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Advanced Robust Optimization
With Interval Uncertainty Using
a Single-Looped Structure

and Sequential Quadratic
Programming

Uncertainty is inevitable and has to be taken into consideration in engineering optimiza-
tion; otherwise, the obtained optimal solution may become infeasible or its performance
can degrade significantly. Robust optimization (RO) approaches have been proposed to
deal with this issue. Most existing RO algorithms use double-looped structures in which a
large amount of computational efforts have been spent in the inner loop optimization to
determine the robustness of candidate solutions. In this paper, an advanced approach is
presented where no optimization run is required for robustness evaluation in the inner
loop. Instead, a concept of Utopian point is proposed and the corresponding maximum
variablelparameter variation will be obtained just by performing matrix operations. The
obtained robust optimal solution from the new approach may be conservative, but the
deviation from the true robust optimal solution is small enough and acceptable given the
significant improvement in the computational efficiency. Six numerical and engineering
examples are tested to show the applicability and efficiency of the proposed approach,
whose solutions and computational efforts are compared to those from a previously
proposed double-looped approach, sequential quadratic program-robust optimization
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1 Introduction

Uncertainty is inevitable for real-world applications. Since
Taguchi proposed the concept of RO [1], it has been an active
research topic for a long time [2—5]. There are two types of uncer-
tainties: aleatory and epistemic uncertainties. Aleatory uncertainty
is the natural randomness in a system and can be modeled mathe-
matically using probability theory, while epistemic uncertainty
occurs due to incomplete knowledge or information [6] and
research papers have been published on how to model and handle
epistemic uncertainty [7—10]. Two categories of modeling uncer-
tainties are considered in this area: one is probability-based
[11-13] and another type is interval-based [14-16]. In the
interval-based approaches, usually the nominal values of the
uncertain parameters with their lower and upper bounds are used
to calculate the largest possible deviations in the worst-case sce-
nario. In our work, optimization problems with interval uncer-
tainty are considered.

There have been methods proposed for robust linear problems
[17-19] as well as RO algorithms for convex problems [20,21]. In
addition, nonconvex RO programs are solved recently using the
gradient-based approach [22,23] and using genetic algorithms
(GAs) [24]. Most existing RO methods have the outer—inner or
so-called double-looped structures where optimization performed
in the inner loop is used to determine the robustness of candidate
solutions, while the outer loop optimization is performed to find
the optimal solution that satisfies robust requirements and all other
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constraints. This double-looped structure usually can damage the
computational efficiency of RO approaches significantly.

To overcome the issue of the computational efficiency of
double-looped RO approaches, several efficient methods have
been proposed in the literature. A single-looped RO approach
which is able to search the optimum point and the most probable
failure points concurrently is proposed in Ref. [25]. However, this
approach only considers probability-based uncertainties which
may not be appropriate for the situations where required probabil-
ities may not be available. In Ref. [26], linear, convex quadratic
and nonconvex quadratic RO problems can be solved with the
same complexity and efficiency as their deterministic counterparts
using a worst-case analysis. In Ref. [27], a Bender’s decomposi-
tion based approach, which is scalable and contains no nested
structures, is proposed and proved to be computationally tractable.
However, there were still subproblems that need to be solved by
optimization runs. In Ref. [16], a novel approximation-assisted ro-
bust optimization approach using constraint cuts and online
approximation for multi-objective problems is presented. It is a
genetic algorithm based approach and the computational effi-
ciency can still be a serious concern given the nature of GAs. In
this regard, an efficient single-looped approach for nonlinear RO
problems with interval uncertainty is still desirable.

In Ref. [23], a double-looped approach using SQP, named
SQP-RO, is proposed to solve general nonlinear RO problems
with interval uncertainties. This method is efficient compared to
its deterministic counterpart and other GA-based RO approaches,
in terms of the number of function evaluations. However, a large
amount of computational efforts still have been spent in the inner
loops to calculate the objective and constraint robustness measure-
ments for candidate solutions, i.e., robustness indices. It is noted
that the feasible domain of the inner optimization problem is the
so-called uncertainty box, i.e., the hyper-box within which the
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uncertain parameters can vary. The uncertainty box is usually
small (the parameter variation should not be very large in gen-
eral). Notice that although the uncertainty box is not necessarily
to be small, a smaller uncertainty box can indeed generate a solu-
tion with a smaller approximation error. In the proposed approach,
to solve those robustness indices, first Taylor’s expansion is
applied to approximate those inner problems as quadratic optimi-
zation problems (i.e., QPs with box constraints).

There are lots of literatures dealing with quadratic optimization
problems. In Ref. [28], optimality conditions for QPs have been
discussed. In addition, methods for concave problems, such as
extreme point ranking, cutting plane methods, convex envelopes,
and reduction to bilinear programming and separable forms are
summarized, and methods for indefinite QPs such as decomposi-
tion techniques are presented too. In Ref. [29], a canonical duality
theory is proposed to solve quadratic minimization problems with
the box or integer constraints. In Ref. [30], an efficient uncon-
strained minimization algorithm and gradient projection techni-
ques are combined to solve convex quadratic minimization
problems with many variables and box constraints. In Ref. [31],
conjugate gradient projection methods and truncated projection
methods are proposed, which can solve large-size quadratic prob-
lems subject to box constraints efficiently. In Ref. [32], a branch-
and-cut approach based on several branching strategies is pre-
sented to solve nonconvex QPs with box constraints. In Ref. [33],
based on a nonfinite heuristic algorithm, a finite algorithm is pro-
posed to solve large and sparse QPs with box constraints. In
Ref. [34], QPs and conic-QPs are discussed. However, in essence,
the approaches mentioned above still use optimization runs to
solve problems; thus using them to solve those inner problems in
SQP-RO may not be helpful to improve the computational
efficiency significantly.

In this paper, an advanced SQP-RO (A-SQP-RO) approach
with a single-looped structure is proposed for nonlinear continu-
ous RO problems with interval uncertainties. The concepts of the
Utopian box associated with uncertain parameters and Utopian
solutions are first proposed (please see the details later in Sec.
2.3). The Utopian solution of uncertain variable/parameter values
used for robustness assessment can be easily and rapidly obtained
by typical matrix operations instead of an optimization run, thus
no optimization procedure is required for the inner loop. This so-
lution will replace the nominal values of those uncertain variable/
parameters in the objective and constraint functions, which will
make the robust feasible domain shrink to some extent, possibly
leading to a conservative robust solution. However, for constraints
with single uncertain variable/parameter or whose Hessian matrix
is already diagonal, the Utopian solution is exactly the true robust
solution. Moreover, since the uncertainty box is small, the devia-
tion from the true robust solution to the Utopian solution is rather
small, as can be observed from six numerical and engineering test
examples used in this work. Actually it is reasonable to believe
that this deviation can be so small for large sparse matrices that it
can be ignored.

The rest of this paper is organized as follows. Section 2
describes the background and terminologies used in this work,
with the definitions of the proposed Utopian box and Utopian so-
lution. Section 3 provides the procedure for the proposed
approach with the discussion on its computational efficiency. Sec-
tion 4 demonstrates six numerical and engineering examples with
comparisons between their SQP-RO solutions and A-SQP-RO
solutions, followed by the conclusions in Sec. 5.

2 Background and Terminology

In this section, the background of SQP-RO and the matrix
decomposition method are briefly introduced, and the definition of
the Utopian solution is provided in detail.

2.1 SQP-RO Approach. A robust optimization problem with
interval uncertainty can be formulated as in the following
equation:
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min  f(x,p)
X
Ib<x<ub
Po—Ap <p<p,+Ap (1)

where x is the vector of bounded design variables, p represents the
uncertain parameters whose values can vary within a symmetric
hyper box py = Ap (the asymmetric interval case can be addressed
by adding additional upper or lower bounds), p, is the vector of
the nominal values of p, and Ap represents the half interval. f and
gj» j=1,..., J are the objective and constraint functions, respec-
tively. The goal of Eq. (1) is to find an optimal robust solution
such that when p varies, the variation in the objective value of this
optimal solution is still within the predefined acceptable range and
none of the constraints is violated.

In Ref. [23], a novel double-looped SQP-RO has been proposed
to solve the problem in Eq. (1). In this approach, the objective and
constraint robustness indices are defined as the maximum varia-
tion in the objective and constraint functions, respectively, as
shown in Eq. (2), where Af; is a presumed acceptable variation
range for the objective function and is usually determined by the
designer

(x,p) —f(x,po)
= — s ST ]
y = mnf SR
st po—Ap <p<py+Ap 2)

As shown in Eq. (2), the objective and constraint robustness indi-
ces are solved in the inner problem in order that the variables/pa-
rameters’ uncertainty that leads to the max objective and
constraint variations can be identified. For a robust solution, its
objective robustness index should always be less than one and its
constraint robustness indices should always be no larger than
zero. Then those obtained variables/parameters’ values replace
their nominal values in the original constraints, as shown in
Eq. (3). After that, all the constraints in Eq. (3) will be linearized
so that SQP can be applied to solve for a step size until the stop-
ping criteria are met. Detailed information about SQP-RO can be
found in Ref. [23]

I'leil'l f(xvpo)
S.t. gj(xvpjmax) <0, j=1,..J

(xvpmax) _f(x7p0)
F Afo —1=0

Pjmax = arg{m;lng(x,p) [Vx, po—Ap <p <py+ Ap};

|:f(xap) 7f(x7p0)

2
Prnax = Arg{ max } [Vx,po — Ap <p <py+Ap
Afy

p

Xp <x < xyp

3

Notice that each inner problem in Eq. (2) is defined on a small
interval or box. Since this uncertainty box [—Ap, Ap] is relatively
small, Taylor’s expansion can be utilized and Eq. (2) turns into a
quadratic one, as shown in Eq. (4). The tail error induced by Tay-
lor’s expansion is measured by O(dp®) when the function is
expanded to the second order or O(dpz) when expanded to the first
order. As dp usually takes or converges to a very small positive
value during the optimization procedure (e.g., 10~ or 10 in this
paper), this tail error could be much smaller. In this sense,
Taylor’s expansion can be considered accurate enough.
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_f(xvp())‘

1
= p(xmo) +c,dp + Ededep —f(x,p0)

de|Af(dpax7p0)| = lf(x7p0 +dp)

1
= ‘Ededep + c;dp
s.t. —Ap <dp<Ap (4a)
max  g;(dp;x,p) = (¥, po) + ¢jpdp + 3 dp"Hjpdp “h)
s.t. —Ap <dp<Ap

where ¢ and H are gradient and Hessian matrix of f or g; with
respect to p, respectively. Note that a design variable with interval
uncertainty [—Ax, Ax] can be treated as a parameter with nominal
value po = x® in each iteration of SQP.

In this double-looped SQP-RO, one of the major problems is
how to solve the inner QP problems with box constraints in
Eq. (4) efficiently, or even remove them if possible.

2.2 Matrix Decomposition Method for QPs Subject to Box
Constraints. In Ref. [28], a decomposition method is introduced
to solve QPs as shown in the following equation:

max /min  f(x) = % THx 4 ¢"x
s.t. Ax <b (5)

In Eq. (5), “max/min” means that this decomposition approach
can be applied no matter it is to maximize or minimize the objec-
tive function. The matrix H can be decomposed as H=U"DU,
with UTU =1 and D a diagonal matrix. This can be easily realized
for the symmetric Hessian matrix H: calculate the eigenvalues 4,
22s...y A (k is the dimension of x) and the corresponding normal-
ized eigenvectors u,, us,..., u; of H. Let D =diag(1, 4s,..., 4p)
and U=[uy, us,..., ;], then H=U"DU with U"U=1I. As a result
we have the following derivation:

1
max,/min f(x) = ExTHx +clx
1
= ExTUTDUx +c"UTUx

(Ue)" (Ux)
s, AUTU)x <b (6)

1
=5 (Ux)"D(Ux) +

Let y=Ux and v = Uc, Eq. (6) can be rewritten as

. 1 T T
max /min =—y D
x/min  f(y) 53 Dy+vly )
s.t. AUTy <b

In this way, the variables of the objective function in Eq. (5) can
be decoupled. In fact, U plays the role of a rotation matrix. In sec-
tion 3, it can be seen that by introducing the concept of the Uto-
pian box, the optimization problem in Eq. (7) can be turned into a
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nonoptimization problem that can be solved by performing matrix
operations.

2.3 Utopian Box and Utopian Solution to QPs Subject to
Box Constraints. First, we define the Utopian box and Utopian
solution.

(1) Utopian box: the box that is perpendicular to the axis of the
rotated coordinate system and covers all the vertices of the
original uncertainty box. Obviously, the Utopian box can
be larger than the original uncertainty box. Figure 1 illus-
trates a Utopian box in the 2D case.

(2) Utopian solution: the optimal uncertain parameter values
within or on the boundary of the Utopian box which gives
the maximum function variation. The optimal point consid-
ering a single variable y; or y, refers to the optimal y, or y,
value in the rotational coordinate system that individually
makes the corresponding decomposed term in Eq. (7) take
the maximum value. Note that this point is not always
located within or on the boundary of the original box, as
can be shown later in Sec. 3.

In order to determine the Utopian box, the optimal point in
each dimension in the rotated coordinate system has to be found.
The extreme vertices of the Utopian box and the Utopian solution
can be determined as follows.

Since this part provides a general discussion on the QPs subject
to box constraints, we use x instead of dp to present variables of
the QPs in this subsection (dp will be used later specifically in our
proposed approach discussed in Secs. 3 and 4). Usually it can be
assumed that lower and upper bounds of x are of the same abso-
lute value x;, (i.e., X is a vector with all elements positive), that is,
the uncertainty box in RO is symmetric, and it is easy to convert
an asymmetric box to a symmetric one. Then we may rewrite x as

a Hadamard product: x=00x,=[01Xp1, 2Xp2,---0Xbkl,
where o;€[—1, 1]. We have y=Ux=U(ao0xp) and its elements

£ k . ..
yi = ijl ujjxj = ijl uioxp; = yi(ot, 02, ..., 0%), which indi-

cates that y; is a function of variables o, ®,..., %;. By substituting
this Hadamard product into Eq. (7), Eq. (7) can be further decom-
posed as shown in the following equation:

1
max/min f(y) = EyTDy +vly
1 &
—Z 7+ 2viyi)

i (3 -3a

i=1 i=1

k 2 < v
——ZA,(ZMUO(,X/,/ ) 5. ;—'

J=1

l\?

s.t. o € [—1,1] (8)

Given the definiteness of the Hessian matrix H in Eq. (4),
actually Eqs. (4a) and (4b) can possibly take different types of QP
forms represented in Eq. (8), in terms of maximization or minimi-
zation, as discussed following.

2.3.1 Convex Maximization (or Concave Minimization)
Problem. When the Hessian matrix H is positive definite (pd) or
positive semi-definite (psd), all 4;’s are nonnegative. In this case,
Egs. (4a) and (4b) will become convex maximization problems.
When H is negative definite (nd) or negative semi-definite (nsd),
Eq. (4a) will become a concave minimization problem which can
be easily transformed into a convex maximization one.

When /; > 0, to ensure the maximum value of f{y), each squared

term (y; + (vi/Z4))" = (25 oy + (v,-/),,-))2 in Eq. (8) should
be max1mlzed. Given the known values of v;, 4;, x,;, and uy, i,
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Jj=1,...k, the a vector in each term

(Z]].‘:, Uuij0xp; + (v,-/A',-))2 needs to be determined based on the
sign of v;//; (there are all k squared terms):

only squared

(1) if v;/2 > 0,1ie.v; > 0, let o;=sign(u;) = sign(v;)sign(u),

forj=1,....,k
(2) ifvi/l < 0,ie. v; <0,leto; = —sign(u;) = sign(v;)sign(u,)),
forj=1,..., k
(3) if vi/2;=0,ie.v; =0, still we let o;=sign(u;), for
j=1.. k.
When ;=0 for some i, let o;=sign(u;) for v;>0
and o;= —sign(u;) for v;<0, that is, o;=sign(v,)sign(u;), for

=1k

+1,x>0

As a summary, define sign(x) = { , then each term

(Z;{:l uijoxy + (vi/2))” can achieve'its haximum value if we let

K . k . . k
S wigixey = sign(vi) Yo wiysign (uy)xp; = sign(vi) Yoy |uigl
which gives the maximum y;, i.e..yimax = sign(v;) > f 1]14,-,|x;,,»
The Utopian point is located at (Yimaxs Y2maxs---sYkmax)s as
illustrated in Fig. 1. To obtain the location of this Utopian point x~
in the original coordination system, we just need to solve

Ux = Yinax ©)

where ymax:[ylmax» Yomaxs-+-» ykmax]- Since UTU:I, b)’
multiplying UT on both sides of Eq.(9), it is easily obtained that
x=UTy (10
When H is nd or nsd, for thkg minimization problem, we just
need to set yimax = —sign(vi) >_;_ e

Stlll we may wrlte x' 1n Hadamard product as
x —aoxbf[cxlxh], UoXb2eees ockxbk] w1th o =[oy, 05,y 0f]"
and oc —x,/xb, We would like to monitor o value here because it
gives us intuitive information about the location of the Utopian
point (whether it is located within the original feasible domain or
not, and if not, how far away it can be), as can be shown in the
test examples. Besides, since this proposed method could be con-
servative, in which case & value might be used in the future for
error analysis.

2.3.2 Concave Maximization (or Convex Minimization)
Problem. When H in Eq. (4b) is nd or nsd, it will become a con-
cave maximization problem, which is also equivalent to a convex
minimization problem.

When 4; <0, to ensure the maximum value of f(y), each squared
term (Zjl.;, U;0xp; + (vi/},;))z in Eq. (8) has to be minimized. In
this case, obviously zero is the smallest value, so first we should
determine if zero can be reached. Similar to the case of convex
maximization, if v;/4; < 0,i.e.v; >0, we set o; = —sign(u;)
= sign(v;)sign(u;), and if v;/2; <0,ie.v; >0, we set

021008-4 / Vol. 136, FEBRUARY 2014

oj = sign(u;) = sign(v;)sign(u;). Then we compare the signs of
sign(v;) Z_j;l }u,-,-|xh_,- + v;/2; with that of v; /2;:

() if  sign(sign(v;) Zjl;l |u,j|xhj +vi/Ai) =sign(vi/X;), it
implies that (Zj | Uijoxp; + + (vi/2;))*cannot reach zero;

then we set Z - Llf,]xbjoc, = sign(v;) Zjl;l |u,vj‘xbj;

if slgn(slgn(v,) i1 |uij|xs; + (vi/2i)) # sign(vi/ ;) which

means zero can be reached, then we set y; +v;/4

= S0 ey + (vi/ ) =0, e, yi= Y5 uyonxy = —

(V[/)v[).

If 2;=0, we set z’?:l uijxpio; = sign(v;) Z;;l |u,~j|xbj.

(2

~

As a summary, each term (Zk | WijoliXp; + + (vi/4;))* can achieve

its maximum value if we let

Yimax
,i,if A #0and sign | sign(v;) ; |u,-j ‘xhj +;T’i # sign (}—Z)

k
sign(vy) Z }u,-j |x;,j, other cases
=1

an

By solving Ux =y, the Utopian solution is obtained as
x* = UTy max-

When H is pd or psd, for the minimization problem just set
Yimax in Eq. (11) as

Yimax

k
Vi Vi Vi
— L if A # 0 sign| —sign(v;) E ’u,;,-!x;,_,— +-1 ) # sign (—l)
;»,‘ = Aj Aj
k
—sign(v;) E |u,-j|x;,_,-,other cases

(12)

2.3.3 Indefinite Problem. When H is indefinite, the function
f can be divided into two parts: those with nonnegative 4;’s
(i=1,..., m) and those with negative A;’s (i=m+1,..., k), as
shown in the following equation:

1
F) =5y Dy +vly
1 k
=3 D (Gay? +2viyi)
i=1
1 & y 2 Vi 1
= EZ /u,-yi+2z 3 Za,yl—i—Z
i=1 ! i=m+1

0 (y)+0-(y)

yi = yilo, 00, s 0), % €

(-1,1] 13)
If f is to be maximized, for those with nonnegative ;s
(i=1,..., m), the same procedure as that for convex maximization
is applied; while for those with negative 4;’s (i =m + 1,..., k), the
same procedure as that for concave maximization can be applied.

On the contrary, if f is to be minimized, the same procedure as
convex minimization is applied for those with nonnegative 4;’s
(i=1,..., m) while the same procedure as concave minimization
is applied for those with negative 4;’s i=m+ 1,..., k).

Note that for these three categories of problems, when the
orders of magnitudes of uncertain variables/parameters are not of
the same level, x;,’s should be normalized first.

Figure 2 illustrates a 2D case of the Utopian box and Utopian
solution under two rotation scenarios. The ellipse in the solid line
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Fig. 3 Shapes of a parabolic function

represents the contour of the robustness index for the Utopian so-
lution, while the ellipse in the dashed line is for that of the true
optimal solution. The ratio (square of this ratio value) of the
length of these two (ellipses in solid and dashed lines) semi-major
axes can be used to measure the deviation of the Utopian solution
to the true solution. It can be easily inferred that the smaller the
rotation angle and the farther the centroid of the ellipse is away
from the origin, the closer this ratio is to 1, and thus the closer this
Utopian solution is to the true solution.

3 Advanced Sequential Quadratic Programming
Approach for Robust Optimization (A-SQP-RO)

In this section, the proposed A-SQP-RO algorithm will be
described in detail. The inner QPs in the proposed single-looped
A-SQP-RO are solved by performing matrix operations. We first
discuss the approach for objective robustness, followed by the
discussion on feasibility robustness. After that the complete
single-looped A-SQP-RO approach is described step by step.

3.1 Approach to Solve the Objective Robustness Index.
First we discuss the case with a single uncertain variable/parame-
ter; and then the method is extended for the case of multiple
uncertain variables/parameters.

3.1.1 Solve the Objective Robustness Index With Single
Uncertain Variable/Parameter. In this case, we have to obtain the
maximum IAf (dp; x, po)l value as shown in Eq. (4a) with p being
a scalar. To make it clear, it is rewritten as in the following
equation:

1
max |Af (dp; x, po)| = 'Eﬂ'(xmo)df + £ (x5, po)dp
s, —Ap <dp<Ap

(14)

In Eq. (14), Af is a parabolic function with respect to dp that
passes through the point (0, 0). The parabola may be convex or
concave depending on the sign of the twice differentiation, and
the symmetric axis of Af' may be to the left or right of the vertical
axis, as shown in Fig. 3.

The solution to Eq. (14), called the extreme point, needs to be
determined. It can be easily proved that the maximum value of the
objective function in Eq. (14) within the bound of [—Ap, Ap]
occurs at —Ap (or Ap) when —f; (x, po) /1, (x,po) = 0 (or < 0). So
searching for the objective robustness index becomes a maximiza-
tion problem when the quadratic problem is convex or a minimi-
zation one if it is concave, which can be extended to the case
where there are multiple uncertain variables/parameters. A
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concave minimization problem is actually equivalent to a convex
maximization one. Thus we can have

f;('x7p0)
po—Ap, if = <0
f[;,(x7p0) (15)
Pmax =
f/(x7p0)
po+Ap, if 2 >0
’ £, po)

When f/(x,po) in Eq. (14) is zero, it becomes a linear equation
and the solutlon is —Ap or Ap depending on the sign of f (%, po)-

In fact, dpmax = sign(f)(x, po)) - Ap.

3.1.2 Solve the Objective Robustness Index With Multiple
Uncertain Variables/Parameters As discussed in Sec. 2.2, we
have to find the maximum IAf (dp; x, po)! value as shown in
Eq. (4a) which can be decomposed to

max|Af (dp)| = —deH dp+c dp‘

= EdeUTDUdp + cTUTUdp'

_ %(Udp)TD(Udp) + (Uc)T(UdP)‘

s.t. b < UT(Udp) < ub (16)
We assume llb;j =lub;l =Ap;, i=1,..., k, where x; indicates the
ith component of vector x, and let dp =a0Ap = [0, Apy, 0 Ap»,...,
o Api] where o,€[—1, 1], y =Udp = U(a0oAp), and v = Uc,, then
Eq. (16) can be rewritten as

1
inDy +vTy

k k
= %Z;Liy,'z+zvfyi
i=1 i=1
1N, vi\2 J
J k Vi : 1 V2
= EZA,(ZMUOCIAP,-i‘A—i) _Ezj_i
J=1 i :

i1
s.t. o € [—1,1]

max|Af (y)| =

2

i

A

a7
As discussed previously, if H is pd or psd, then we have to solve
2 LI
max 22; (Eulja,Ap, 2 _527
s.. o € [-1,1]

(18)

which is a convex maximization problem. If H is nd or nsd, we
have to solve the following concave minimization problem in
Eq. (19).

2

i Iy : Vi 1 &2

min Af()’)zzgliz(Eluijochpj+)Vi> 5. 1/Ti
i= Jj= P

s.t. oj € [—1,1]

19)

If H is indefinite, the objective function Af has to be separated
into two terms as shown in Eq. (13). Let y; = sign(v;)

Z;;l |uij| Ap; for terms in Q. (y) and y; = —sign(v;) Zle |uij| Ap;
for those in Q_(y). Then we could calculate Af(y). If Af(y) >0

FEBRUARY 2014, Vol. 136 / 021008-5

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Ap,Ap,

dp

Fig. 4 Concave parabola for constraints

which implies that Q. (y) dominates Q_(y), then the maximiza-
tion case for the indefinite problem discussed in Sec. 2.3 should
be applied; otherwise, the minimization case for the indefinite
problem should be applied. By solving those problems corre-
spondingly, the optimal solution Ap,,., will be obtained, and
Pmax = Po + Apmax'

In addition, the variation in the objective function can be linear-
ized as

f(x(kH)vaux) *f(x(kﬂ 0) Nf( 5Pmdx) + Cmaxd

— (F(=x", pg) + cod)

Thus, the objective robust requirement, i.e., the variation of the
objective function due to uncertainty should always be less than
the acceptable objective variation Afy, can lead to the conclusion
stated in Eq. (21b) step by step

[F(x®D p) = £ po)| < Afy
& =AMy < FEE pra) —FETY o) < Ay

(20)

& =Ny <FY, prg) —F (&Y, py) + emand — cod < Afy
(21a)
=
(Emax — €0)d < Afo — (fn — fo)
and  — (Cmax — €0)d < Afy + (fin — fo)
where  Cmax = f'(xY), pray), €0 = ' (x¥), py)
fr =Y P ifo = F(xY, py) (21b)

3.2 Approach to Solve the Constraint Robustness Index. In
this section, the proposed approach to solve the constraint robust-
ness indices is presented. Again, the case for the single uncertain
variable/parameter is discussed first, followed by the case of mul-
tiple uncertain variables/parameters.

3.2.1 Solve the Constraint Robustness Index With Single
Uncertain Variable/Parameter. Here we need to find the maxi-
mum g(dp; x, po) value as shown in Eq. (4b) with p being a scalar.
Eq. (4b) is rewritten as the following equation:

1
gj(dp;x,po) = 2g,p(x po)dp” + g, (x, po)dp + g;(x, po)
s.t. —Ap <dp<Ap

max

(22)

In Eq. (22) g; is also a parabolic function with respect to dp; how-
ever, this function does not pass through the point (0, 0) and the
corresponding discussion is more complex than that for the objec-
tive robustness index.

When g; is convex, Eq. (22) becomes a convex maximization
problem. Referring to convex cases shown in Fig. 3, we know that
if the axis of symmetry is to the right (or left) of the vertical axis,
the maximum value of g; occurs at dp = —Ap (or dp = Ap) in spite
of the axis of symmetry being within the bound [—Ap, Ap] or not.

021008-6 / Vol. 136, FEBRUARY 2014

When the parabola is concave as shown in Fig. 4, it becomes a
concave maximization problem. If ‘fg}p (x,p0)/ &} (X, po)‘ < Ap,

then the maximum g; occurs at dp = —g,(x,po)/g},(x,po). If
—8,(x,p0) /8 (x,po) = Ap (or < —Ap), the maximum value of g;
occurs at dp = Ap or (dp = —Ap). To simplify the procedure, the
above situations can be classified into two cases:

(1) I g (x,p0) < 0 | =g, (x.po) /&Jy (x,po)| < Ap. the maxi-
mum g; occurs at dp = —g,(x, po) /g, (*, Po);

(2) For other cases, a simple comparison between
g(x,po — Ap) and g(x, po + Ap) can be made and the larger
one should be chosen.

As a summary

g, (% o)

_ /p( p())
AT

I < Ap
gjp(xJ’O)

,ifg} (x,po) < 0 and|—

Pmax =

po — Ap, other cases when g;(x,po — Ap) is larger

po + Ap, other cases when g;j(x, po + Ap) is larger
(23)

When g ' (x,po) in Eq. (22) is zero, it becomes a linear equation
and the solutlon is dpmax = sign(g;,' (x,po))-Ap.

3.2.2 Solve the Constraint Robustness Index With Multiple
Uncertain Variables/Parameters. Here we have to find the maxi-
mum g; (dp; x, po) value as shown in Eq. (4b) which can be
decomposed to:

max  g;(dp;x,po) = 8;(x,po) + Cpdp + %dPTHmdP
= Jdp"UDUdp + < U Usdp
= 2 (Udp)"D,(Udp) + (U " (Udp)
s.t. Ib < U} (Uidp) < ub
24
With the assumption that [Ib/=lub,/=Ap,, i=1,..., k, we let

dp = dj()Ap = [OCj]Ap], ajzApz,.. . OCjkApL]’ where Oﬂjie[—l, 1],
y=Udp=1; (ajoAp) and v; = Ujc;,, Eq. (25) can be rewritten as
max  gi(y) =3 (U dp)"D;(Uidp) + (Uje;)" (Ujdp)
| & k
E Z lyl + Z ViVi
=1 i—1
1< VN2 = Vi 2
=22 40) X
1< L A i : 1 v;2
*E;M ;M:‘r“r P;“FZ _Egz
s.t. o € [—1,1] (25)
As discussed previously, we have to solve
2 L&
max g]( Z (ZMH%AP; _l) _EZ/{_ (26)

s.t. o € [—1,1]

If H in Eq. (24) is pd or psd, then Eq. (26) is a convex maximi-
zation problem; if H is nd or nsd, Eq. (26) becomes a concave
maximization problem; if H is indefinite, then the maximization
case for the indefinite problem as discussed in Sec. 2.3 will be
applied.
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The optimal solution Apjn.x can be obtained and p;.
=Po + APjmax, and then the constraints can be linearized as
follows:

gj(x(k+l> 7p) = &j (x(k> 7pjmax) + cjmz\xd (27)

The feasibility requirements (i.e., the constraints will always be
less than zero even for the worst case of the uncertain parameter
values) can lead to the following conclusion in Eq. (28b):

/(XY P ax) + €maxd < 0 (284)

4 ijaxd < 78/(35(1{) apjmax) (28b)
where Cimax = g,(x<k>7p_/max)

Up to now, both the objective and constraint robustness indices
can be linearized in the form of a,Td < b,, as shown in Egs. (21b)
and (28b), and all constraints in Eq. (3) can be written in the ma-
trix form of A,d < b. Except a set of linear equations with typical
matrix operations, no optimization routine is necessary for those
inner problems.

As pointed out in Ref. [23], for constraints in the form of lower
and upper bounds of x, Ay, =diag(—1),., with b= (x®—
x;, — Ax) and Ay, =diag(1),,.,, with by, = (—x® 4+ x,, — Ax) can
be used to form the linear constraints. The feasible region can be
defined as Ad <b where A =[A; Ay; Ayl and b= [b,, by, byy].

3.3 Advanced SQP for Robust Optimization (A-SQP-RO).
After the discussion above, the QP formulation in this new
A-SQP-RO can be shown as

min f(d)=c"d+1d"Hd

st. Ad<b

where ¢ = af(xl.;z‘p“) JH= 62{;&’/‘;;’””’“) Jdm=1,..n
A=ay,...,a;,..,a5,a:01,3702,Ap, Ay);
b= [b1,....;0j,....b5,bri1,bri2, b, bup);
a — w@, = g (0 i = 1]
by = Ao — (™, pax) — F(xY, py)),
Ay = — (aﬂx&p...ax) Sy 1P0)>7

b]+2 = AfO + (f(x(k)7pmax) 7f(x(k)7p0))a
Ay = diag(—1),,.,, by = (xH —1b — Ax),

Ay = diag(1),,,, b = (—x¥) + ub — Ax)

and pp,ax as well as pjm,, can be obtained as discussed in Secs. 3.1
and 3.2.

The basic steps of the proposed A-SQP-RO algorithm are sum-
marized as follows:

Step 1. Initialization

Set a small convergence tolerance ¢ > 0 and the iteration coun-
ter k=0; the starting point x'* is also initialized. The lower and
upper bounds of d are given if necessary;

Step 2. Calculation of the objective robustness indices

By applying strategies discussed in Sec. 3.1, the variables/pa-
rameters values that give the maximum objective variation can be
obtained. The objective robustness index in Eq. (3) is replaced by
the new constraint as defined in Eq. (21b);

Step 3. Calculation of the constraint robustness indices

By applying strategies discussed in Sec. 3.2, the variables/pa-
rameters value that gives the corresponding maximum constraint

Journal of Mechanical Design

variation is obtained for each constraint. The constraints in Eq. (3)
are replaced by new ones as defined in Eq. (28b);

Step 4. A- SQP-RO definition

The QP defined in Eq. (29) is formulated and solved to find the
optimal d®;

Step 5. Checking for convergence and updating

In this A-SQP-RO approach, the general convergence condition
used in SQP is also applied: if Hd“‘) U < &, then x* = x® and stop;
otherwise, Set k=k+ 1, xX*™V=x® 1 d® and go to step 2. Note
that when elements in d are of different magnitudes, normaliza-
tion of those elements should be conducted first.

The proposed robust optimization formulation in Eq. (29) just
includes two more additional constraints for objective robustness
compared to Eq. (1). More importantly, there is no inner optimiza-
tion procedure performed in A-SQP-RO anymore. Thus in nature
this new single-looped RO approach is more computationally effi-
cient than double-looped SQP-RO proposed previously.

3.4 Discussion of A-SQP-RO. The computational efficiency
of A-SQP-RO and SQP-RO are compared as shown in Table 1.
The differences lie in that: for each robustness constraint with at
most k variables, SQP-RO has to solve an optimization problem,
while A-SQP-RO just needs to solve for its derivatives and Hes-
sian matrix, and the eigenvalues and corresponding eigenvectors
for each matrix. Numbers of function evaluations are listed in Ta-
ble 1 too. It is noted that for calculations of derivatives and Hes-
sian matrix as well as matrix operations, the number of times that
these operations are performed is utilized. It is obvious that the
computational burden of the proposed A-SQP-RO approach is
much less than that of SQP-RO.

The obtained Utopian solution can be conservative as can be
observed from Fig. 2. However, this deviation is quite small as
can be seen later in the test examples. Moreover, (1) if the con-
straints contain only one uncertain variable/parameter, or (2) if
the Hessian matrix H is already diagonal, or (3) when the extreme
point of the function is located within the uncertainty box, the
Utopian solution is just the real solution of the approximated QPs
in A-SQP-RO. For real engineering applications, cases 1 and 2
may be rare. However, it is reasonable to believe that for a large

Table 1 Analysis of function evaluations for A-SQP-RO and
SQP-RO in one iteration

Operations A-SQP-RO SQP-RO

Number of times for calculation 1 1
of derivatives and Hessian
matrix for the objective at x
For at most (J + 2) robustness
constraints, number of times for
calculation of derivatives and
Hessian matrix, eigenvectors
and eigenvalues for each
Hessian matrix

Solve at most (J + 1) optimization 0
problems, each with at most k
variables, for worst-case
uncertain values

Number of times for calculation
of function value and derivatives
for at most (J + 2)

constraints with worst-case values
Calculation of step size d L L

*)
2(J + 1)* 0

KJ+1)

J+D* (+

Notes: *: Calculations of derivative and Hessian are the same for the addi-
tional two objective robustness constraints, J: Number of constraints, K:
Number of function evaluations of fmincon which is between 8 and 16 for
test examples in this paper (fmincon has been used in our approach to find
extreme parameter values), L: Number of function evaluations of quadprog
which is between 1 and 7 for test examples (quadprog has been used to
find the step size d).
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and sparse Hessian matrix which is not a rare case, the obtained
solution should be nearly the same as the true solution. If one is
still not sure whether to adopt the obtained solution from A-SQP-
RO, then this solution, which is close to the true solution, can be
chosen as the starting point for other RO algorithms. In this
regard, the computational efficiency of the entire procedure can
still be largely improved.

For engineering problems with no explicit mathematical formu-
lations, a surrogate model could be built and utilized to get
approximated Hessian matrix and derivatives. Although this type
of approximation may bring additional uncertainty (or approxima-
tion error), this error is usually relatively small and negligible as
the feasible region shrinks during the optimization process and
more and more sampling points are being used within this shrink-
ing feasible region. This approximation error could also be con-
sidered as a type of “model uncertainty” which will be addressed
in our future research.

In Sec. 4, six numerical and engineering examples will be used
to demonstrate the applicability and computational efficiency of
the proposed A-SQP-RO.

4 Test Examples and Comparison of Results

In this section, we test four nonlinear numerical and two engi-
neering design optimization examples under interval uncertainties,
with the results and computational time from A-SQP-RO com-
pared to those from SQP-RO. The first numerical example is dem-
onstrated step by step to show how the proposed approach works,
and one engineering example is presented with results in each iter-
ation too. The others are given with results from both A-SQP-RO
and SQP-RO. In this paper, the computation platform is a Dell
Optiplex 980 (3.2GHz Intel™® Core™ i5 CPU with 4GB of
RAM). Table 2 summarizes the uncertainty occurrences in each
example.

4.1 Nonlinear Numerical Example 1. Our first example is a
nonlinear problem with uncertainty in design variables. The for-
mulation is given in the following equation:

min, x sin(x; +4) + 1027 + 22x;
+ 5x1x0 + 2x§ + 3x + 12
S.t. x% +3x; —x;sinx; +x —2.75<0
—log(0.1x; 4 0.41) + xpe™ 3™ L v, —3 <0

Ax; = Av, = 0.4, Afy = 2.5 (30)

In this example, the design variables x; and x, have uncertainty
*0.4 around their nominal. The acceptable objective function var-
iation Afp=2.5. It will be demonstrated step by step in the first
iteration to show how A-SQP-RO works.

Iteration 1:

Step 1: Initialization. Set ¢=1 X 1073, k=0, and
AO=[-11].
Step 2: To solve the objective robustness index,

Table 2 Uncertainty occurrences in each example
Numerical Engineering
examples examples

Uncertainty Two-bar Speed
occurrences 1 2 3 4 Truss Reducer
Design variables x N N J N N
Parameters p J N

021008-8 / Vol. 136, FEBRUARY 2014

1
max|Af (dp; x, py)| = lideH,,dp + c:dp'

_ 31
1 [dp177[13.355.007 [dp; 8.417" [dp D
= | +
21dp,| [5.004.00 ||dp,| |2.00] |dp,
By decomposing H, into U™DU, we get
1.830 0.40 —0.92 1.51
D= {015‘52}“}_ {—0.92—0.40_7 and v =Ue, = [—8.51}'
Since H (or D) is pd, Yimax = sign(v;) Z;;, |ul-j}xhj and thus
~ [0.528 oo 069 .
Ymax = {—0,528 and dp. = U Yo = {_0.27]. It is also
. L[] 173
obtained that &* = L‘;] = {70.68 .

Step 3: To solve the constraint robustness index

1
max g (dp; x(0>,P0) =~ e(x,pg) + C1Tpdp + EdPTHlde

2387714, dp11771.7607 7d
=155+ [0 Lol #2lam] Loo ) L)
1.00] |dp>] "2 |dp>] |00 dp>

(32)
. 10 2.38
H,, is diagonal and pd so U} =1 = {01 } v =Uey, = {1.00},
. k 0.4
Vimax = szgn(v,-)Zj:1 |u,j]xh, and Y= E and thus

AP max :UlTymax: [81} . It is also obtained that a} = {Zﬂ = [” .

0.347

.
Similarly, we get dp; . = {0 600] and - a; = {ﬂ
. 2

~10.87
T 1150

Step 4: The A-SQP-RO formulation of this problem is given as
in the following equation:

min  c/d® + L aorg 0
i) 2

st. ATd©® <p

Of (x© 92 (x0)
where ¢o = 7]05% ) , = 7];()62 ) ,
T
(0)
A — ag(x 7pmax) 714“)7‘4'“) ,
ox

b = [7g(x(0)apmax)a by, bllb]7
Ay = diag(—1),,,, Awp = diag(1),,,,

b = x© —1b — Ax, by, = ub — x(¥ — Ax (33)

By solving this problem, we obtain d® =[—0.45, —0.38].

Step 5: Since d(°>|| > &, set iteration counter k=k+1=1,
F D =x@ 4 d®=[-1.45, 0.62] and go to iteration 2 that follows
the same steps as in iteration 1. The results are summarized in
Table 3.

The robust solution obtained from SQP-RO is x=[—1.44,
0.34] and f=—1.7728, while from the proposed approach
Jfoew = —1.7287 which is similar to the one obtained from SQP-
RO.

Figure 5(a) shows the constraints contours with p=p, and
P = Pmax from both SQP-RO and A-SQP-RO. For g, two p,ax sol-
utions from SQP-RO and A-SQP-RO are the same, so the con-
tours are overlapped while the two g, contours with p =py,., are
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Table 3 Results of numerical example 1

k d* 0‘1* az* d(/\’fl) X(k)

| [173-0.68] [1,1] [087,1.50] [—045,—038] [—1.450.62]
2 [1.97,-023] [11] [~147.088] [~0.06.—0.20] [—1.51.042]
3 [=0.17,-1.99] [1.1] [~145089] [0.11,~0.06] [—1.40.036]
7 [=033,-1.95] [11] [~145089] [0.32,0.10]10 4 [—1.37,0.35]
8 [-033.—195] [11] [~1450.89] [0.32.0.10]10_s [—1.37.0.35]

almost overlapped. Figure 5(b) shows the solution comparison of
SQP-RO and A-SQP-RO: the two solutions are very close to each
other, and the objective contours are almost overlapped. When the
obtained solution varies within the uncertain box, both are robust
with respect to objective robustness (Afy=2.5) and feasibility
robustness (g;(x,p) < 0) (i.e., the uncertainty box in Fig. 5(b) is
within the feasible domain and also fall in the region between the
contours of £, —2.5 and f, +2.5).

4.2 Additional Numerical Examples. In this section, another
three numerical examples modified from the literature [23,27,35]
are tested. The formulations and the real robust solutions as well
as the Utopian solutions are listed in Table 4.

The numbers of iterations, # of function calls, and computa-
tional time (in seconds) for those four examples are listed in Table
5. From these two tables, it can be seen that this A-SQP-RO

B constraint contour
" with p=p,

_: constraint contour
with p=p, ... from
SQP-RO

: constraint contour
with p=p, .. from
A-SQP-RO

6+ : v v : - T
——— @»: objective () contour
1817 * 1 A-SQP-RO solution
5- : SQP-RO solution
: variation of *
{’i : variation of +
4 - : constraints
X3
3 -
|_gz_=0 |
2 -
\
1- /
/
0 -
/
-1° -
-4 1 2 3

Fig. 5 Solution comparison of SQP-RO and A-SQP-RO: (a)
Constraint contour comparison and (b) final solution
comparison
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method can improve the computational efficiency significantly
(with respect to number of function calls and computational time)
without worsening the solutions seriously or can even obtain the
same solutions with that of SQP-RO.

4.3 Two-Bar Truss. The two-bar truss problem from Ref.
[35] is tested in this paper. The uncertainty in design variables is
set as [Ax;, Axs, Ax3z]=[0.000125, 0.000125, 0.075], and the ac-
ceptable objective variation is set as Afy = 1. The formulation is
as shown in the following equation:

20(16 + 2)*
min Fl) = 103x1x;‘

st g =f-100<0,g,=f —100<0,g, =f; — 100 <0

1 1 80(1 2)1
where  fo = 10° |x; (16 + 23)? + x2(1 + 3)°|,f5 = 80(1 +x3)? %+x3)
10%x,x3

0.0001 < x;,x, <025, 1.0<x; <3.0

(34)

The robust solution from SQP-RO is x=[0.0197, 0.0002,
2.9250] with f=1.7240 [23] and the Utopian solution is
x=[0.01956, 0.000225, 2.925] with f.,, = 1.7322. Table 6 lists
the detailed results from every iteration.

It can be seen from Table 6 that not all Utopian solutions from
A-SQP-RO lie outside of the original uncertainty box in which
case, the obtained solution is not over conservative, and the devia-
tion of the final result is actually very small.

4.4 Speed Reducer. Speed reducer, as a typical mechanical
design problem proposed in Ref. [35], is modified in Ref. [23] as
follows:

10x3
min f = 0.7854x13 (;3 +14.933x; — 43.0934)

— 1.508x; (x3 + x3) + 7.477(x + x3) + 0.7854(x4x; + x513)

1 1 1 1

- ——<0,
! xlxg)g 27 — &2

s.t. <0,

- xlx%xg 3975
3 3
X3 1 X3 1
- L <0, g =S <
& xxxg 19377 &4 xaxg 193~

0,

g5 =xox3 —40 <0, go=L—12<0,

X2
g7:5—’§g0, g = 1.9 — x4 + 1.5% < 0,
2

g =19—x5+1.1x; <0, gi0o=,>— 1800 <0,
g1 =f3 — 1100 <0,

\/(@)2 +1.69 x 107

X2X3
where f, = )
0.1x2
745x5\2
\/< “\5) 41,575 x 10°
fs = X2 X3
’ 0.1:3

2.6 <x; <3.6,0.7<x, <0817 <x; <28,73<x; <83
73 <x5<83,29<x<39,50<x <55
(35)

Still we define that design variables x, and xg have variations
[Ax2, Axg) = [0.01,0.1] and the acceptable objective variation
Afo = 100. The robust solution obtained from SQP-RO is
x=[3.6000, 0.7100, 17.0000, 7.3000, 7.7153, 3.4502, 5.2867]
with the objective value f=3106.65 [23]. From our new approach,
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Table 4 Numerical examples: formulations and solutions

Solutions
Numerical Examples Formulation x&f SQP-RO A-SQP-RO
2 min  f(x) = —x - sin(37x) X 2.153 2.153
* f —1.9308 —1.9308
s.it. 0<x<1
with  Ax = 0.05, Afy = 0.06
3 min  (x; — 0.6)* + (x2 — 0.6)% — x3xs + 10 Xy 0.45 0.45
X X5 0.45 0.45
st. pr+x+x <0 X3 0.4 0.4
P2t =0 N o 8ss 0885
X1,X2,%3,04 > 0 / ' '
where p; =py = —1,Ax3 = Ap; = Ap, = 0.1
4 min  (x; — 0.6)2 + (x2 — 0.6)2 —x3xg + 10 X1 0.5901 0.5919
* ’ X5 0.5983 0.5988
st. (P4 x1) (2 4+ x3)% + xxs <O X3 0.4500 0.4627
X1 o X3 Xy >0 X4 0.0101 0.0067
Tt = f 9.9981 9.9986

where p; =p, = —1,Ap; = Ap, = 0.1

Table 5 Computational efficiency of numerical and engineering examples

# of iterations # of function calls Computational time (s)

Examples SQP-RO A-SQP-RO SQP-RO A-SQP-RO SQP-RO A-SQP-RO

1 6 8 159 96 2.1781 1.1428

2 7 6 49 30 2.2600 0.9416

3 2 2 56 26 3.2146 1.1669

4 14 14 196 135 3.1430 1.2338

Speed reducer 3 3 264 123 3.3781 1.4063

Two-bar truss 6 4 190 63 3.6906 1.1251

Table 6 Detailed record of two-bar truss
81 8 83 Max IAf]

Iteration k o) 21 o 2 oy 2 o f d*=h x®)

1 1 -1 —95.53 2.566 —32.92 —1 —91.06 1 3.89 x 1073 1.39%x 1072
2 1 0.600 1 1.199 447 248 x 1072 125%x 1072
3 —1 0.564 -1 0.996 5.56 x 107! 2.56

2 1 -1 —97.33 2.613 —0.17 -1 —93.81 -1 5.07x 1073 1.90 x 1072
2 1 0.499 1 1 2.67 —1.23x 1072 225%x 1074
3 -1 0.611 -1 -1 3.69 x 1071 2.925

3 1 -1 —98.21 2.635 —5.37 -1 —95.54 -1 6.04x 107* 1.96x1072
2 1 0.440 1 1 1.787 347 %1018 2.25%x1074
3 -1 0.634 —1 —1 1.80 x 1071® 2.925

4 1 —1 —98.27 2.635 —2.38 -1 —95.68 -1 7.15 %1077 1.956 x 1072
2 1 0.440 1 1 1.732 0 225%x 1074
3 -1 0.634 -1 -1 1.80x 1071¢ 2.925

Final —98.27 —2.38 —95.68 1.732

Xpew = [3.6000, 0.7100, 17.0000, 7.3000, 7.7153, 3.4502, 5.2867]
which is the same as that of SQP-RO.

Table 5 lists the number of iterations and computational time
(s) of these two engineering examples.

From Table 5, it can be observed that in most cases iteration
numbers of both SQP-RO and A-SQP-RO are comparable. How-
ever, the computational burden in terms of the number of function
calls and computational time of the latter approach is much less
than the former one while the objective function values are
slightly degraded or even not degraded.
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5 Conclusion

In this paper, a new approach, A-SQP-RO, has been proposed
to solve nonlinear RO problems with interval uncertainties. The
concept of the Utopian box and Utopian solution for the objective
and constraint robustness indices are proposed. In this new
approach, the inner optimization problems in the original double-
looped SQP-RO have been replaced by a few typical matrix oper-
ations. The computational burden that has to be paid for the
robustness assessment in the double-looped RO approaches can

Transactions of the ASME

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



be saved correspondingly. Although the approach proposed here
in this paper is based on SQP, the idea of the Utopian boxes and
Utopian solutions can be easily extended to other inner optimiza-
tion problems in RO approaches with interval uncertainties.

Six examples have been used to demonstrate the applicability
of the proposed approach. The applicability of A-SQP-RO is the
same as that of SQP-RO. Although the obtained solutions can be
conservative in some cases compared to that of SQP-RO, it is
shown that the deviation from the true robust solutions is rather
small for both the numerical and engineering examples while the
computational efficiency has been improved significantly.
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