primarily,

C++ language). These range from systems for advanced theoretical studies10,12 to control

system software.13 For the new generations of accelerators it would be desirable to have

an integrated platform in which all simulation and control tasks will be considered with

one point of view.

In this report the basic principles of an object-oriented platform for accelerator research

software (PAC++) are suggested and analyzed. Primary objectives of this work are to

enable efficient self-explaining realization of the accelerator concepts and to provide an

integrated environment for the updating and the developing of the code. C++ language

increases portability and clarity of Fortran-based programs and also provides some new

features in comparison with the traditional approaches:

• All accelerator formalisms are considered from a common position. Transition from

one paradigm to another is performed with one assignment operator =(Pac& P).

PAC++ itself could be considered as a shell for some old accelerator algorithms as

well as a tool for developing new ones.

• Overloaded aritlunetic and assignment operators provide the user with a powerful

method of accelerator description that is an integral part of C++ source code. Each

operation has an intuitive physical sense. Addition enables one to construct an

element from some simple bricks while multiplication is a concatenation of elements

and lines.

• PAC++ is implemented as an open hierarchy of classes that enables one to derive

new paradigms while preserving compatibility with the old ones. This makes pos­

sible to link PAC++ applications with the lattice databases and uses them in the

control systems. Users could also create their own libraries including in them specific

accelerator lattices and algorithms.

• "Time function" concept enables one to simulate changing accelerator features and

to receive a more valid understanding of the real physical processes.

2.0 INPUT LANGUAGE

Traditionally programs for the lattice design in accelerator physics had been written

in the some standard input language3 that was then interpreted by the package. This

approach in particular stemmed from the desire to write basic algorithms as simple and

portable as possible, and from the inability of Fortran to provide suitable language con­

structions. The powerful mechanisms of object-oriented programming (such as polymor­

phism, inheritance etc.) now allow one to write accelerator algorithms directly in C++

language without damaging program clarity.

This report considers the object-oriented description of accelerator structure. Basically

we suggest overloading arithmetic and assignment operators and describing the lattice

element as a member of some linear space E. In Appendixes C and D the simplified

implementation of the Low Energy Booster,19 based on the MAD input language and

PAC++ syntax respectively, is presented.

2.1 Linear Space E
In PAC++ lattice elements are considered as instances of C++ class Element and

declared as :

Element id("Name of the element");

where id is any valid C++ identifier and "Name ofthe element" is some symbolic name of this

element. We do not utilize specific keywords (Rbend, Quadrupole, Kicker etc.) for the

type of element but rather describe each element with definite. (systematic) parameters as

a member of a linear space E8 , which contains a subset of instances of C++ class Element

(Appendix A). The basis class ElementParameter defines objects with a single nonzero

MAD parameter (L, ANGLE etc.) and forms a basis of this linear space. Then an arbitrary

element may be presented as their superposition. For example, the basic magnet for the

LEB will be defined as:

where L and ANGLE are instances of class ElementParameter and element hb is an

object whose length is equal to 1.940 m and bend angle is 2 * PI /96 rad. A total list of

ElementParameters and their relations with MAD keywords is presented in Appendix

B. The module structure of PAC++ allows one to easily modify this set by adding new def­

initions for old objects (e.g., M for L, RAD for ANGLE etc.) or include new parameters.

This approach enables one to describe an element without splitting it into some auxiliary

parts and also forms the lattice in direct accordance with the sequence of real elements.

We developed ideas, first suggested for the code TEAPOT,4 and included "nonstandard"

2

TEAPOT parameter IR that defines internal representation of the element. Certainly,

the rules and algorithms of this transformation should be determined in the chosen code

(Subsection 4.1).

To represent the root mean square (rms) of random error for specific elements, we define

C++ class Error. Class Error is derived from the class ElementParameter, inherits its

arithmetic operators, and determines similar linear space £: (Appendix A). For example:

Error glRmsShift = 0.0004 * (DX + DY);

Error hbRmsMlt = 5.82e-05 * K[l] + 2.56e-05 * KT[l]+

= 5.70e-04 * K[2] + 2.6ge-04 * KT[2];

PAC++ enhances the standard MAD input language and includes the additional Error

variable and corresponding arithmetic operators in class Element. It allows one to con­

sider instances of this class as members of some extended linear space £ that is a direct

sum of linear spaces £8 and £r:

hb + = hbSysMlt + hbRmsMlt + glRmsShift;

Access functions hb.sysValue(K[l]) and hb.rmsValue(K[l]) return the systematic and

rms values of the MAD parameter Kl. To print out all information about arbitrary element

hb the standard C++ I/O operator may be used:

cout ~ hb;

One of the additional features of PAC++ is the inclusion of arbitrary time functions

in the description of element to simulate the real physical processes (magnetic field ramp,

power supply ripple etc.):

Element rfcavity = O.024*VOLT*sinj

It enables one to design the object-oriented implementation of ESME7 and develop some

special operators of different accelerator codes (e.g., Adiabatic variations in DIMAD5). We

did not use it for the Low Energy Booster (Appendixes C and D) because TEAPOT as­

sumes that rf voltage has to be constant and matches different rf parameters in accordance

with its own algorithm.

3

2.2 Line
In accordance with the MAD terminology, lines in PAC++ are defined as a sequence

of elements and other lines that form the accelerator structure. We consider them as

instances of C++ class Line and their concatenation as multiplication of Element and

Line variables. For example, superperiod of the LEB will be defined as (Appendix C):

Line arc, strSection;

Line superPeriod = arc*strSection;

where superPeriod is a instance of class Line. superPeriod includes pointers of the fac­

tors arc and strSection and all their modifications that may be made before or after this

concatenation. It could be useful for lattice optimization or for inclusion of special sections

(injection, extraction etc.) without changes in other parts of an accelerator structure:

Line strSectionOl, strSection02;

/ / Variant 1

strSection - strSectionOl;

/ / Variant 2

strSection strSection02;

/ / Study of physical parameters

/ / of superPeriod

/ / Study of physical parameters

/ / of superPeriod

As a consequence of the multiplicative operations, the repetition of elements and lines

is considered as their raising to the power and described by the functions power (Ele­

ment& e, int n) and power(Line& I, int n). To reverse order in the sequences of elements

and lines, the function re1lect(Line& 1) is used. This function satisfies the following rule:

If el is an instance of class Element and 12 is an instance of class Line, then reflect

(el *12) is equal to reflect {l2)*el.

The optimal accelerator structures and their sections may be allocated in the different

header files and used together to study common physical processes:

mainO

{

#include "LIN AC_LEB.icc"

#include "LEB.icc"

4

Line injection = linac-Ieb*lebj

}

3.0 BASIC DEFINITIONS AND CLASSES

As any physical object, accelerator and its elements are characterized by some set of

input and output parameters: the linear transfer matrix and periodic twiss functions,14 the

second order aberration coefficients,15 one-turn maps,17 position of closed orbit and particle

coordinates referred to the ideal orbit, element coordinates in the global Cartesian system

and all element parameters, described in the previous section. They are the important

ingredients of all accelerator algorithms and may be considered as a set of C++ classes

that form the platform for object-oriented implementation of modern accelerator programs

(Appendix F).

3.1 Particle or Position
In PAC++ the position of the particle is determined by the standard canonical variables3

and considered as C++ class Particle.t The subscripting operator [](inti) returns the

reference to i-th variable and enables to use the instance of class Particle as usual vector:

double x, px, y, py, dt, dEj

Particle pj

p[1] = Xj

p[2] = pXj

p[3] = Yj

p[4] - PYj

p[5] = dt;

p[6] = dEj

II Horizontal position x,[m]

II Horizontal canonical momentum, divided

II by the reference momentum: Px/po,[1]

/ / Vertical position y,[m]

/ / Vertical canonical momentum, divided

/ I by the reference momentum: Py / Po, [1]
/ / Velocity of light times the negative time difference with

/ / respect to the reference particle: -c~t,[ml

/ I Energy difference, divided by the reference momentum

/ / times the velocity of light: 8 = ~E/poc,[1]

t To describe the beam deviation in monitors or the position of closed orbit we use the alternative name
Position.

5

If we will consider the accelerator as some object A of class Accelerator, the one-turn

tracking may be defined as multiplication of this object A and phase space vector x:

y=A*x;

where x and yare the instances of class Particle and contain the particle coordinates

before and after one turn, respectively. For multi particle tracking the arrays of Particles

could be used:

Particle** x' ,

for(int i = 1; i <= number Particles; i++)

for(int j = 0; j < numberTurns; j++)

x[i][j+l] = A *x[i][j];

The common beam parameters, such as energy, particle mass and charge, are located in

C++ class Beam. Class Particle is derived from this class and shares all its static data

members. The default particle type is proton, and the energy is equal to infinite value.

To change them the corresponding variables ENERGY, MASS and CHARGE may be

used:

ENERGY = 1.538; / / Beam energy, [GeV]

This set of parameters could be developed to include in our model some additional physical

effects (e.g., number of particles for simulation of space charge).

3.2 Rmatrix
The position x of the particle after some magnet transport system may be expressed by

means of Taylor expansion as:

Xi = L Rij * XjO + L Tijk * XjO * XkO + higher order, (1)
j=1,6 j,k=1,6

where Rij and Tijk are first and second order Taylor coefficients and vector xo is the vector
of initial particle coordinates. The transfer matrix R (or the Courant-Snyder matrix14)

is the fundamental object of accelerator optics. It allows one to represent the transport

system and its elements in simple and convenient form that is described by standard

mathematical formalism.

We implement the Courant-Snyder matrix R as C++ class Rmatrix. Since its coeffi­

cients are determined by the physical parameters of the element or magnet system, data

6

members of class Rmatrix may be initialized by the corresponding objects Element El

or Line L2:

Rmatrix Rl = El;

Rmatrix R2 = L2;

From the other side, for the investigation of dominant effects in complicated accelerator

systems (e.g., interaction region (IR) in colliders) it is very useful to replace the long

regular section by the single linear matrix and determine the object of class Line by the

suitable Rmatrix variable R:

Line IR;

Line regularSection = R;

Line Collider = IR *regularSection;

Class Rmatrix overloads assignment and multiplicative (*, j) operators. For example,

the transfer matrix R of the magnet system that consists of two elements El and E2 may

be determined as:

Rmatrix Rl = El;

Rmatrix R2 = E2;

Rmatrix R = R2*Rl;

and a linear transformation of phase space vector xo as:

x = R*xO;

where x and xO are the instances of class Particle and contain the particle coordinates

before and after this system, respectively.

The subscripting operator [](int i) returns the reference to Particle, which represents

i-th row of corresponding transfer matrix, and enables use of the instances of class Rmatrix

as a usual matrix.

We did not consider the second-order matrix because of the huge size of this material.

The theory of aberration coefficients is exhaustively presented in several papers15,16 and

may be implemented simultaneously with the corresponding accelerator programs.1,2,5,8

3.3 Twiss
In linear approximation the horizontal and vertical motion of the particle in a cir­

cular machine usually is considered independently and described by the Twiss periodic

7

functions.1 4 For example, the horizontal position of a particle with initial coordinates 1(0)

after n turns at i-th element may be determined as:

x(i) = ;:~~~ [cos (21T (~x(i) + nvx)) + ctx(O) sin (21T (~x(i) + nvx))] * (x(O) - Dx(0)8)

+ J /3x(i)/3x(O) sin (21T (~x(i) + nvx)) (x' (0) - D' x(0)8) + Dx(i)8, (2)

where Vx is the horizontal tune and /3x(i), ctx(i), ~x(i), Dx(i), D' x(i) are Twiss parameters

at the i-th element.

We consider this pair of Twiss parameters as data members of C++ class Twiss. Their

value in the injection point may be defined from the periodi.c condition of the linear motion

and then transformed for the i-th element. In PAC++ syntax it may be expressed by

assignment and multiplicative operators: t

Twiss TWinj = Rtotal;

Twiss TWi = Ri*TWinj;

where Rtotal and Ri are the instances of class Rmatrix. and contain the coefficients of

the transfer matrixes of one turn and the region between injection point and i-th element.

Similar expressions may. be written for the calculation of linear approximation of closed

orbit:

Position closedOrbitinj = Rtotal;

Position closedOrbiti = Ri*closedOrbitinj;

From the other side, if we will include the momentum compaction ct = t.Yl in data

members of class Twiss, its objects may be used for initialization of corresponding transfer

matrixes:

Rmatrix Ri = Twi;

The similar class Couple could be considered for coupled betatron motion described in

paper. 1S

3.4 Pac
In the various accelerator codes there are some common functions and parameters that

we represent as class Pac. Then new accelerator programs may be implemented as its

derived classes (Appendix F). One modifies only those access and virtual functions of

t To determine Twiss parameter J.! we included a phase advance in the data members of class RIllatrix.

8

basis class Pac that are different. It enables one to reduce code size and concentrate all

efforts on design of the specific algorithms.

The instances of this classes could get initial values by using ordinary C ++ assignment

operators. Operator =(Line& L) defines only one pointer Line* line. To identify each

element in the accelerator structure we include the additional pointers Element** delta

and Element** error and introduce second assignment operator =(Pac& P). It allows

one to use the instances of class Pac as some bridge between different accelerator codes:

Line leb;

Pac lebPac = leb;

/ / Design and Optimization of leb

Mad* lebMadj lebMad = new Mad(lebPac);

delete lebMad;

/ / Tracking

Teapot* lebTeapotj lebTeapot = new Teapot(lebPac);

where classes Mad and' Teapot are the C++ implementations of programs MAD3 and

TEAPOT.4

The random errors for some elements hb, qf1h and qf2h may be distributed by means

of the overloaded function set Error:

Pac lebPac;

/ / To initialize by external rms errors Erl and Er2

lebPacosetError(seed, rmsEngine, Erl, hb);

lebPacosetError(seed, rmsEngine, Er2, qf1h*qf2h);

/ / To initialize by "own" rms errors

lebPacosetError(seed, rmsEngine, hb);

lebPacosetError(seed, rmsEngine, qf1h*qf2h);

where seed is int argument for the random number generator rmsEngine. To use setEr­

ror in the derived accelerator programs we should modify only one protected virtual func-

9

tion ownSetError(int n) that connects own data members with PAC parameters of n-th

element.

Because of memory problems instances of class Pac contain the second-order matrix only

for the whole accelerator. It is returned by access function tmatrixO.t The corresponding

parameters for i-th element may be calculated by the simil.ar function tmatrix(int i).

To extract some specific set of elements from the accelerator structure, we introduce

additional C++ class Set. It is derived from class Pac (Appendix E) and initialized by

the public function set:

Pac lebPac = leb;

Set bpmH = lebPac.set(pm);

where pm is the instance of class Element. The function set may have different argu­

ments, but it is defined by single virtual functions ownSet(int* numbers, int n), where

numbers is an array of original element numbers.

Besides the inherited data members, class Set includes for each element second-order

matrix coefficients, closed orbit and beam position. It allows simplified access to the data

and uses these objects in different optimization algorithms.

4.0 SEQUELS

In this report some common principles for object-oriented implementation of accelera­

tor algorithms were described. Our consideration was limited by the direct (element-by­

element) particle tracking and extraction of a one-turn Taylor map. As an example we

present the initialization and tracking functions of two w:idespread programs TEAPOT4

and Zmap.ll

4.1 Teapot
The program TEAPOT has been developed as a symplectic integrator that produces

exact particle tracking in some approximate lattice. In accordance with PAC++ rules

this program is implemented as C++ class Teapot. It is derived from class Pac and

inherits all its public and protected data members and functions. Program TEAPOT

introduces its own internal representation of lattice elements as sequences of drifts and

thin multi poles. These parameters may be considered as data members of auxiliary class

TeapotElement, which instances are included in class Teapot.§ To initialize them,

the corresponding Pac virtual functions and assignment operators were modified. For

t Now we use only the linear part of this object (Section 3.2).

§ Different accelerator programs (such as MAD, DIMAD) could use instances of class Line to make similar
element representation.

10

example, the operator =(Line& I) includes additional TEAPOT function survey, which

determines the coordinates of multipole planes:

Teapot::operator=(Line& 1)

{

}

Pac::initialize(I);

survey (I);

To optimize the tracking procedure, TEAPOT considers the sequence of several drift

regions as one total section. It breaks the original order of elements and complicates the use

of element parameters between different accelerator codes. The propagation of the particle

through a drift region may be described by a few mathematical operators and will take an

insignificant amount of CPU time. To check it we saved the original accelerator structure

in the C++ version and used the example of LEB lattice presented in Appendixes D and E.

4.2 Zmap
A Taylor map U(z) in accelerator physics may be considered as the m-dimensional vector

of power series U(z) and expressed as:9

o
U(z) = L ii(k)zk,

where

k=O

Z-k = zk1 zk2 zkn
- 1 2 ... n ,

n

k = L ki' for 0 ~ ki ~ n.
i=l

(3)

There are several accelerator packages6,10 that perform differential algebra through the

operations of expanded power series and allow one to obtain one-turn Taylor maps. In this

report the object-oriented implementation of program Zmapll is considered. Zmap trans­

lates the Teapot tracking algorithm into TPS operations through the calling statements

of the corresponding Fortran subroutines of differential algebra library ZLIB.9 In the new

object-oriented version ZLIB++,12 TPS and Taylor maps are implemented as C++ classes

ZSeries and ZMap. They may be naturally linked with PAC++ classes and represent

program Zmap as usual assignment operator =(Teapot& T):

11

Teapot lebTeapot = lebj

Zmap lebZmap = lebTeapotj

where class Zmap is derived from class ZMap. This operator determines one-turn

transformation of some pseudo-particle whose coordinates are instances of class ZSeries.

ZLIB++ overloaded additive (+ and -) and multiplicative (* and j) operators for these

objects and introduced special rules for their usage. It allows one to simplify the Zmap

program and directly copy the corresponding Teapot mathematical expressions. 4 As an

example, in Appendix F we present Zmap function mltKick that determines the trans­

formation of ZSeries variables in a thin multi pole.

5.0 APPLICATION ISOLATION CODE

In order to provide easy read/write operations for the PAC++ constructions, a spe­

cific interface module between PAC++ and the Application Isolation Code (AIC) library

has been designed. It would be especially fruitful for development of the integrated con­

trol systems that have to include distributed database access combined with simulation

facilities. 13

A typical module III the Simulation Facility consists of the three processes runmng

simultaneously:

1. display program to support interaction with an operator;,

2. application itself which realizes specific algorithms in accordance with operator

requests;

3. simulator module to emulate a real accelerator.

These processes are interactive only through the external database and so when the op­

erator activates some command, the display program places the request into the database

and then the application reads the command and activates the simulator, also through the

database request. This scheme was chosen to insure the maximum portability because for

some database management systems (e.g., EPICS) display programs exist only as inde­

pendent tasks and cannot be directly incorporated into the source code of the application.

Besides, this approach enables one to change realization of one process while not affecting

two others.

The application uses C++ Application Isolation Code (AIC) library13 to insure portable

access to the database. AIC is realized as a set of C++ base classes that provide basic

control data types and some operations for this data. Details of the database call interface

are hidden from the High Level Application Code (HLAC).

12

AIC could utilize different underling database management systems. In particular, it

could simply use a share memory model. Changing of the underling model would require

only relinking of the application with another library. The AIC is to provide data concen­

tration and isolation functions. This allows accelerator physicists to concentrate on the

physics and avoid the complications associated with data attributes, error conditions etc.

AIC is intended to provide the following features:

• a simple representation of control data in a structured manner;

• independence of high level application from database and hardware related features;

• portability of control code with respect to different operating systems as well as

different database packages;

• uniform approach to data retrieved from varIOUS sources (EPICS database, text

file(s), share memory).

To utilize access to the external database, PAC++ applieation must declare instance of

the access handler:

Ale database;

This will enable one to read/write PAC++ constructions to the database by C++ I/O

operators:
database ~ bpm;

/ / Some calculations

database ~ corr;

where bpm and corr are instances of the class Set (Section 3.4).

All specific features of the used database are hidden from the HLAC code and located

in the AIC library that is linked to produce the executable file.

13

ACKNOWLEDGEMENTS

We would like to thank Prof. Richard Talman and Dr. Yiton Yan for providing us with

the codes TEAPOT and Zmap.

15

REFERENCES

1. Karl L. Brown., D.C. Carey, Ch. Iselin, and F. Rothacker, "TRANSPORT - A Com­

puter Program for Designing Charged Particle Beam Transport Systems," CERN 73-16,

revised as CERN 80-4, CERN, 1980.

2. Yu.P. Severgin, Preprint G-0270, NIIEFA, Leningrad, 19'76.

3. H. Grote and F.C. Iselin, "The MAD Program (Methodical Accelerator Design) Version

8.1, User's Reference Manual," CERN/SL/90-13 (AP).

4. L. Schachinger and R. Talman, "Teapot: A Thin-Element Accelerator Program for

Optics and Tracking," Particle Accelerator.s, 22, 35(1987).

5. R.V. Servranckx, et al., "User's Guide to the Program DIMAD," SLAC Report 285

UC-28, May 1985.

6. M. Berz, H.C. Hofmann, and H. Wollnik, "COZY 5.0, the fifth order code for corpuscular

optical systems," Nuclear In.strument.s and Method.s, A25&402, 1987.

7. S. Stahl and J. MacLachlan, "User's Guide to ESME v.7.1," Fermilab internal note

TM-1650 (Dec. 90).

8. M.G. Nagaenko, "A program package for beam dynamics study," In Proc. of the 2nd

European particle accelerator conference, Nice, 1990.

9. Y. Yan and Chiung-Ylng Yan, "ZLIB - A Numerical Library for Differential Algebra,"

SSC Laboratory Report SSCL-300, 1990.

10. L. Michelotti, "MXYZPPLK: a C++ version of differential algebra," Fermi National

Accelerator Laboratory Report FN-535, 1990.

11. Y. Yan, "Zmap - A Differential Algebraic High-Order Map Extraction Program for

Teapot Using ZLIB," SSC Laboratory Report SSCL-299, 1990.

12. N. Malitsky, A. Reshetov and Y. Yan, "ZLIB++: Object-Oriented Numerical Library

for Differential Algebra," SSC Laboratory Report SSCL-1659, 1994.

13. G. Bourianoff, A. Reshetov and N. Malitsky, "Object-Oriented Approach for the Design

of the Simulation Facility of the SSC," SSC Laboratory Report SSCL-677, 1994.

14. E.D. Courant and H.S. Snyder, "Theory of the Alternating Gradient Synchrotron,"

Ann.Phy.s. 3, 1-48, 1958.

15. Karl L. Brown. "A First-and Second-Order Matrix Theory for the Design of Beam

Transport System and Charged Particle Spectrometers," SLAC 75, Revision 3, SLAC,

1972.

17

16. M.G. Nagaenko, Yu.P.Severgin and I.A.Shukeilo, "Study of nonlinear beam circular mo­

tion in accelerators based on aberration theory," In Pl"OC. of the XIIth International

Conference on High-Energy Accelerator3, Batavia, 1983.

17. A.J. Dragt, "Lectures on nonlinear orbit dynamics," 198.1 Femilab Summer School. AlP

Conference Proceedings Vol. 87, 1982.

18. R. Talman, "A Universal Algorithm for Accelerator Correction," AlP Conference Pro­

ceedings Vol. 255, 1991.

19. U. Wienands, et al., "The H-,t Lattice of the SSC Low Energy Booster," Conference

Record of the XVth International Conference on High Bnergy Accelerator3, Hamburg,

1992.

18

~ ...
::
(t)

PJ
> .,

U'1 "tI
"0 "tI
PJ tri (")

....... (t) Z <0
0 t1,

"""'" tri >< -(t) > s
(t)

::
<"+.
'-I}

Legend:
--... ~ Mapping

Basis of Linear Space

APPENDIX B

List of the MAD Keywords and Element Parameter Variables

MAD PAC++

Parameter Quantity Unit Object of Quantity Value

keyword ElementParamet'er

L length m L length 1m

M " 1m

- - - IR splitting 1 split

ANGLE bend angle rad ANGLE bend angle 1 rad

RAD " 1 rad

El entrance edge rad El entrance edge 1 rad

angle angle

E2 exit edge rad E2 exit edge 1 rad

angle angle

FINT fringe field - - -

integral

- - - FINT1 entrance 1

f.integral

- - - FINT2 exit 1

f.integral

HI entrance pole m- I HI entrance pole 1 m- I

face curvature face curvature

H2 exit pole m-1 HI exit pole 1 m-l

face curvature face curvature

21

MAD PAC++

Parameter Quantity Unit Object of Quantity Value

keyword ElementParameter

HKICK horizontal kick rad HKICK horizontal kick 1 rad

angle angle

VKICK vertical kick rad VKICK vertical kick 1 rad

angle angle

KICK kick angle in rad - -

both planes

Kn strength of m-(n+l) K[n] strength of 1 m-(n+l)

normal normal

multipole multipole
1 anB

Kn ="BPF
1 anB

k(n) = nrIJPF
Kn,TILT strength of m-(n+l) KT[n] strength of 1 m-(n+l)

skewed skewed

multipole multipole

K(tilt) _ 1 as B; 1 8nB
n - Fa xn kt(n) = nrJJOF

KnL integrated m-n KL[n] integrated 1 m-n

strength strength

of normal thin of normal

multipole multipole

KnL,Tn integrated m-n KLT[n] integrated 1 m-n

strength strength

of skewed thin of skewed

multipole multipole

22

MAD PAC++

Parameter Quantity Unit Object of Quantity Value

keyword ElementParameter

K[n] integrated 1 m-n

strength

of normal thin

multipole

KT[n] integrated 1 -n ill

strength

of skewed thin

multipole

Tn tilt angle for rad T[n] tilt angle for 1 rad

n-order n-order

multipole multipole

components components

KS solenoid rad/m KS solenoid 1 rad/m

strength strength

KS=~ ks= ~

E electric field MV E electric field 1 MV
m m

strength strength

VOLT peak rf voltage MV VOLT[n] peak rf voltage 1 MV

MV[n] " 1 MV

LAG phase lag of - LAG[nJ phase lag of 1

rf cavity (* 271") rf cavity (* 271")

23

MAD PAC++

Parameter Quantity Unit Object of Quantity Value

keyword ElementParameter

HARMON harmonic - HARMON[n] harmonic 1

number of number of

rf cavity rf cavity

FREQ[n] " 1

XSIZE horizontal m XSIZE horizontal 1m

half-aperture half-size

of rect angle

YSIZE vertical m YSIZE vertical 1m

half-aperture half-size

of rectangle

- - - XAXIS horizontal 1m

half-axis

of ellipse

- - - YAXIS vertical 1m

half-axis

of ellipse

DX misalignment in m DX shift in the 1m

the x-direction x-direction

DY misalignment in m DY shift in the 1m

the y-direction y-direction

DS misalignment in m DS shift in the 1m

the s-direction s-direction

24

MAD PAC++

Parameter Quantity Unit Object of Quantity Value

keyword ElementParameter

DPHI rotation around rad DPHI rotation 1 rad

around

the x-axis the x-axis

DTHETA rotation around rad DTHETA rotation 1 rad

around

the y-axis the y-axis

DPSI rotation rad DPSI rotation 1 rad

around around

the s-axis the s-axis

TILT " rad TILT " 1 rad

25

APPENDIX C

LEB Lattice. MAD Version
title
Teapot::New triangular LEB lattice updated on OCT. 28, 1992

!**

! Elements
!**

!************************************

! Dipole Magnet
1************************************

para, twopi= 6.2831853071796
para, nbend=96
para, abend=twopi/nbend
para, Ibend=1.940
para, radb=lbend/abend
para, kb=sin(abend/2.)/cos(abend/2.)/radb

hb
rob

dbl
db2

hbL

sbend, l=lbend, ANGLE=abend
multipole, kl1=-kb

drift, 1=0.1115
drift, 1=0.1485

line = (db2, rob, hb, rob, db1, db1, mb, hb, rob, db2)

!************************************
! Main Quadrupoles
!************************************

kq=0.3722

qf1h
qf2h
qd1h
qd2h
qfs1h
qfs2h
qds1h
qds2h

quadrupole, 1=0.7564/2, k1=+kq, type=ir
quadrupole, 1=0.5919/2, k1=+kq, type=ir
quadrupole, 1=0.5983/2, k1=-kq, type=iJ:
quadrupole, 1=0.6127/2, k1=-kq, type==ir
quadrupole, 1=0.6568/2, k1==+kq, type"'ir
quadrupole, 1=0.5552/2, k1=+kq, type==ir
quadrupole, 1=0.6980/2, k1=-kq, type=ir
quadrupole, 1=0.6858/2, k1=-kq, type=ir

!************************************

! Norm Trim Quads
!************************************

qtf
qtdl
qtd2
qtfs1
qtfs2
qtds1

quadrupole, 1=0.294, k1=+0.589E-02
quadrupole, 1=0.294, k1=-0.116E-Ol
quadrupole, 1=0.294, k1=-0.157E-01
quadrupole, 1=0.294, k1=+0.425E-01
quadrupole, 1=0.294, kl=+0.573E-Ol
quadrupole, 1=0.294, kl=-0.663E-02

27

qtds2 quadrupole, 1=0.294, kl=-0.253E-Ol

dqt drift, 1=0.048

qtfL line (dqt, qtf, dqt)
qtdlL line (dqt, qtdl, dqt)
qtd2L line (dqt, qtd2, dqt)
qtfslL line (dqt, qtfsl, dqt)
qtfs2L line (dqt, qtfs2, dqt)
qtdslL line (dqt, qtdsl, dqt)
qtds2L line (dqt, qtds2, dqt)

!************************************

! Norm Sextupoles
1************************************

sextf sextupole, 1=0.3, k2=+1.07E+00
sextdl sextupole, 1=0.3, k2=-1.94E+00
sextd2 sextupole, 1=0.3, k2=-2.08E+00

dsext drift, 1=0.05

sextfL line (dsext, sextf, dsext)
sextd1L line (dsext, sextd1, dsext)
sextd2L line (dsext, sextd2, dsext)

!************************************

! Position Monitors
!************************************

bpm monitor, 1=0.15

dbpm drift, 1=0.02

bpmL line = (dbpm, bpm, dbpm)

1************************************

! Correctors
!************************************

ch hkick, 1=0.15
cv vkick, 1=0.15

dc drift, 1=0.06

chL line (dc, ch, de)
evL line (dc, cv, de)

. 1************************************

! Drifts
1************************************

dql : drift, 1=0.1

28

dareO drift, 1=0.4915
dare1 drift, 1=0.4974
dare2 drift, 1=0.2091
dare3 drift, 1=0.3591
dare4 drift, 1=0.2134
dare5 drift, 1=2.6S14
dare6 drift, 1=0.1900
dare7 drift, 1=2.9514
dareS drift, 1=0.2274
dare9 drift, 1=0.1900
dare10 drift, 1=0.4915

dstrO drift, 1 6.4231
dstr1 drift, 1 2.7976
dstr2 drift, 1 7.4234
dstr3 drift, 1 0.09
dstr4 drift, 1 7.1534

!**~r*** ********************

! Lines
!**~r*** ********************

!************************************
! Arc
!************************************

fstDBFBD: line = &
(qds2h, (bpmL,qtds2L,dareO),hbL, (dare2,qtfL,bpmL) ,qf2h, &
qf2h, (dq1, chL, dare3) ,hbL, (dare4, qtdlL, bpmL) , qd1h)

DBFBD1 : line = &
(qd2h, (bpmL,qtd2L,dare1),hbL, (dare2,qtfL,bpmL) ,qf2h, &
qf2h, (dq1,ehL,dare3) ,hbL, (dare4,qtd1L,bpmL),qd1h)

DOFOD : line = &
(qd1h, (dq1,sextd1L,evL,dare5, ehL, sextfL ,bpmL), qf1h, &
qf1h, (dare6,sextfL,dare7,evL,sextd2L,dq1) , qd1h)

DBFBD2 : line = &
(qd1h, (bpmL,qtd1L,dare4),hbL, (dare3,ehL,dq1) ,qf2h, &
qf2h, (bpmL, qtfL, dare2) ,hbL, (dareS, eVL, qtd2L, d.are9), qd2h)

lstDBFBD: line = &
(qd1h, (bpmL, qtdlL, dare4), hbL, (dare3, ehL, dq1) ,qf2h, &

aref
arcs
arcl
arc

qf2h, (bpmL, qtfL, dare2) ,hbL, (dare10, qtds2L, bpmL), qds2h)

line
line
line
line

(fstDBFBD,DOFOD, DBFBD2)
(DBFBD1 ,DOFOD, DBFBD2)
(DBFBD1 ,DOFOD, lstDBFBD)
(aref, 2*ares, arel)

29

1************************************

! Straight Section
!************************************

DOFODl line = &
(qds2h, (dql, cvL, dstrO, qtfslL, bpmL) , qfslh, &

qfslh, (dql,chL,dstrl,qtdslL,bpmL),qdslh)

DOFOD2
(qdslh
qfs2h

str

line = &
, (dql, cvL, dstr2, qtfs2L, bpmL) ,qfs2h,
, (dql, dstr3, qtfs2L, chL, dstr4, cvL, dql) , qdslh)

line (DOFOD1, DOFOD2, -(DOFOD1))

period : line (are, str)

&

!**~r*** ********************

! LEB
!**~r*** ********************

leb : line=(3*period)

~**~r*** ********************

30

APPENDIX D

LEB Lattice. PAC++ Version

I I File
II Description
II Created
II Authors
II
II
II
II
II (C) Copyright
II SSC Laboratory
II 2550 Beckleymeade
II Dallas, TX, 75237

II Global Parameter

ENERGY = 1.538;

Error glRmsShift

II Main Dipole Magnet

LEB.icc
This file contains the structure of LEB
May 15, 1994
George Bourianoff (gib@mesquite.ssc.gov)
Nikolay Malitsky (malitsky@ivory.ssc.gov)
Alexander Reshetov (reshetov@vernon.ssc.gov)

Ave.

0.0004*(DX + DY);

Element hb ("Main Dipole");

int hbNumber = 96;
double hbAngle 2*Pl/hbNumber;

Element hbSysMlt

Error hbRmsMlt

-4.41e-04*K[2] +
2.32e+00*K[4] -
4.0ge+03*K[6] +
5.90e+06*K[8];

5.82e-05*K[1] + 2.56e-05*KT[1] +
5.70e-04*K[2] + 2.6ge-04*KT[2] +
8.96e-03*K[3] + 5.06e-03*KT[3] +
7.04e-02*K[4] + 5.63e-02*KT[4] +
3.78e+00*K[5] + 1.34e+00*KT[5] +
3.58e+01*K[6] + 2.05e+01*KT[6]i

hb 1. 940*M + hbAngle* (RAD + E1/2. + E2/2.) ,;
hb += hbSysMlt + hbRmsMlt + glRmsShift;

Element db1("DB1"); db1
Element db2("DB2"); db2

o . 1115*Mi
0.1485*M;

Line hbL = db2*hb*db1*db1*hb*db2;

II Main Quadrupoles

double qK = 0.3722;

31

Error qRmsMlt 7.28e-05*K[l] + 1.00e-18*KT[1] +
3.36e-04*K[2] + 1.82e-04*KT[2] +
1.0ge-02*K[3] + 7.28e-03*KT[3] +
2.80e-02*K[4] + 3.64e-02*KT[4] +
7.28e-Ol*K[5] + 1.0ge+00*KT[5];

Element qtmp
Element qftmp
Element qdtmp

qRmsMlt + glRmsShift + 3*IR;
qK*K[l] + qtmp;

-qK*K(l] + qtmp;

Element qflh ("QFIH");
Element qf2h("QF2H");
Element qdlh ("QDIH");
Element qd2h("QD2H")i

Element qfs1h("QFS1H") i
Element qfs2h ("QFS2H") i
Element qds1h ("QDS1H") i
Element qds2h ("QDS2H");

II Norm Trim Quads

qf1h
qf2h
qdlh
qd2h

qfs1h
qfs2h
qds1h
qds2h

0.7564/2*M + qftmpi
0.5919/2*M + qftmpi
0.5983/2*M + qd.tmpi
0.6127/2*M + qd.tmpi

0.6568/2*M + qftmp;
0.5552/2*M + qftmpi
0.6980/2*M + qdtmpi
0.6858/2*M + qdtmpi

Element qt[7] = {"QTF", "QTD1", "QTD2", "QTFS1", "QTFS2", "QTDS1", "QTDS2"};
Line qtL [7] i

static double qtLength

qt [0]
qt [1]

qt[2]
qt [3]
qt [4]

qt[5]
qt [6]

0.58ge-02*K[1];
-0.116e-01*K[l]i
-0.157e-01*K[1];

0.425e-01*K[1]i
0.573e-01*K[1];

-0.663e-02*K[1]i
-0.253e-01*K[1]i

Element dqt ("DQT"); dqt

0.294i

0.048*M;

for(int iqt=Oi iqt < 7; iqt++)
{

qt[iqt]
qtL [iqt]

+= qtLength*Mi
dqt*qt [iqt] *dqti

II Norm Sextupoles

Element sext[3] {" SEXTF", "SEXTD1", "SEXTD2"} ,;
Line sextL[3];

static double sextLength 0.3;

sext[O]
sext[l]
sext[2]

0.535*K[2]i
-0.970*K[2];
-1.040*K[2]i

32

II

II

Element dsext("DSEXT"); dsext = 0.05*M;

for(int isext=O; isext < 3; isext++)
{

sext[isext] += sextLength*M;
sextL[isext] dsext*sext[isext]*dsext;

Beam Position Monitors

Element bpm ("BPM") ; bpm
Element dbpm ("DBPM") ; dbpm
Line bpmL; bpmL

Correctors

Element
Element
Element

Line
Line

ch ("CorH"); ch
cv ("CorV") ; cv
dc("DC") ; dc

chL
cvL

dc*ch*dc;
dc*cv*dc;

0.15*M;
0.02*M;
dbpm*bpm*dbpm;

O.15*M;
O.lS*M;
O.06*M;

I I Drifts

Element dq1 ("DQ1"); dq1 = 0.1 *M;

Element dare[ll] = { O.4915*M, O.4974*M, O.2091*M, O.3591*M, O.2134*M,
2.6814*M, O.1900*M, 2.9514*M, O.2274*M, O.1900*M,
O. 4915*M};

Element dstr[5] 6.4231*M, 2.7976*M, 7.4234*M, O.0900*M, 7.1534*M};

II Lines

II Arc

Line fstDBFBD = qds2h*(bpmL*qtL[6]*dare[O])*hbL*(darc[2]*qtL[O]*bpmL)*qf2h*

Line DBFBD1

Line DOFOD

qf2h *(dq1*ehL*dare[3]) *hbL*(dare[4]*qtL[l]*bpmL)*qd1h;

qd2h* (bpmL*qtL [2] *darc [1]) *hh:L* (dare [2] *qtL [0] *bpmL) *qf2h*
qf2h*(dq1*ehL*dare[3]) *hbL* (dare[4] *qtL[l] *bpmL) *qd1h;

qd1h* (dq1*sextL[l] *evL*dare[S] *chL*sextL[O] *bpmL) *qf1h *
qf1h*(dare[6]*sextL[O]*dare[7]*evL*sextL[2]*dq1) *qd1h;

Line DBFBD2 qd1h*(bpmL*qtL[l]*dare[4])*hbL*(dare[3]*ehL*dq1) *qf2h*
qf2h*(bpmL*qtL[O]*dare[2])*hbL*(dare[8]*evL*qtL[2]*dare[9])*qd2h;

Line lstDBFBD qdlh*(bpmL*qtL[l] *dare[4]) *hbL*(dare[3] *ehL*dql) *qf2h*
qf2h* (bpmL*qtL[O]*dare[2]) *hbL* (dare[lO] *qtL[6] *bpmL) * qds2h;

Line aref fstDBFBD*DOFOD*DBFBD2;

33

Line arcs
Line arcl

Line arc

II Straight Section

Line DOFODl

Line DOFOD2

Line strSection

II SuperPeriod

DBFBD1*DOFOD*DBFBD2;
DBFBD1*DOFOD*lstDBFBD;

arcf*arcs*arcs*arcl;

qds2h* (dql*cvL*dstr[O] *qtL[3]*bpmL) *qfslh*
qfslh*(dql*chL*dstr[l]*qtL[S]*bpmL)*qdslh;

qdslh* (dql *cvL*dstr [2] *qtL [4] *bpmL). *qfs2h *
qfs2h*(dql*dstr[3]*qtL[4] *chL*dstr[4] *cvL*dql)*qdslh;

DOFOD1*DOFOD2*reflect(DOFOD1);

Line superPeriod arc*strSection;

II LEB

Line leb("C++ version");
leb = power(superPeriod, 3);

34

APPENDIX E

LEB Lattice. Exalnple of PAC++ Programming

I I File
II Description
II
II Created
II Authors
II
II
II
II (C) Copyright
II SSC Laboratory
II 2550 Beckleymeade
II Dallas, TX, 75237

#include <time.h>

LEB.cc
This file contains the example of the direct
tracking and one-turn ma.p extraction for LEB.
May 15, 1994
George Bourianoff (gib@mesquite.ssc.gov)
Nikolay Malitsky (mali.tsky@ivory.ssc.gov)
Alexander Reshetov (reshetov@vernon.ssc.gov)

Ave.

#include "Teapot/Teapot.hh"
#include "zmap/Zmap.hh"

double staticGenerator(int& s) { return(l.);}

main ()
{

#include "LEB.icc"

II Assignment

Teapot lebTeapot("LEB: Teapot implementation");
lebTeapot = leb;

II Set Error

int seed = 1;
lebTeapot.setError(seed, staticGenerator, hb);
lebTeapot.setError(seed, staticGenerator, qflh*qf2h*qd1h*qd2h);
lebTeapot.setError(seed, staticGenerator, qfs1h*qfs2h*qds1h*qds2h);

II Tracking

Particle p;
for(int i=l; i <= 6; i++) p[ij = 1.0e-3;

for(i=l; i <= 100; i++) p = lebTeapot*p;

II Extract one-turn Taylor Map

ZLIB_ORDER = 5;
Zmap lebZmap = lebTeapot;
cout « lebZmap;

35

public:

Itrnatrix~ rrnatrixfyoiW; int* number;
rna rlx rrna rlx m I ;

~rnntrix* ro
(j OSI Ion: dOrbito

poslboii; ::T' OSI Ion
~
"1
eo+- > Line* line; 0

Pac* pac; ..., "'C
"'C "'C

Elernent** delta; > trJ
c..:> Elernent** error; (j Z
-l + t::J

Rrnatrix rTotal; + ><
(j ~ -~
f/l
f/l
CD
f/l

Accelerator codes

APPENDIX G

Zmap. Function mltKick

II File Zmap.cc
II Description
II

This file contains the object-oriented
implementation of program Zmap.
May 1, 1994 II Created

II Authors
II

Nikolay Malitsky (malitsky@ivory.ssc.gov)
Alexander Reshetov (reshetov@vernon.ssc.gov)

II
II
II (C) Copyright
II SSC Laboratory
II 2550 Beckleymeade
II Dallas, TX, 75237

Ave.

void Zmap: :mltKick (TeapotElement& teapot, ZSeries* P, ZSeries* tmp)
{

tmp [1] P [1] - teapot.delx;
tmp [3] P[3] - teapot.dely;

tmp[2] 0.0;
tmp [4] 0.0;
for (int i=teapot.mltOrder; i >= 0 i--)
{

tmp [1] *tmp [2] ; tmp [0]
tmp [0]
tmp [4]
tmp[4] +=
tmp[2]

tmp[3]*tmp[4] - teapot.btw[i];
tmp [1] *tmp [4] ;
tmp[3]*tmp[2] + teapot.atw[i];
tmp[O];

}

tmp[2] += tmp[1]*teapot.btw01;
tmp[4] += tmp[3]*teapot.atw01;

P [2] tmp [2] ;
P[4] += tmp[4];

tmp [0] = 1.;
if(Zmap_DIM >= 6) tmp[O] tmp [6] *tmp [6] ;

tmp [0)

tmp[O)
tmp [0)

tmp[O)
tmp[2]
tmp[4]

return;

p [2) *p [2) ;

P [4] *p [4] ;

sqrt (tmp [0]);

1./tmp [0] ;
P [2] *tmp [0] ;
P [4] * tmp [0] ;

39

II xdif
II ydif

II bytw
II bxtw

II px/pO
II py/pO

II ps/pO

II vx/vs
II vy/vs

