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ABSTRACT
We present a Life-Long Learning from Mistakes (3LM) algorithm
for document classification, which could be used in various
scenarios such as spam filtering, blog classification, web resource
categorization, etc. We extend the ideas of online clustering and
batch-mode centroid-based classification to online learning with
negative feedback. The 3LM is a competitive learning algorithm,
which avoids over-smoothing, characteristic of the centroid-based
classifiers, by using a different class representative, which we call
clusterhead. The clusterheads competing for vector-space
dominance are drawn toward misclassified documents, eventually
bringing the model to a “balanced state” for a fixed distribution of
documents. Subsequently, the clusterheads oscillate between the
misclassified documents, heuristically minimizing the rate of
misclassifications, an NP-complete problem. Further, the 3LM
algorithm prevents over-fitting by “leashing” the clusterheads to
their respective centroids. A clusterhead provably converges if its
class can be separated by a hyper-plane from all other classes.
Lifelong learning with fixed learning rate allows 3LM to adapt to
possibly changing distribution of the data and continually learn
and unlearn document classes. We report on our experiments,
which demonstrate high accuracy of document classification on
Reuters21578, OHSUMED, and TREC07p-spam datasets. The
3LM algorithm did not show over-fitting, while consistently
outperforming centroid-based, Naïve Bayes, C4.5, AdaBoost,
kNN, and SVM whose accuracy had been reported on the same
three corpora.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval
– clustering, information filtering.

General Terms
Algorithms,Performance,Theory,Human Factors,Experimentation.

Keywords
3LM, centroid, clusterhead, classifier, lifelong, online.

1. INTRODUCTION
There is no shortage of machine learning tools for batch-mode
data analysis. However, the need to analyze larger and larger
datasets created demand for a new class of online learning
algorithms (online SVMs [7, 29, 33], online decision trees [3],
etc.), which can produce similar or better results as their batch-
mode counterparts, but are more efficient because they can learn
from every new example. In real-life scenarios, training data may
not be available all at once (e.g., streaming data), or there may be
a prohibitively large training set, which makes batch-mode global
optimization algorithms inefficient or even impractical.
Document classification, web resource categorization, spam
filtering, blog classification are just some possible applications

that could benefit from online learning. Most of well-known
document classification algorithms, such as the centroid-based
classifier [16, 27], are batch-mode algorithms and cannot be
effectively used with streaming data because they need to be rerun
periodically on the entire dataset. On the other hand, online
algorithms, such as Bayesian Online Classifier [9], require
periodic retraining due to “forgetting.”
At the same time, a “truly” online document classifier should be
able to categorize streaming data and adapt to the changing
environment by continually learning and unlearning document
classes. This type of learning is also called lifelong or never-
ending [4]. For example, spam filtering and classification of news
feeds with ever changing features are but a few useful applications
of lifelong learning [25, 28].
In this paper, we draw on the existing machine learning
techniques for document classification and clustering to extend
the batch-mode centroid-based classifier to lifelong learning. We
describe the limitations of the centroid-based classifier and
propose a new Life-Long Learning from Mistakes (3LM)
algorithm that:
1. Learns to classify documents on a per-example basis and never

stops learning, adapting to evolving data;
2. Uses negative feedback to reinforce learning (learning with a

critic) ;
3. Fits the distribution of the data, trying to minimize the number

of misclassifications, instead of estimating the centroids (class
means);

4. Provably converges for hyperplane-separable classes;
5. Experimentally demonstrates better accuracy than centroid-

based document classification algorithms;
6. Demonstrates better performance than centroid-based, Naïve

Bayes, C4.5, AdaBoost, kNN, and SVM algorithms;
7. Can find applications in standard document classification tasks,

as well as life-long learning scenarios where user feedback may
be available, e.g., facebook/twitter feed classification.

The main contribution of the 3LM algorithm is in avoiding over-
smoothing1 present in the centroid-based classifiers. At the same
time, the 3LM algorithm does not overfit for the dataset. It
achieves this by using different class representatives –
clusterheads, which are trained on a per-example basis by an
online procedure similar to the perceptron training [23].  We note
that the term “clusterhead” has been used earlier in the literature
[2, 19] to denote various things not directly related to our use of it.
The rest of the paper is organized as follows. Section 2 overviews
related work and provides the background for subsequent

1 In machine learning, it is common to trade-off between over-smoothing –
learning an over-generalized model, and over-fitting – learning a very
specialized model that best fits the training data. Techniques such as cross-
validation and regularization are often employed to avoid over-fitting.
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sections. Section 3 describes our algorithm in detail. Experimental
validation of our algorithm appears in Section 4. We discuss
impact and significance of our work including possible
applications Section 5 and conclude the paper with Section 6.

2. RELATED WORK
2.1 Related Work on Machine Learning
Our work has broad connections with research in online learning,
document classification, and reinforcement learning.
Online Learning is a growing subset of machine learning
algorithms that learn on a per-example basis. There exist online
clustering algorithms [33, 34], online SVM [7, 29, 33], online
Bayesian learning [9, 24, 30], etc. The 3LM algorithm shares
some of the features of typical online learning algorithms. Two of
its important characteristics are that it learns from negative
feedback and never stops learning. In contrast to many online
algorithms, it uses a fixed learning rate, but may still converge
(see Section 3.3).
Document Classification. A number of methods were proposed
for document classification. Examples of document classifiers
include: Centroid-based classification [16] (together with the new
Class-Feature-Centroid [15]), Naïve Bayesian [26], k-nearest-
neighbors (kNN) [10], decision trees (C4.5) [31], neural networks
[1, 21], LSI [12], SVM [17, 32], K-means clustering [35], Self-
Organizing Maps [22], Boosting [6], Hierarchical [20] to name a
few. However, most of these methods are applied to batch-mode
classification. Han and Karypis [16] report on a study comparing
kNN, Naïve Bayes, and C4.5 decision tree classifiers with the
centroid-based classifier, demonstrating that the latter consistently
outperforms  the  other  classifiers.  In  our  turn,  in  Section  4,  we
present a comparative evaluation of the 3LM and Centroid-based
classifiers, which demonstrates 3LM’s superiority. We also show
that 3LM outperforms AdaBoost and SVM-based classifiers.
Zhong [7] describes an online document classification algorithm
which uses Bayesian approach and hence requires prior
knowledge about data distribution. Moreover, the method
described  in  [7]  requires  an  initial  training  phase.  In  contrast  to
[7], 3LM document classifier does not use any prior knowledge or
initial training. Our algorithm is able to learn from negative
feedback as it classifies every new example in a stream of training
data. Its life-learning ability allows 3LM to adapt to changing
environment by learning and unlearning classes and class
assignments over time.
Reinforcement learning [13], also called learning with a critic,
involves using some performance feedback to improve the
accuracy of a machine learning algorithm. 3LM also uses negative
feedback on the classification accuracy to train the clusterheads.
Such feedback is implicit if labeled data samples are used. In
other cases, feedback can be provided by human operators.
Godbole et al. [14] describe how bringing a human into the loop
can significantly improve the accuracy of classification. The 3LM
algorithm can also be used in a scenario involving the users in the
classification process.

2.2 Review of Centroid-Based Algorithms
3LM algorithm builds on the ideas of the supervised centroid-
based document classification and unsupervised K-means
clustering algorithms. In this section we overview their features
relevant for the 3LM.
2.2.1 Batch-Mode Centroid-Based Classification
Centroid-based classifier is one of the simplest algorithms for
document classification. In its basic form, the training of the
classifier involves computing centroid vectors (class means) by

taking the mean of all tf-idf adjusted document vectors for each of
the classes. That is, for each document class , a centroid is
computed as: = | |. Alternatively, instead of being
divided by the number of documents, the sum can be normalized.
After the classifier has been trained, the centroids are used to
classify any new document by computing the cosine similarity
between the new document vector d and each of the centroids :

cos( , ) = 	 	
The document is then classified as belonging to the class of the
highest ranking centroid: argmax { ,…, }[cos( , )] . The
computational complexity of training is linear in the number of
documents and the terms in them, and the complexity of
classification is linear in the number of centroids and the number
of terms in the document to be classified. Centroid-based training
and classification algorithms have been shown to be both efficient
and accurate, with the accuracy consistently outperforming other
algorithms such as Naïve Bayes, K-nearest-neighbors, and C4.5,
on a range of datasets [16].
2.2.2 Batch-Mode K-means Clustering
K-means is another group of algorithms that use centroids. In
contrast to the supervised centroid-based classifier, batch-mode
K-means is a popular unsupervised algorithm for clustering
document vectors. The algorithm also uses cosine similarity to
assign each document to one of the K (initially chosen) centroids.
The centroids are then recomputed, and all documents are
reassigned to their closest centroid. The algorithm iterates, re-
adjusting the positions of centroids until the termination condition
is satisfied, which could be: a fixed number of iterations,
unchanged cluster assignment, or unchanged centroid positions.
K-means clustering is a form of gradient descent, which is known
to converge.  K-means is popular for its simplicity, speed, and
relatively high accuracy.  It has been also shown that normalizing
vectors to unit length leads to better clustering results [35], while
centroids need not have the unit length.  The spherical K-means
algorithm using vector normalization [11] is one of the fastest
document clustering algorithms.
2.2.3 Online K-Means Clustering
One of the optimizations of standard K-means clustering
algorithm is learning the centroids online, i.e., re-computing them
with each new document. This approach is called online K-means
clustering and is known to be significantly faster and, at times,
more accurate than the traditional batch-mode clustering [34].
Both the batch and online versions of the K-means clustering try
to minimize the mean-squared error:

= 	
1

( )

Where N is  the  number  of  documents  and
( ) = argmin { ,…, }  is the index of the centroid

( ) closest to document d. Incidentally, for documents lying on
the surface of a hyper-sphere, this is equivalent to maximizing the
average cosine similarity between centroids and vectors:

= 	
1

cos ( ),

where ( ) = argmax
{ ,…, }

[cos( , )]  is the index of the centroid

( )  most similar to document d. Centroid-based classification
uses this same ( ) to determine document class assignment.



2.2.4 Convergence of Centroid-Based Algorithms
The batch-mode centroid-based classifier optimizes the same
function  as K-means clustering. But since in centroid-based
classification every document has a fixed class label ( ), the
algorithm exactly computes the absolute maximum of the
function. The batch-mode K-means clustering, using the global
approach to maximize , provably converges (possibly to a local
maximum) [8]. Online K-means incrementally updates its centroid
vectors, also trying to maximize the average cosine similarity .
However, online K-means does not guarantee convergence [34],
and, hence, requires that a decreasing learning rate be used while
training. We are not aware of an online version of the centroid-
based classifier. So, we implemented the algorithm to
incrementally adjust the centroids in a fashion similar to that of
the online K-means clustering += , where  is the learning
rate. By analogy, convergence of the online centroid-based
classifier also depends on a decreasing learning rate.
2.2.5 Lifelong Learning
Certain applications such as, for example, classification of
streaming documents require that the learning algorithm maintains
its flexibility for life. This methodology is called lifelong or
never-ending learning. Lifelong learning typically implies a fixed
or flexible (as opposed to decreasing) learning rate that will allow
the learner to adjust to the changing distribution of the streaming
data. In such applications, convergence is not necessarily a
desirable property because it may prevent the algorithm from
adapting to a changing environment. For example, the online
centroid-based classifier with a fixed learning rate will likely not
converge even if the streaming documents come from a fixed
distribution with separable classes because every new document
will shift the position of the centroid. A more serious problem is
that the centroid-based classifier requires that every new
document be supplied with the correct class label.

3. LIFELONG LEARNING FOR
DOCUMENT CLASSIFICATION
In this section, we continue exploring the idea of lifelong learning
centroid-based classification and its limitations. We give the
intuition for our 3LM classifier and formally describe its
algorithm. We close the section with a proof of convergence of
3LM for hyper-plane-separable classes.

3.1 Intuition for Learning from Mistakes
3.1.1 Human-Supervised Classification
As we have shown, the centroid-based classifier can be extended
to online learning. However, such an extension would be of little
practical use in a lifelong learning scenario because it requires
positive feedback for every classified document in order to
incrementally maintain the centroids. While it is realistic that
humans may supervise document classification and labeling [14],
it would be unreasonable to expect them to label every single
document. On the other hand, the success of spam filters
demonstrates that people are willing to report errors, if it helps
improve the accuracy of classification. Thus, an algorithm relying
on user feedback should learn from classification mistakes.
3.1.2 Learning from Mistakes
Let us now observe the behavior of 3LM, an algorithm that
incrementally learns only from misclassified documents. Figure 1
shows a collection of documents projected in 2D, with each
document  marked as  either  a  black plus  or  a  black minus,  based
on the class it belongs to. The classes can be separated by a hyper-
plane shown by the vertical dashed line. The centroids
corresponding to the plus and minus classes are marked as #1.1

red plus and #2.1 red minus, respectively. The centroid-based
class assignments are shown with solid ovals, misclassifying two
of the plus documents.
If vectors #1.1 and #2.1 are used for classification and are
incrementally moved closer to the misclassified documents, then
vector #1.1 will eventually migrate to the position marked as #1.2.
At that point, vector #1.2 will stop moving (for this fixed
distribution of documents) and all documents will be classified
correctly, as shown by the dashed circles in Figure 1.
3.1.3 Centroids vs. Clusterheads
We  call  vector  #1.2  in  Figure  1  a clusterhead - a vector
representative of a class, which is incrementally updated to be
closer to the misclassified documents of its class. The use of
clusterheads for document classification instead of centroids is the
one  of  the key differences of the 3LM algorithm from the
centroid-based classification. As shown in Figure 1, using
centroids for classification causes over-smoothing (the opposite of
over-fitting), making the class representatives conservatively stick
to the center of mass. In contrast, clusterheads allow 3LM to
create a better fit for the distribution of the data, but not over-fit.
We will make a clear distinction between centroids and

clusterheads for the remainder of this paper.
3.1.4 Competitive Balancing of Clusterheads
In Figure 1, the two classes can be separated by a hyper-plane,
meaning that the corresponding clusterheads could be positioned
to classify all documents correctly. In reality, some classes may
create overlaps, where documents of several classes are diffused.

Figure 2 shows two overlapped classes of pluses and minuses. We
initially place the two clusterheads #1.1 and #2.1 in the centers of
mass of their respective classes, and will then incrementally adjust
their positions by moving them closer to the misclassified
documents. If we randomly (or sequentially) draw and classify
documents from the distribution of documents shown in Figure 2,
the two clusterheads will then gradually drift towards the
misclassified documents to positions #1.2 and #2.2, trying to fit
for the error. At that point, getting any closer to the misclassified
documents will result in misclassifications of documents A and B,
which will, in turn, pull the clusterheads toward the newly
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A
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1.2

2.1

1.1

Figure 2 – Balancing in equal-sized classes

1.2 2.11.1

Figure 1 – Centroid (1.1) vs. Clusterhead (1.2)



misclassified documents. Being equally pulled in the opposite
directions, the clusterheads will eventually come to the
equilibrium – a “balanced” state where they will “oscillate”
between the misclassified documents, competing for dominance.
In Figure 2, the dashed line shows a possible boundary (hyper-
plane) minimizing the number of errors. Of course, it is possible
that the clusterheads “ovelrap” themselves, each crossing into the
other class; in the end of this subsection we discuss how to deal
with this (Sections 3.1.9 – 3.1.11).
3.1.5 Comparing with Centroid-Based Classifier
It is easy to see from Figure 2 that in the case when the two
classes are of comparable density, the centroid-based and
clusterhead-based classifiers will have the same accuracy.  Indeed,
in this case, the dividing line between both the centroids and
clusterheads would go through the center of the overlap.
However, if  class (+) were any denser than class (–), i.e., class
(+) had more of its documents in the overlap (Figure 3), then
clusterhead #1.2 would push clusterhead #2.2 out of the overlap,
resulting in a higher accuracy. In this case, the two correctly
classified pluses have more weight than one misclassified minus,
which results in clusterhead #1.2 winning over clusterhead #2.2.
This competitive behavior exhibited by the clusterheads is an
example of competitive learning [5, 18].

3.1.6 Squared Error vs. Classification Error
As discussed in Section 2.1, the centroid-based classifier
minimizes the squared error function (maximizes average cosine
similarity). However, it is clear (e.g., see Figure 1 and Figure 3)
that minimizing the squared error is not equivalent to minimizing
the number of misclassifications. In contrast to the centroid-based
classification, the 3LM algorithm adjusts the positions of
clusterheads trying to fit for misclassified documents and
heuristically reduce the actual error rate. Note that finding an
optimal solution to the problem of minimizing the error rate is
NP-complete (Section 3.3).
3.1.7 Adapting to Changes
By continually adjusting positions of the clusterheads, the 3LM
algorithm can adapt to any changes in the distribution of
documents. This may prove especially useful in applications,
which need to classify documents drawn from an evolving
distribution such as  news.  For  example,  if  in  Figure  1  a  3rd class
appeared immediately to the left of the class of pluses (not
necessarily overlapping), it would result in the clusterhead #1.2
moving left to protect the majority of pluses that would be
otherwise misclassified. Equally pulled in all directions, a
clusterhead will come to a balanced state.
3.1.8 Over-Fitting
Learning  from  mistakes  may  cause  over-fitting  in  the  traditional
machine learning sense when a classifier is first trained until
convergence and then used for classification. In a lifelong learning
scenario, over-fitting is a transitory state, where a clusterhead tries
to fit for a misclassified document, but is immediately corrected

by other misclassifications resulting from over-fitting. Our
experiments revealed that, in either scenario, our classifier could
fit for the training dataset without over-fitting on the testing one.
Section 4 describes the experimental results demonstrating 3LM’s
higher recall and precision than that of either batch or online
centroid-based classifiers, which use over-smoothed class
representatives (centroids).
3.1.9 Passing of the Clusterheads
In case of several overlapping classes, each clusterhead may be
pulled in opposite directions, oscillating and never approaching its
class boundaries. However, in the case of only two overlapping
classes, as in Figure 2 and Figure 3, the competitive nature of the
clusterheads will make them approach each other.  As a result,
when positions of competing clusterheads are adjusted to fit for
the errors, it may be possible for two clusterheads to pass each
other and switch places. Therefore, if left unhandled, it is possible
that the two clusterheads may pass each other, resulting in a major
misclassification if the documents are classified in batches. For
example, users looking through morning news would find that two
news categories have the wrong labels.
3.1.10 Detecting Clusterhead Passing
If clusterhead #1.2 passes clusterhead #2.2, in either Figure 2 or
Figure 3, each clusterhead will become closer to the centroid of
the other class. Therefore, if we knew the positions of centroids,
we could detect such an event by comparing the distances
between the clusterheads and the corresponding centroids. While
centroids may not be exactly computed from the misclassified
documents, they can be accurately approximated. If we assume
that the error rate of classification is relatively low, we can then
use the results of the classification and the reported errors to
incrementally approximate the centroids.
3.1.11 Clusterheads on a Leash
Our solution to clusterhead passing is to pull the contending
clusterheads towards their respective centroids. This, in a way,
leashes the clusterheads to centroids of their respective classes,
allowing the clusterheads to fit, but not over-fit, the errors.

3.2 The 3LM Algorithm
We now describe the architecture of the 3LM classifier  and
present its training algorithm.

3.2.1 The Description of the Classifier
In the heart of the 3LM classifier is a standard vector space model
with both approximated-centroid and clusterhead vectors
continuously learning from training examples and incrementally
summarizing document classes. All vectors are normalized to lie
on the surface of the unit hyper-sphere to make the computations

Figure 4 – Voronoi diagram on the clusterheads (red squares).
Blue dots are centroid positions.
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2.11.1

Figure 3 – Balancing in classes of different density



more efficient and equalize the learning rates. The clusterhead
vectors compete for their dominance over the vector space and
classify streaming documents based on their proximity. Figure 4
illustrates a Voronoi diagram built on clusterheads shown as red
squares. The centroids (blue circles) act as mediators leashing the
clusterheads to the center of mass of their respective classes and
not letting the competing clusterheads pass each other. The edges
of the diagram are the class boundaries: all documents falling into
a cell of the diagram are classified according to the class of the
cell.  Please refer to Figure 1 for an example of why building the
Voronoi diagram on centroids, instead of clusterheads, results in
higher misclassification rate.
3.2.2 Initialization
The 3LM algorithm maintains sets =	{ ,… , }  and =
{ ,… , }  of normalized clusterheads and normalized
(approximate) centroids. Here 1…K are the classes of the
documents that the classifier has seen so far. Initially, when K = 0,
both  and  are empty. When a document d from  a  new,
previously unseen class arrives, d is added to both  and  (and K
is increased by 1).
3.2.3 Classification Algorithm
The 3LM algorithm is similar to the centroid-based classifier in
that it also uses vector class representatives to categorize
document vectors. However, while the centroid-based algorithm
uses centroids to classify documents, 3LM uses clusterheads to
classify them and the approximated centroids to prevent over-
fitting:
Algorithm classifyDocument
Input: d: normalized document vector; : learning rate of centroids;

=	 { , … , }: set of all normalized clusterheads;
= { , … , }: set of all normalized approx. centroids;

	 argmax
{ ,…, }

[cos( , )]

+
fixPassing({ }, )
return

The classifyDocument algorithm assigns any document d to one of
the K classes. The centroid corresponding to the closest
clusterhead is incrementally adjusted with a fixed learning rate :

+= . Later, the same document may be used for adjusting
the clusterhead if the document is reported as misclassified.
3.2.4 Training Algorithm
Algorithm TrainClassifier
Input: d: normalized document vector;
c: index of the correct class for document d;

= { , … , }: a set of all normalized approximated centroids;
= { , … , }: a set of all normalized clusterheads;

: learning rate of centroids;
: learning rate of clusterheads;

	 argmax
{ ,…, }

[cos( , )]

if e = c then return
, fixPassing({ } )

+ , fixPassing({ } )
, fixPassing( , { })

+ , fixPassing( , { })

For every document d reported as misclassified, we correct the
involved centroids and train the clusterheads.  Specifically, if c is
the correct class of d, but d was (mis-)classified as e, the centroids
are corrected with the fixed learning rate : += , = .
Reinforcement learning is then used to give positive  and
negative  rewards to the corresponding ’s  : += ,

= . Negative reward is given to accelerate convergence for

any clusterhead whose class is hyper-plane-separable from the
others. If classes are not separable, the rewards to competing
clusterheads will eventually balance out, bringing the clusterheads
to a relative equilibrium. To accelerate learning and convergence,
a negative reward can be given to all clusterheads found closer to
the document than the correct clusterhead: ( ) = , where

( ) = :	 cos( , ) < cos( , ) . TrainClassifier formally
describes the procedure.
3.2.5 Clusterheads on a Leash
The approximated centroids are then used to ensure that the
clusterheads do not pass each other, i.e., for every clusterhead
we check if the centroid  of the same class is the closest one to
it. If it is not, we adjust the position of  accordingly:

Algorithm fixPassing( , )
Input:	 = { , … , }: a set of relevant centroids;

= { ,… , }: a set of relevant clusterheads;
for 1 :

while cos( , ) argmax { ,… , } cos , do
j argmax { ,… , } cos ,

// Move 	 cos( , ) = cos , :

				

	
( ) 	( )

( )
/|| ||

The while loop  of fixPassing works as follows: The equation
	cos( , ) = cos ,  defines the bisector between centroids

and ; the new position of the clusterhead is at the intersection
of the segment  with the bisector (that is, the clusterhead is
moved along the segment 	until the clusterhead is on the
bisector).  Figure  5  shows  the  work  of fixPasing using Voronoi
diagram on the centroids. While there exist pathological cases in
which the while loop would have to be executed up to n times, in
our experiments we never moved the clusterhead more than once.

Figure  5  -- Voronoi diagram on the centroids (blue dots).
Black square is the initial position of the clusterhead ; it is
closer to centroid 	than to centroid 	, so fixPassing enters
the while loop and moves clusterhead to the new position
(green square) at the bisector between centroids 	 and

	(dotted line). Now clusterhead  is closer to centroid
than to centroid 2, so fixPassing enters the while loop again,
and moves clusterhead to the bisector between centroids

 and 	  (red square). Clusterhead is always moved
along the line connecting it to centroid 	 (dashed); the
motion brings the clusterhead to the bisector between the
centroid 	 and the centroid to which the clusterhead is
currently closest.



3.2.6 Applying tf.idf
None of the vectors processed by our classifier is normalized
using tf.idf, which is often used to reduce the weight of words
occurring  throughout  a  corpus,  thus,  reducing  the  effect  of  stop
words on classification results. As for the document vectors, the
distribution of terms across all documents is not available for
streaming documents; and incremental computation of idf poses
additional challenges. We initially removed the 319 most frequent
stop words (the exact list can be found in our source code
available at http://www.sbhearsay.net/data/3LM.zip) . However,
as we show in Section 4.4.3, training and testing the 3LM
classifier with or without stop words has little effect on its overall
accuracy.

3.3 Convergence of 3LM
We next prove the convergence of 3LM for hyper-plane separable
classes and give a proof of NP-completeness for the algorithm
minimizing the classification error.
3.3.1 Convergence with Negative Rewards
Consider the simplest case with only two classes of documents, N
and P, negative and positive. Then, a cosine-similarity classifier
consists of two vectors, N and P – the negative and positive
clusterheads. A document x is classified as negative (respectively
positive) if the angle between x and N (respectively P) is smaller
than between x and P (respectively N).
In the most favorable situation, there exists one vector w such that
the angle between x and w is greater (respectively less) than /2 iff
x is negative (respectively positive). In this case, N and P are
linearly separable – the (separating) hyper-plane passing through
the origin perpendicular to w, has the classes on different sides.
Without loss of generality, = 1 . Also, without loss of
generality, suppose that the documents from N are negated, i.e.,
each 	  is replaced with –x. Then, the original classes were
linearly separable, if and only if now there exists w such that

> 0 for any x in .
Finding the separating hyper-plane may be viewed as training a
perceptron. The classical reinforcement learning scheme for the
perceptron is as follows: Starting with = 0, present documents
to the perceptron one-by-one; when a document x is misclassified,
set = + .  This  is  an  example  of  online  learning.  It  is
known  that  the  scheme  converges:  if min  is the
cosine similarity of the “worst” document in X, then after at most

= 1  mistakes we will have  aligned with w.
The negation of documents in N allows us to consider just one
class and look for a hyper-plane passing through origin and
having all documents on one side. This motivates us to call this
scheme one-class learning.  Let  us  now look at  how the learning
process would work if the documents of class N were not negated.
The clusterhead  from one-class learning is the clusterhead of
the positive class P;  denote  it  by = . In one-class learning,
the clusterhead of the original negative documents was simply

;  denote  it  by . To see how the learning looks in
terms of positive/negative rewards, let us restate the scheme as
follows:
If a positive document x is misclassified, do = +
, = . If a negative document -x is

misclassified, do = + ( ), = + ,
that is:

: = + , =
: = + , =

This can be viewed as a “positive/negative reward rule”: On a
misclassification, reward the clusterhead of the correct class and
punish the clusterhead of the incorrect class.
Let us now consider learning with positive reward only:

: = + , =
: = + , =

Observe that the classes are learned independently: a
misclassification of a positive (resp. negative) document has no
effect on the negative (resp. positive) clusterhead. In fact, the
clusterhead for each class is updated exactly as in one-class
learning. Thus, the analysis of one-class learning can be carried
independently for each class. Moreover, there can be an arbitrary
number of classes, with learning of each of them being
independent of the others. We summarize this in the following
Lemma:
Lemma. Let =  be a collection of documents from
some K classes. Suppose that for each class k there exists a hyper-
plane, passing through the origin, such that all documents from
the class lie on the same side of the hyper-plane; i.e., if wk is the
unit normal to the plane, for all , > 0 . Let

= { }	 be the minimum cosine similarity in class
k. Then, after misclassifying at most 1/  documents from the
class, the lifelong learner will have its clusterhead aligned with
wk.
With positive rewards only, each class has to present its own
number of documents to the classifier. Although the above lemma
asserts that it is enough to have just positive rewards in order to
ensure convergence, learning can be slower than when negative
rewards are also used. This motivated us to use negative rewards
in our experiments.
3.3.2 Minimizing Classification Error is NP-Hard
Note  that  even  in  the  simplest  case  of  just  2  document  classes,
finding w that minimizes the number of misclassified documents
is an NP-complete problem. Indeed, minimizing the
misclassification error is equivalent to finding a vector that
satisfies the maximum number of given linear inequalities (in our
case, one inequality per each document, and the vector sought is w
– the normal to the separating hyper-plane), which is an NP-
complete problem, called “Open Hemisphere” ([13], p. 246).

4. EMPIRICAL EVALUATION
We conducted a series of experiments to verify the accuracy of
3LM on the commonly used classification datasets. In our
experiments, we compared 3LM with the other two algorithms
discussed in this paper: centroid-based batch and centroid-based
online classifiers. In this section, we overview our experiments
and show how the obtained results support the intuition and the
theory presented in this paper.

4.1 Classification Corpora
Note that the evaluated algorithms were all single-topic
classifiers, which assign each document to one and only one class.
Because of this, and also because the experiments required that all
documents be labeled, we ran the experiments on the three
datasets widely used for testing single-class document classifiers:
1) Reuters21578 2  –  a  collection  of  news  documents;  2)
OHSUMED 3  – a collection of medical documents; and 3)
TREC07p Spam4 – a collection of e-mails. From these datasets,

2 http://kdd.ics.uci.edu/databases/reuters21578/
3 http://www.nlm.nih.gov/cgi/request.meshdata
4 http://plg.uwaterloo.ca/~gvcormac/treccorpus07/



we selected a subset of single-topic documents, which we divided
into two sets: 80% training and 20% testing.
Our subset of the Reuters corpus contained 8,654 news articles
covering 65 different topics. There were 65 classes and anywhere
from 1 to 3,735 documents per class, so it was possible for some
documents to be present in the testing, but not in the training sets,
or vice versa. We divided this dataset into five different pairs of
6,924 training and 1,730 testing sets.
Our subset of the OHSUMED dataset contained 9,310 medical
documents covering 10 different topics. Each of the 10 classes
was well represented and contained anywhere from 195 to 3,036
documents.  The  dataset  was  divided  into  five  pairs  of 7,448
training and 1,862 testing documents.
We chose a fully labeled subset of the TREC 2007 dataset, which
contained 75,419 email messages. However, since we required
frequent accuracy sampling for the experiments, we only picked a
random subset of 10,000 email messages: 8,031 spam and 1,968
ham emails. These sets were divided into 8,000 training and 2,000
testing documents.

4.2 Experiments on a Fixed Dataset
4.2.1 Experimental Setup
We did 5-fold cross-validation with 80% training and 20% testing
documents performing 50 iterations on each of the training
datasets. We measured the accuracy on both training and testing
datasets after every 1,000 random (w/o replacement) documents
used for training. All three datasets was used to train and test the
three featured classifiers: centroid-based batch, centroid-based
online, and 3LM. For each classifier-dataset pair, we report recall,
precision, and F-measure.

Figure 6 – Performance of Classifiers over Different Datasets
Table 1 – Comparative Evaluation of Classifiers

Training Testing
P R F1  P R F1

Batch C .800 .621 .699 .797 .611 .691

Reuters Online C .865 .810 .837 .843 .762 .800

3LM .955 .948 .983 .899 .869 .890

Batch C .049 .485 .487 .486 .483 .485

Ohsumed Online C .742 .666 .702 .723 .646 .682

3LM .925 .925 .925 .697 .694 .696

Batch C .899 .891 .895 .898 .877 .888

TREC07p Online C .893 .859 .876 .831 .818 .824

3LM .998 .998 .998 .967 .964 .966

4.2.2 Summary of Results
The 3LM algorithm has consistently outperformed both of the
centroid-based classifiers on all three datasets. It is noteworthy
that our classifier could fit for the training dataset without
showing any signs of over-fitting on the testing set. Table 1 and
Figure 6 summarize the results in terms of the precision (P), recall
(R), and Macro F-measure (F1) obtained with the three classifiers
on the three datasets used in the experiments. We did not perform
significance tests since doing cross-validation removes possible
bias of the results.
4.2.3 Batch Centroid-Based Classifier
We first evaluated the batch-mode centroid-based classifier. For
the baseline comparison on the Reuters and OHSUMED datasets
we would have liked to use the classical paper [16]. However, we
decided to re-implement the batch centroid-based classifier for
three reasons: (1) Han and Karypis report the overall classification
accuracy, while we measure P, R and F1; (2) our methods of
dataset preparation are different from those of [16]; (3)
performance on TREC07p dataset was not evaluated in [16]. (For
the same reasons, we did not validate our implementation of the
centroid-based classifier against the implementation of Han and
Karypis.) Note, that the classifier over-fits the Ohsumed data
showing less than 50% performance on the test part.
4.2.4 Online Centroid-Based Classifier
We then implemented an online version of the centroid-based
classifier, as discussed in Section 2.1. Every document vector
was used to incrementally adjust the position of the corresponding
class-centroid ( += )  using  the  learning  rate  of = 0.001.
Note that such classifier is not likely to be used in a life-learning
scenario because, in order to maintain the centroids, it requires
that every document have a label; Conversely, the 3LM algorithm
learns from negative examples, and, hence, needs only the
misclassified documents to be labeled. In our experiments, the
online centroid-based classifier reached a balanced state after
about 400 measurements. It generally achieved higher results than
the batch classifier, except for the TREC corpus. The blue and red
curves (double lines) in Figure 7, Figure 8, and Figure 9 show the
learning curves of the online centroid classifier on the training and
testing subsets of the datasets.
4.2.5 3LM Classifier
We then ran our 3LM classifier on the same datasets, using the
same learning rate of = 0.001. After nearly 400 measurements
on each of the datasets, the 3LM algorithm reached the balanced
state.  The 3LM algorithm showed no over-fitting on either of the
three datasets. The corresponding training (green) and testing
(magenta) learning curves can be seen in Figure 7, Figure 8, and
Figure 9.
4.2.6 Comparative Analysis
Figure 6 and Table 1 show that the batch-mode centroid-based
algorithm performed considerably worse than the online version
of the centroid-based classifier on the Reuters and the
OHSUMED datasets, but beat the online classifier by 4% on the
TREC07p spam corpus. Figure 7, Figure 8, and Figure 9 show the
learning  curves  of  the 3LM and the centroid-based online
classifiers. The learning curves demonstrate how the 3LM
algorithm fits the training data without over-fitting on the testing
datasets.
It is notable that the 3LM algorithm outperformed the centroid-
based classifiers in all categories except one (the OHSUMED
corpus), on which it showed a 2.6% lower precision than the
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online centroid-based algorithm on the testing set of. However,
3LM showed  a 4.8% higher recall, resulting in 1.4% higher F-
measure than the centroid-based classifier on the same dataset. An
interesting observation is that the online-centroid algorithm
showed a slight degradation of the overall accuracy after about
100 measurements before reaching a balanced state. Because the
centroid-based algorithms tend to produce over-smoothed models,
we believe that the degradation was due to the training data.

Figure 7-Learning Curve-3LM and Centroid Classifiers: Reuters

Figure 8 – 3LM and Online Centroid Classifiers: OHSUMED

Figure 9 – 3LM and Online Centroid Classifiers: TREC’07p

The online centroid-based classifier showed much worse over-
fitting on the TREC07p spam corpus, losing to 3LM over 10% in
overall accuracy and resulting in the largest spread between the
performances of the two algorithms. Both algorithms showed a
high degree of volatility of the spam corpus, which we attribute to
the nature of the corpus containing a wide variety of documents,
including large attachments.
4.2.7 Other Classifiers
We did not directly compare our algorithm to hundreds of other
available classifiers, as it would be unpractical. Instead, we used

the centroid-based classifier as a benchmark. Han and Karypis
[16] reported that a simple batch-mode centroid-based classifier
consistently  outperformed  Naïve  Bayes,  C4.5,  and  kNN  on  a
variety of datasets, including Reuters and OHSUMED. Since the
3LM algorithm achieves much higher accuracy than the centroid-
based algorithms on the same datasets, we conclude that 3LM is
likely to outperform Naïve Bayes, C4.5, and kNN. Bloehdorn et
al. [6] presented a boosting approach to text classification using
higher-level semantic features with AdaBoost on both Reuters and
OHSUMED datasets, but achieved lower precision and recall than
the 3LM algorithm. The experiments on the Reuters dataset
described in [15] show that SVM-Light, SVMTorch, and LibSVM
achieve a Macro-F1 of 0.83, 0.79, and 0.72 respectively, which is
substantially less than the 0.89 achieved by the 3LM algorithm. (It
should be noted that we pre-processed the data sets differently
from [15]; in particular, we did not give words in titles a ten times
higher weight as was done in [15].)
4.3 Life-Long Learning Experiments
4.3.1 Training on the Streaming Data
In all of our previous experiments, the 3LM algorithm was trained
by randomly drawing documents from a fixed dataset. To
demonstrate how 3LM can learn from a stream of data, we
simulated a stream of news articles that follows a fixed
distribution of the Reuters dataset. We “composed” each news
article using random words from a randomly chosen class of the
Reuters dataset. The news article was then classified and used for
training, if misclassified. The overall accuracy was computed for
every 10,000 documents.
Note that getting a high accuracy on a streaming training set is
exactly the intended use of the 3LM classifier in a lifelong
learning scenario. We are, nevertheless, presenting the
comparison to the accuracy on the testing set only to highlight that
there is no over-fitting. Figure 10 shows how quickly 3LM
balanced at near-optimal performance on the training set. The
lagging but still growing accuracy on the testing dataset can be
explained by the fact that some words may not have occurred in
the 10 million randomly composed documents. In addition,
randomly assembled documents may only be approximating the
actual distribution of the news articles in the testing dataset.

Figure 10 - Simulating streaming news feeds. Solid – training, dashed
– testing.
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4.3.2 Evolutionary Experiment
In  the  previous  experiment,  the  distribution  of  documents  was
fixed. To verify 3LM’s flexibility, we have designed an
experiment that tested the classifier’s behavior on a growing
dataset with changing distribution. To set up the experiment, we
selected 5 largest classes from the Reuters corpus and then trained
the classifier on subsets of these 5 classes: we started with one
class as the training set and then added the rest of the classes to
this training set one by one, at time intervals proportional to the
size of the current training set. Periodically, we tested the
accuracy of the classifier on the training dataset. Figure 11 shows
how 3LM adapted to the addition of new classes, as the newly-
introduced clusterheads entered the competition. The 3LM
algorithm finally converged for these 5 datasets resulting in 100%
accuracy, which means that all classes were hyper-plane
separable, as discussed in Section 3.

Figure 11 - Training Accuracy with Added Classes

4.4 Robustness of the Algorithm

Figure 12 - Error Tolerance for 3LM and Centroid: Reuters

4.4.1 Tolerance to Random Feedback Errors
We have also compared how robust both the centroid-based and
3LM classifiers were in the presence of random errors, which are
inevitable in real-life scenarios involving human feedback. The
errors were generated by randomly picking a wrong label for
every document that was used to train the classifiers. The
probability of choosing a certain label depended on the size of the
corresponding class; i.e., the label of the larger class had a higher
chance of being chosen as the wrong label. The 3LM algorithm
showed a slightly higher rate of degradation of accuracy than the
centroid-based classifier. This was not unexpected, since the 3LM
algorithm learns only from the misclassified documents, and
hence, receives fewer positive training examples than the
centroid-based algorithm. As one can see from Figure 12, at 20%
of the feedback error rate, the 3LM algorithm was still performing

better than the Centroid-based classifier. It is reasonable to expect
that human reviewers would do less than 20% mistakes.

4.4.2 Variation of the Learning Rate
In all of our experiments, we used the same learning rate for both
positive and negative rewards. We tried varying the positive and
negative rewards by a factor of 10 to see the effect of the learning
rate on the accuracy of the classifier. As expected, a smaller
learning rate (0.0001) slowed down the learning process and, as a
result, delayed balancing of the 3LM classifier, while a larger
learning rate (0.01) speeded up learning and balancing, but caused
a higher variability. In the end, differing positive and negative
rewards had almost no effect on the overall accuracy of the
classifier.
4.4.3 Stop Words
In our experiments, we did not adjust the term vectors with the
tf.idf, which could have reduced the effect of stop words on the
classification results. Instead, we removed 323 known stop-words.
To verify the effect of stop-words on classification accuracy, we
ran the 3LM algorithm on the unfiltered Reuters dataset. As
shown in Figure 13, without the stop words, the classification
results on the testing set showed only half a percent improvement
of the F-Measure, with a minimal effect on the overall accuracy of
the 3LM classifier.

Figure 13 - Effect of Stop Words on 3LM (Reuters)

5. SIGNIFICANCE AND IMPACT
5.1 Applications
Lifelong learning in document classification from streaming data
can have a number of applications. For example, spam filters need
to keep learning the features of spam messages as spammers are
finding new ways to trick the spam filters.
To be able to learn effectively, some classifiers require expert
feedback, which is then used to reinforce the learning. This is also
called “learning with a critic.” Such feedback is implicit if labeled
data samples are used; however, in case of classification of
streaming data, such as spam, the user involvement is required. In
[14], the authors describe how bringing a human into the loop can
significantly improve the accuracy of classification. We believe
that our algorithm can be viable in classifying streaming data
because 3LM requires only negative feedback, which is usually
easier to get, e.g., many users hit the “spam” button to expunge
spam from their mailboxes. Here, the users are providing training
examples by labeling messages as spam, thus, giving negative
feedback and allowing the spam filter to learn from its mistakes.
Another possible application of never-ending learning with 3LM
is sorting the news from a newsfeed, with users providing
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negative feedback. As we demonstrate in our experiments, news
articles can be effectively classified by using only their term
vectors. In a fixed dataset scenario, to achieve convergence and
finish the training phase, the 3LM classifier would have to learn
with a decreasing learning rate, as is done in online clustering
[34]. As we showed in Section 4, 3LM gives better results than the
online and batch-mode centroid-based classifiers. In [16], batch-
mode centroid-based classification has been shown to outperform
Naïve Bayes, C4.5, and kNN classifiers on the same datasets that
we used in our experiments. Furthermore, the experimental results
presented in [15] demonstrate that SVM-Light, SVMTorch, and
LibSVM do not achieve high accuracy on the Reuters dataset.

5.2 Unique features
To the best of our knowledge, the 3LM is the first classifier with
the ability to adapt to drifts in the document stream while learning
from the negative feedback only and maintaining low error rate
throughout the time. The high performance of the algorithm is due
to an enhanced way of representing document classes: for each
class not only the centroid of the class’ documents is maintained,
but also a clusterhead – a more dynamic class representative,
better conforming to the class interaction with other classes. The
use of clusterheads allows the 3LM to fit the classes fast; however,
overfitting is prevented by leashing the clusterheads to the less
agile centroids.

6. CONCLUSION AND FUTURE WORK
In this paper, we described 3LM – a new algorithm for document
classification centered on the idea of lifelong learning from
misclassifications. We provided experimental evidence of its
effectiveness compared to centroid-based classifiers on the
standard Reuters, OHSUMED, and TREC07p datasets.
There are several avenues for expanding our work in the future.
From a theoretical point of view, formalizing and analyzing the
balancing behavior of the learner is an interesting problem that
can shed light on improving the complexity of the algorithm.
Properties of our algorithm, including the relationship of balanced
state to convergence, evaluation of the likelihood that competing
clusterheads may switch places, the effects of variable learning
rates to achieve faster learning, reducing the oscillations of
clusterheads and ensuring better retention of learned weights,
deserve further  study.  The idea of  this  paper  can be expanded to
having more than two representatives for a class (in the limit
associating each class with the vertices of its convex hull); will
this lead to improvement?  In addition, features other than
inclusion/exclusion of stopwords (e.g., term stems, tf.idf weighted
vectors), could be used in the classification.
On the practical side, it will be interesting to explore applications
of our algorithm to the emerging paradigm of publish/subscribe
systems wherein users express their interests (“subscriptions”) to
certain kinds of events (“publications”). Such events can
conceivably be streams of documents pertaining to different topics
of interest. Another intriguing possibility is adapting the idea of
clusterheads to K-means clustering. Finally, one may expect better
performance from a combined system where 3LM classifier is
used, say in a mixture-of-experts, along with existing models like
SVM  and  NN.  Also,  a  longitudinal  user  study  is  required  to
evaluate 3LM on real-life streaming data. Last but not least, we
believe our ideas can be used also in applications outside the
document classification domain.
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