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Recent work has highlighted the important role played by

protein phosphatase complexes in the regulation of mitosis

from yeast to mammals. There have been important advances

in defining the roles of the protein serine/threonine

phosphatases PP1 and PP2A and the dual specificity protein

tyrosine phosphatases CDC25 and Cdc14. Three independent

studies defined a regulatory role for PP2A in the control of sister

chromatid cohesion, involving a direct interaction with

shugoshin. A chromatin targeting subunit has been identified

for PP1 and the complex shown to play an essential role in

chromosome segregation. Key regulatory residues within

CDC25 have been mapped and its activity tied both to the initial

activation of cyclin-dependent kinases at the centrosome and

to DNA damage checkpoints. Novel roles have been defined for

Cdc14, including regulation of rDNA and telomere segregation

and participation in spindle assembly. These exciting advances

show that protein phosphatases are not merely silent partners

to kinases in regulating the control of cell division.
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Introduction
The process of cell division is complex and involves

multiple independent regulatory steps, most of which

are controlled by reversible protein phosphorylation. In

higher eukaryotes, mitosis involves condensation of chro-

mosomes, disassembly of the nuclear lamina, breakdown

of the nuclear envelope and disassembly of many forms of

nuclear bodies, including nucleoli. Completion of mitosis

requires alignment and proper segregation of chromo-

somes into daughter cells followed by reassembly of

nuclei and cytokinesis. These and many other events,

such as centrosome separation and spindle assembly, are

tightly regulated, and several critical checkpoints occur

during mitosis to ensure fidelity. Failure to complete any

of the key steps can trigger apoptosis and cell death.
www.sciencedirect.com
While the important role of protein phosphorylation in

regulating mitotic events has long been recognized, much

of the work in this area has focused on the kinases,

primarily the Cdk/Cyclin, Aurora, Polo-like and NIMA

families (see [1] for review). An often unspoken assump-

tion is that the corresponding phosphatase activity

needed to reverse these processes may largely be con-

stitutive. However, this view of phosphatases as silent

partners of kinases in regulation is changing, particularly

in the light of recent studies showing critical roles for

regulated phosphatases. For example, a recent large-scale

RNA interference (RNAi) approach [2��] found that

while only 11% of the 650 cellular kinases tested appear

to be survival kinases (i.e. decreasing their levels led to

increased cell death by apoptosis), a surprising 32% of the

222 phosphatases and phosphatase regulatory proteins

screened were required for cell survival. Conversely, an

additional 5% were termed ‘death phosphatases’ for their

apparent roles as tumour suppressors. This provides an

elegant demonstration that regulation of phosphatase

activity is a key point of control throughout the cell

and highlights their potential value as therapeutic targets.

This review will focus on recent advances in understand-

ing the contributions of four major classes of protein

phosphatases to the regulation of processes involved in

controlling cell division, specifically the protein serine/

threonine phosphatases PP1 and PP2A and the dual-

specificity protein tyrosine phosphatases (DUSPs)

CDC25 and Cdc14. We will draw on examples from

species as diverse as yeast, insects and mammals, reflect-

ing the high evolutionary conservation of these regulated

events.

Serine/threonine phosphatases
Both PP1 (termed Glc7 in budding yeast and Dis2 in

fission yeast) and PP2A are serine/threonine-specific pro-

tein phosphatase catalytic subunits that form holoenzyme

complexes with one or more regulatory subunits. These

regulatory subunits can affect cellular location and/or

substrate specificity. In contrast with most kinases, the

PP1 and PP2A catalytic subunits can potentially act on a

wide range of substrates and thus substrate specificity is

conferred by their interaction partners. Thus, a critical

step in understanding the role of PP1 and PP2A holoen-

zymes is to define their regulatory subunits and the

mechanism by which they are targeted to their physio-

logical substrates. Much of the literature ascribing specific

roles to PP1 or PP2A has relied on differential effects

of inhibitors such as okadaic acid, which in vitro blocks

PP2A activity at lower concentrations than are required

to inhibit PP1 [3]. While these inhibitor studies are
Current Opinion in Cell Biology 2006, 18:623–631
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624 Cell division, growth and death
informative, it is difficult to draw clear conclusions about

the in vivo roles of PP1 and PP2A from them, mainly

because the global suppression of phosphatase activity

affects many cellular processes and potentially results in

indirect effects. Dissecting the in vivo roles of the respec-

tive PP1 and PP2A complexes therefore requires detailed

molecular analyses of their composition and targeted

disruption of specific phosphatase holoenzymes.

PP2A
PP2A plays a prominent role in the regulation of mitosis

and signalling pathways. In addition to its interaction with

both scaffolding and variable subunits (termed ‘A’ and ‘B’

subunits, respectively) in a trimeric complex (see

Figure 1), the activity of PP2A can also be controlled

by phosphorylation and methylation (see [4] for review).

Recent studies have provided compelling evidence that

PP2A plays a critical role in the regulation of sister

chromatid cohesion. The association of sister chromatids

during mitosis depends on a multi-subunit complex

called cohesin [5]. During mitosis in metazoa, cohesin

is released from sister chromatids in two stages. First, in

prophase and prometaphase, it is released from chromo-

some arms by a process mediated by phosphorylation of

the cohesin subunit SA2. At this stage, centromeric cohe-

sin is retained, and therefore SA2 must be protected from

phosphorylation. This protection is provided by the Shu-

goshin (Sgo) protein family, and hSgo1 has been shown to

act by preventing phosphorylation of SA2 [6��].

Using immunoprecipitation and yeast two-hybrid studies,

several groups independently identified a specific PP2A

trimeric complex that interacts with Sgo1 [7�,8��,9�]. On

the basis of RNAi studies and analysis of a non-PP2A-
Figure 1

Role of PP2A in maintenance of chromosome cohesion. This diagram summ

complex acting with shugoshin to protect cohesin at centromeres from pho

In metazoan mitosis, cohesin is removed from chromosome arms at prome

shugoshin and PP2A. At the metaphase–anaphase transition, separase is a

cohesion and separation of sister chromatids.
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binding hSgo1 mutant, Tang and colleagues [7�] pro-

posed that interaction with PP2A is required for centro-

meric localization of hSgo1 and proper chromosome

segregation. Independently, the same PP2A complex

was immunopurified from HEK 293T cells using Flag-

tagged hSgo1 [8��]. Immunofluorescence studies by Kita-

jima and colleagues showed colocalization of hSgo1 and

the B56 PP2A regulatory subunit at mammalian centro-

meres. Using RNAi in mammals, they also reported that

knockdown of hSgo2, but not of hSgo1, resulted in loss of

centromeric PP2A. Conversely, knockdown of PP2A led

to a loss of centromeric hSgo1 [8��]. Studies on both

budding and fission yeast undergoing meiosis also showed

that Sgo1 interacts with PP2A at centromeres and serves

to protect the cohesin Rec8 subunit from phosphorylation

and cleavage [9�].

Interestingly, tethering of yeast PP2A at specific sites on

chromosome arms preserved cohesion at these sites even

after meiosis I, when arm cohesin should dissociate,

showing an intrinsic ability of PP2A to protect cohesin,

independent of Sgo1 [8��,9�]. The PP2A complex may

thus work both directly at centromeres to maintain cohe-

sion and by facilitating accumulation of Sgo1, which also

acts to prevent cleavage of cohesin. Taken together, these

studies point to an important new role for PP2A in the

control of chromosome cohesion, mediated, at least in

part, through interactions with shugoshins (Figure 1).

PP2A has also been implicated in regulating mitotic exit.

Wang and Ng [10] provided evidence suggesting that a

PP2A–Cdc55 complex dephosphorylates the mitotic exit

network (MEN) activator Tem1 in budding yeast. This

prevents mitotic exit by blocking release of Cdc14 from
arizes three recent studies that identified a specific PP2A trimeric

sphorylation and cleavage until the metaphase–anaphase transition.

taphase but remains at the centromere regions, protected by

ctivated and cleaves this residual cohesin, resulting in a loss of
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the nucleolus. An alternative mechanism to explain the

block in mitotic exit was proposed by Yellman and Burke

[11], who argue that the role of PP2A–Cdc55 occurs either

downstream or independently of Tem1. The protein

Net1 functions to sequester Cdc14 in the nucleolus until

anaphase onset, at which point it is phosphorylated,

releasing Cdc14 into the nucleus where it triggers mitotic

exit. Yellman and Burke propose that PP2A–Cdc55 pro-

motes retention of Cdc14 in the nucleolus by reversing

Net1 phosphorylation. This view is supported by work

from Queralt and colleagues, who report that the down-

regulation of PP2A–Cdc55 at anaphase onset is mediated

by its direct interaction with separase, resulting in Net1

phosphorylation and subsequent release of Cdc14 from

the nucleolus [12�].

Although there is no known mammalian homologue for

Net1, interestingly, PP2A has also been implicated in the

control of mitotic exit in mammalian cells. A recent study

used a yeast two-hybrid screen to show that the B55d

regulatory subunit of mammalian PP2A interacts with

hSecurin. The PP2A–B55d complex, directly or indir-

ectly, appears to stabilize the levels of hypophosphory-

lated hSecurin and hence prevents premature mitotic

exit [13].
Figure 2

Targeting of mammalian PP1. (a) The three mammalian isoforms of PP1 are

(b) The localization and activity of PP1 is regulated primarily through its ass

these contain a conserved RVXF binding motif that interacts with a hydroph

for these targeting subunits may account for the distinct and dynamic local

cell cycle. During interphase, both GFP–PP1a and GFP–PP1g are nuclear an

Upon entry into mitosis, both are found at kinetochores in metaphase (arrow

most clearly here during anaphase and telophase (arrowheads). During the

PP1g to chromosomes (small arrows), where the protein remains throughou

and PP1g also show accumulations at the cortex and midbody (dashed arro
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PP1
PP1 has been shown to contribute to the regulation of

multiple cellular processes including glycogen metabo-

lism and muscle contraction, mediated by interaction

of the PP1 catalytic domain with regulatory proteins

termed ‘targeting subunits’. Over 50 have been described

to date, and they have the potential to regulate both

the localization and the catalytic activity of PP1 (see [14]

for review). Most targeting subunits share a common

‘RVXF’ motif that mediates direct binding to PP1

(Figure 2b). While substrate binding is normally depen-

dent on targeting subunits, in some cases PP1 has

been shown to bind directly to substrates that share this

RVXF motif, e.g. the pRb protein [15] and Xenopus
CDC25 [16].

Roles for PP1 in mitosis have been uncovered by genetic

evidence in yeast, other fungi and Drosophila, and by

various methods in higher species (see [17] for review).

PP1 is expressed in mammalian cells as three closely

related isoforms, a, b/d and g, which despite their exten-

sive homology (Figure 2a) show largely distinct localiza-

tion patterns throughout the cell cycle [18��,19–21],

suggesting isoform-specific roles in cellular regulation.
highly homologous, differing only at their extreme N- and C-termini.

ociation with a large group of diverse targeting subunits. Most of

obic groove on the catalytic subunit of PP1. (c) Differences in affinity

ization patterns observed for different PP1 isoforms throughout the

d cytoplasmic, with an additional nucleolar accumulation of GFP–PP1g.

s). PP1a is also found at centrosomes at all cell cycle stages, as seen

metaphase-to-anaphase transition, there is a dramatic recruitment of

t telophase and into the following interphase. At telophase both PP1a

ws).
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Using stable isotope labelling and quantitative proteo-

mics, it was shown that the differing localization patterns

for GFP–PP1a and GFP–PP1g (Figure 2c) reflect their

association with different pools of targeting subunits

[18��]. This study also identified Repo-Man (recruits

PP1 onto mitotic chromatin at anaphase) as an essential

protein that acts as a novel targeting subunit responsible

for the isoform-specific recruitment of PP1 to chromatin

at the metaphase–anaphase transition. The Repo-Man–

PP1 complex was recently shown to play a critical role in

the maintenance of chromosome architecture during

mitosis [22]. PP1 is also proposed to regulate chromatin

decondensation at the end of mitosis, mediated by the

targeting subunit p99/PNUTS [23].

An elegant series of experiments has described a role for

PP1 in controlling nuclear envelope assembly at the end

of mitosis [24–26]. When cells enter mitosis, nuclear

lamina disassembly is promoted by phosphorylation of

B-type lamins. AKAP149, an ER and nuclear membrane

protein, was shown to target PP1 (via an RVXF motif) to

dephosphorylate B-type lamins at telophase, enabling

their polymerization and thus lamina reassembly. A short

peptide from AKAP149 containing the RVXF motif can

displace PP1 and induce mislocalization of B-type lamins

to the cytoplasm. Although the cells were able to com-

plete mitosis, they died by apoptosis within six hours,

suggesting that disruption of lamin assembly may directly

trigger apoptosis.

The association of PP1 isoforms with centrosomes, kine-

tochores and the cellular cortex and midbody region (see

Figure 2c), along with results from inhibitor and RNAi

studies, suggest roles for as-yet-undiscovered targeting

subunits and regulatory pathways. Bud14, for example,

was recently identified as a Glc7 (PP1) targeting subunit

in Saccharomyces cerevisiae that directs the phosphatase to

the bud cortex to stabilize microtubule interactions [27].

A similar role in mammalian cells is suggested by the

presence of both PP1a and PP1g at the cortex at telo-

phase [18��]. GFP–Glc7 has also been shown to accumu-

late in the nucleolus during interphase (like mammalian

PP1g) and at the spindle pole bodies (centrosomes)

during anaphase (like mammalian PP1a) [28]. It remains

to be established which substrates are being depho-

sphorylated at these sites.

Pinsky et al. [29�] took advantage of the regulation of Glc7

by targeting subunits to explore its interaction with Ipl1

(Aurora B) in budding yeast. Glc7 is known to antagonize

Ipl1 activity, but it was unclear whether it dephosphor-

ylates its substrates or regulates the kinase directly.

Although the targeting subunit has not been identified,

titratation of Glc7 away from Ipl1 by overexpression of

Glc7 binding proteins that do not play roles in chromo-

some segregation led to increased phosphorylation of Ipl1

substrates, leading the authors to propose that Glc7 acts to
Current Opinion in Cell Biology 2006, 18:623–631
ensure accurate chromosome segregation by dephosphor-

ylating Ipl1 targets.

CDC25
CDC25 was first identified in fission yeast 20 years ago as

a factor required for entry into mitosis [30]. It is now

known to activate cyclin-dependent kinases (Cdks) by

removing inhibitory phosphates, which leads to Cdk

phosphorylation of multiple substrates that drive the

cell division process forward (see Figure 3a,b). Regulation

of CDC25 includes control of its protein levels (by a

balance of synthesis and degradation), control of its

localization within the cell relative to its substrates and

modulation of both its catalytic activity and its substrate

binding affinity. All of these mechanisms work together to

tightly control the activity of this ‘mitotic trigger’ and to

ensure that cell division occurs with proper timing.

Three mammalian genes were identified that comple-

ment the yeast cdc25 knockout strain. The proteins

encoded by these genes, termed CDC25A, CDC25B

and CDC25C, are �60% identical in their C-terminal

regions, which include the catalytic core containing

the CX5R motif common to all protein tyrosine phospha-

tases. In contrast to the reasonably high homology of

their catalytic domains, they are only 20–25% identical

in their N-terminal regulatory domains, which contain

sites for various post-translational modifications and site-

specific protein interactions, including phosphorylation

of key serine and threonine residues, ubiquitination,

phosphorylation-dependent binding of 14-3-3 proteins

and Pin1-dependent prolyl isomerization (see

Figure 3d–f). These modifications are involved both in

normal cell cycle control and in the response to check-

point signals.

There is a dramatic hyperphosphorylation of CDC25

during the transition from interphase to mitosis, and

several mitotic phosphorylation sites have been mapped

(see Figure 3d–f). A key site for regulation is the dual

Serine-Proline-Serine phosphorylation motif (shown in

Figure 3f for CDC25C), containing overlapping substrate

recognition sites for Cdk1 (S214; activating) and stress

family kinases (S216; inhibitory). Cdk1/cyclinB phos-

phorylates and activates CDC25, and also initiates a

feedback activation loop to ensure the rapid initiation

of mitosis. This feedback loop has recently been shown to

involve recruitment of PP1 activity to CDC25 [31�],
triggered by phosphorylation of the activating serine

residue by Cdk1. Phosphorylation of CDC25 also controls

its localization relative to its substrates. All three isoforms

contain nuclear import and export signals, which can be

disrupted by phosphorylation of residues within them by

kinases such as Plk1 and Plk3 [32,33]. Plk1 was also

shown recently to play a role, along with CDC25B, in

restarting the cell cycle upon release of the DNA damage

checkpoint [34�].
www.sciencedirect.com
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Figure 3

Regulation of mammalian CDC25. (a) The G1/S transition is regulated by the opposing catalytic activities of the Wee1/Myt1 kinases (phosphorylating

Cdk proteins at threonine 14 and tyrosine 15) and CDC25 acting on Cdk2/CyclinE. CDC25A has been shown to control this checkpoint, although

roles for CDC25B and CDC25C have not yet been ruled out. (b) The G2/M transition is regulated in a similar way, with CDC25 activating Cdk1/Cyclin B

by dephosphorylating critical residues. All three mammalian CDC25 isoforms have been implicated in regulation of this pathway. (c) The initial

activation of Cdk1/Cyclin B has been shown to occur at centrosomes as they begin to separate during prophase, and involves the phosphorylation

and activation of CDC25B by the Ajuba–Aurora A complex. The divergent N-terminal regulatory domains of the three mammalian CDC25 isoforms

contain a variety of regulatory sites, including phosphorylation sites, 14-3-3 binding sites, domains that regulate degradation and nuclear import

and export signals. Several of these known and recently described regulatory sites have been summarized here for (d) CDC25A, (e) CDC25B

and (f) CDC25C.
Regulation of CDC25 by targeted degradation occurs

both during mitosis (mediated by the anaphase-promot-

ing complex/cyclosome, or APC/C) and in response to

DNA damage/stalled replication (mediated by the Skp1/

Cul1/F-box or SCF complex). The latter is under the

control of several kinases, including the ataxia-telangiec-

tasia mutated (ATM) and ATM-related (ATR) pathway

transducer kinases Chk1 and Chk2 (see Figure 3d). In

addition, phosphorylation of CDC25A on T507 by Chk1

creates a 14-3-3 binding site that sterically hinders the

phosphatase’s interaction with its Cdk/cyclin targets

[35,36], while phosphorylation of CDC25B and CDC25C

on other residues by Chk1 or Chk2 and binding of 14-3-3

disrupts nuclear localization signals. This leads to seques-

tration of the phosphatase in the cytosol, away from its

nuclear substrates. More recently, p38 SAPK and its
www.sciencedirect.com
downstream substrate MAPKAP kinase-2 have also been

implicated as DNA damage checkpoint kinases [37]

(Figure 3e).

While all three mammalian CDC25 phosphatases activate

their Cdk substrates in the same manner, they appear to

have distinct roles in regulating cell cycle transitions (see

[38] for review). Results from RNAi studies implicate

CDC25B and CDC25C in the regulation of the G2/M

transition, whereas CDC25A appears to play a more

general role, being involved both in early (G1/S) and late

(G2/M) cell cycle transitions (see Figure 3a,b). There is

still some debate over possible redundancy of the three

isoforms, and the absolute requirement of all three for

regulation of mitotic entry, particularly in light of results

in CDC25 knockout mice, in which a lack of both
Current Opinion in Cell Biology 2006, 18:623–631
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CDC25B and CDC25C did not hinder normal develop-

ment, cell cycle progression or response to DNA damage

[39�].

The observation that the activity of CDC25B at the G2/M

transition peaks before that of CDC25C led to the sug-

gestion that CDC25B initiates the Cdk1/cyclin B activa-

tion feedback loop [40]. CDC25B is the likeliest

candidate for this initiation role. A pool of CDC25B,

which is phosphorylated and activated by Aurora A

kinase, accumulates at centrosomes [41], where initial

activation of Cdk1/cyclin B in early prophase has been

shown to take place [42] (see Figure 3c). Using a phos-

phospecific antibody as a marker for active Cdk1/cyclin B,

Lindqvist and colleagues [43��] showed that CDC25B

specifically activates this substrate at centrosomes. In

addition to positive regulation by Aurora A, pEg3 kinase

was found to negatively regulate centrosomal CDC25B

on a different residue [44]. The DNA damage response

kinase Chk1 has also been implicated in the regulation of

both centrosomal CDC25 and Cdk1/cyclin B, both under

normal conditions and as part of the checkpoint response

[45�].

Cdc14
While Cdc25 is a key regulator of initiation of mitosis (and

hence DNA damage checkpoint control), Cdc14 is a key

regulator of late mitotic events, coordinating the temporal
Figure 4

Cross-species comparison of Cdc14 localization and function. Cdc14 homo

localization during interphase and throughout mitosis. Nuclei are shown in g

and chromosomes in blue. The localization of Cdc14 at these sites is shown

Current Opinion in Cell Biology 2006, 18:623–631
and spatial control of chromosome segregation with mito-

tic spindle disassembly and cytokinesis.

In the budding yeast S. cerevisiae, Cdc14p plays a key role

in exit from mitosis by dephosphorylating Cdk targets

(reviewed in [46]). Cdc14p is primarily regulated by

localization, being sequestered during interphase in the

nucleolus by Cfi/Net1 and then released in two stages,

coordinated by the FEAR (Cdc fourteen early anaphase

release) network and the MEN (mitotic exit network).

Upon its initial release by FEAR, Cdc14p is found in the

nucleus and at the spindle pole body and spindle

(Figure 4). After activation of the pathway in telophase

(which promotes further Cdc14p release from nucleoli) it

is also found in the cytoplasm [46].

FEAR-controlled release of Cdc14p in budding yeast is

also important for division of nucleoli and resolution of

highly repetitive rDNA and telomere regions, as demon-

strated in two recent studies. These regions separate at

mid-anaphase, long after cohesin is cleaved. D’Amours

and colleagues [47��] showed that Cdc14p promotes

condensin recruitment at the rDNA locus and triggers

rDNA segregation, while Sullivan et al. [48��] demon-

strated that Cdc14p induces condensin- and Aurora B-

dependent resolution of rDNA linkages. The final stage

of resolution also relies on Cdc14p-mediated axial com-

paction of rDNA, to reduce its linear length [49].
logues from four different eukaryotes are listed, showing their

reen, spindle pole bodies (centrosomes) in red, microtubules in pink

in yellow. Known mitotic functions for these homologues are also listed.

www.sciencedirect.com
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Interestingly, the essential role of Cdc14 in mitotic exit

control is not conserved in other species, although a

common process that it does appear to control in all

investigated organisms is cytokinesis (see [50] for review).

A comparison of localization patterns for Cdc14 homo-

logues in different species supports this essential role (see

Figure 4).

In the fission yeast Schizosaccharomyces pombe, Cdc14

(termed Clp1/Flp1) functions primarily to regulate the

G2/M transition and cytokinesis. It achieves the former by

antagonizing Cdk activity and inactivating Cdc25p [51]

and the latter via the MEN counterpart SIN (septation

initiation network). Clp1/Flp1 is released from the

nucleolus earlier in mitosis than S. cerevisiae Cdc14p,

localizing to kinetochores in prometaphase and function-

ing together with Aurora kinase to regulate chromosome

biorientation [52]. In the nematode Caenorhabditis elegans,
CeCdc14 is also required for cytokinesis but not mitotic

exit, and plays a unique role in G1 in preventing cell cycle

re-entry during prolonged periods of developmentally

regulated quiescence [53��]. During mitosis, CeCdc14

appears at the central spindle and midbody during ana-

phase and telophase, respectively, where it is involved in

spindle formation and cytokinesis [54].

Mammalian cells express two homologs of Cdc14, termed

hCdc14A and hCdc14B, which are both functional homo-

logs of yeast Cdc14 [55]. Although these two proteins are

still poorly understood, recent evidence points to isoform-

specific roles in centrosome separation/maturation and

spindle stability, with the possibility of additional roles in

mitotic exit and cytokinesis. Until recently, most studies

focused on hCdc14A, which was shown to interact with

interphase centrosomes and to regulate the centrosome

duplication cycle [56,57]. Recently, hCdc14B, which is

nucleolar at interphase and then found at the central

spindle and midbody during mitosis, has been shown

to play a role in spindle stability, through direct binding

and bundling of microtubules [58�].

Conclusions
Over the past few years the importance of regulated

protein phosphatases in the control of cell division, pro-

liferation and survival has become apparent. Their ther-

apeutic potential is also now appreciated. A common

theme is a mechanism of regulation whereby the localiza-

tion of phosphatases determines their access to substrates.

In the case of PP1 and PP2A phosphatases this is

mediated by targeting subunits (e.g. Repo-Man targeting

of PP1 to chromosomes), while in other cases phospha-

tases can be denied access to their substrates by seques-

tration and then subsequently activated by release (e.g.

Cdc14p sequestered in nucleolus by Net1 and released

during mitosis). A particularly interesting example of

phosphatase regulation is provided by the shugoshin–

PP2A interaction at centromeres, which is important
www.sciencedirect.com
for the regulation of chromosome cohesion (see

Figure 1). It is likely that control of phosphatase activity

will also be shown in future to regulate other important

biological processes.
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