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ABSTRACT 

The present paper investigates the recoverability of detailed 
spectral features such as formant and burst peak frequencies 
of prevocalic stop consonants in noise excited channel 
vocoded speech for bandwidths ranging from 250-2000 Hz. 
It is shown that some formant frequency information is still 
recoverable up to 1000 Hz. This challenges the claim that 
listeners must necessarily rely primarily on temporal or global 
spectral features because such narrowly localized spectral 
properties are lost in noise vocoded speech. Listeners’ 
categorization of these stimuli were modelled using 
empirically measured formant and burst peak frequencies as 
well as mel-frequency cepstral coefficients in order to 
evaluate the relative importance of each as correlates to place 
of articulation perception. It is found that despite a certain 
level of recoverability for detailed spectral features, spectral 
shape at burst and voicing onset are better correlates to 
listeners’ perception of stop consonant place of articulation. 

1. INTRODUCTION 
In their work on simulating speech perception by recipients 
of cochlear implants with only a few processing channels, 
Shannon et al. [9], have shown that normal hearing listeners 
can be trained to identify stop consonant place of articulation 
from only four channels of amplitude modulated noise 
(hereafter referred to as noise vocoded speech). They 
conclude that speech perception can be achieved using 
primarily temporal cues. 

However, it can be argued that this signal manipulation 
preserves gross spectral information including such features 
as global spectral tilt and “compactness” [13] of the burst 
onset as well as the change in spectral tilt at the onset of 
voicing [5] or alternatively, the spectra-/temporal envelope 
over the first few tens of milliseconds following oral release 
[4]- all of which have been postulated as important cues for 
stop consonant place of articulation. For example, in the case 
of a four channel implant simulation, we can assume that the 
energy in the lowest and highest frequency bands, as well as 
the relative difference between the two middle bands are 
roughly able to preserve spectral tilt; this is verified in 
Section 2.3. Shannon et aZ.‘s results would lend support to 
the view that such grossly defined spectral shape features are 
robust cues in this context. 

It has also been claimed that vocalic formant transitions 
show some relational invariance for place of articulation in 
stops (notably Sussman et aZ.‘s locus equations [ 141). Formant 
frequencies, which represent an example of a narrowly 
localized or “detailed” spectral feature (using Smit’s 
terminology [12]), are assumed to be much more susceptible 

to degradation in frequency resolution such as that found in noise 
vocoded speech. This claim can be justified in a number of 
ways: for example, an @ ’ order LPC model will require at least 
a 9 point DFT for the coefficients to be recoverable from its 
Fourier transform. For a Nyquist cutoff at 4000 Hz, this entails 
that each Fourier coefficient covers a bandwidth of 500 Hz. 

Does this mean that formant are not recoverable from noise 
vocoded speech in which each channel is broader than 500 Hz? 
If this were true, then listeners in Shannon et al. ‘s experiments [9] 
may be attending primarily to gross spectral shape cues in 
addition to any temporal information preserved by the signal 
processing. In the following section we determine how much 
formant frequency information is recoverable from noise vocoded 
speech with channel bandwidths between 500-2000 Hz. We 
compare this to the amount of variability introduced to global 
spectral shape measures by this type of spectral reduction. 

In Section 3 we describe a perception experiment in which 
untrained listeners categorized place and voicing in noise 
vocoded prevocalic stop consonants in an attempt to evaluate the 
relative importance of spectral shape vs. detailed spectral cues 
such as formant and burst peak frequencies by explicitly 
modeling subjects’ responses. 

2. RECOVERABILITY OF GROSS AND 
DETAILED SPECTRAL CUES 

2.1. Stimuli. 
/CVk/ syllables were produced by twelve speakers of Western 
Canadian English (6 males and 6 females) in which /C/ was one 
of /b,d,g,p,t,k/ and where /V/ was one of /e,ze,o,o/ since these 
vowels have been identified as the extreme points for Fl and F2 
for this dialect [8]. In total, 6x4x12=288 syllables were used. 

Syllables were low-pass filtered and digitized using a 
DT2821 AD/DA at either 10 or 12 bps and 16 kHz. 

All syllables were subband decomposed via a polyphase- 
DFT realization of a uniform filter bank where the bandwidth of 
each channel is constant and the lowest and highest frequency 
channels are centered on the DC and Nyquist frequency 
respectively [ 11. The analysis filters were derived from the 
polyphase decomposition of a high-order (134xthe number of 
channels) linear phase FIR filter. After each channel was 
downsampled, they were replaced with signal correlated noise. 
Channels were then recombined by upsampling and refiltering. 
The result is a signal in which the amplitude envelope of each 
channel is preserved but the instantaneous frequency is 
randomized within each subband. This is similar to Shannon et 
al’s stimuli with the exception that the analysis filters are linear 
phase and that each channel has equal bandwidth. Four different 
bandwidths were considered: 250, 500, 1000 and 2000 Hz. 

X2, Formant and Burst Peak Frequencies 
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BW 

250 Hz 0.91 718 0.68 110 

500 Hz 0.89 903 0.58* 144 

1 kHz 0.91 844 0.56* 202 

2 kHz 0.76** 1273 0.51”” 214 

1, pet F1 rms ,“:1”“‘“Es ( 

voicing onset 

F2 

pet rms 

0.83 132 

0.73* 194 

0.61** 237 

0.52”” 339 

F3 

pet rms 

0.73 144 

0.65 200 

0.52”” 257 

0.52”” 243 

vowel steady state 

Fl F2 F3 

pet rms pet rms pet rms 

0.75 100 0.84 116 0.74 142 

0.65* 122 0.74* 172 0.63* 195 

0.58** 216 0.59** 236 0.58** 251 

0.52”” 205 0.5”” 296 0.53”” 218 
Table 1. Probability of closer match between original and pairea noise vocoaed frame and randomly se1 .ec ted 

and rms errors between calcul .ated noise vocoded and original values. Units are Hz. 
noise vocoded frame 

With the aid of a wide band spectrogram and waveform, the 
onsets of voicing and vowel steady states were located for 
each unpocessed syllable using a procedure similar to 
Sussman et al. [ 141. For each onset and steady state, a single 
glottal pulse was excised from the signal after downsampling 
to 8000 Hz, preempesized and weighted by a Kiaser window. 
The first three formants of each excised glottal pulse were 
measured empirically using either 8th or lO* order LPC. 
Candidate formant poles were rejected if they did not create 
an additional peak in the spectrum. The order of the LPC 
analysis was chosen based on which gave the better 
alignment to the formant peaks as observed on a spectrum of 
the frame as well as the wideband spectrogram. 

A lO* order LPC was calculated for each of the noise 
vocoded frames in the same way using the frame boundaries 
determined from the original signals. For each pole 
identified as a formant in the unprocessed frame, the pole in 
the noise vocoded frame nearest in Euclidean distance on the 
z-plane was selected and labelled as that formant. 

Because this procedure is biased towards small rrns 
errors in predicting the original formant frequencies from 
noise vocoded signals, each of the original formant poles was 
also compared to those of a randomly selected noise vocoded 
frame of the same type (either F2 onset or vowel steady 
state) and bandwidth. If the behavior of the LPC analysis is 
truly random for noise vocoded speech at a given analysis 
bandwidth, we expect that each undistorted formant will be 
nearer either to one pole of any randomly selected noise 
vocoded frame or to the frame that was actually prodeuced 
from the original signal with equal likelihood. Therefore we 
can compare this probability to a binomial distribution with 
TG=.~ as a non-parametric test of randomness. However, we 
have no theoretical basis to determine the upper limit of this 
probability as a measure of LPC accuracy. Therefore the 250 
Hz bandwidth processing condition was used as a baseline for 
comparison. 

Table 1 shows the results of this non-parametric test for 
Fl, 2, and 3 at the onset of voicing as well as for the vowel 
steady state. Significant differences between the 250 Hz 
bandwidth and all others are indicated by * for a I .05 and by 
** for al.01. Probabilities were also compared to a 
completely random null hypothesis- i.e., TC = .5- and non- 
significant differences are indicated by italics (a I .05). In 

addition, rms values are given for the error in predicting the 
original formant frequency from the noise vocoded frame. As 
can be seen from the table, there is a drop in the performance of 
LPC between 250 and 500 Hz. However, LPC does shows 
significantly non-random behavior up to 1 kHz. 

In addition to formants, burst peak frequencies for each stop 
were determined by locating the point of maximum spectral 
energy above 700 Hz from a Kaiser weighted segment containing 
only the burst (care was taken to not include the aspiration 
portion of voiceless stops). In contrast to the formant frequency 
estimation, burst peak frequencies are far more robust in noise 
vocoded speech; although rms increases with bandwidth, the 
statistical procedure used to test the randomness of the burst peak 
in noise vocoded speech does not show significant differences 
from 250 Hz up to 1 kHz bandwidth. The burst peak frequency 
appears to be well preserved in noise vocoded speech. 

2.3. Mel-Frequency Cepstral Coefficients 
We expect gross spectral properties such as global spectral tilt to 
be relatively well preserved in noise vocoded speech with only a 
few processing channels. To test this assumption, we followed 
a similar procedure as in Section 2.2 for mel-frequency cepstral 
coefficients (MFCCs) . 

Syllables were processed by a bank of forty triangular filters 
with equidistant center frequencies in the me1 scale. The discrete 
cosine transform of the log amplitude for each frame was 
calculated [ 111. The first basis function gives more weight to low 
frequencies and provides a good approximation to spectral tilt. 

Cepstral coefficients were determined for two 25 ms frames: 
one starting at the onset of the burst and one at the onset of 
voicing. Randomization tests were performed and the results are 
given in Table 2. 

Results show that the first three cepstral coefficients 
calculated at the release show significantly non-random behavior 
up to 2 kHz for a I .Ol, as well as for the second and third 
coefficients at the onset of voicing. In addition, the first cepstral 
coefficient at the release burst, which roughly corresponds to 
global spectral tilt, shows no significant differences between 250 
and 2000 Hz indicating that this property is well preserved in 
noise vocoded speech. 

2.4. Discussion 
We have shown that, although there is distortion in formant 
frequency estimation via LPC, some information is preserved up 
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BW II Burst onset 

250 Hz .72 .94 .92 

500 Hz .80 .93 .90 

1 kHz .71 .77** .65** 

2 kHz .66 .78** .66** 

__ 
Onset of Voicing 

.69 .86 .87 

.60* .88 .90 

.39”” .78** .59** 

.26”” .64** .60** 
Table 2. Probability of closer match between original and 
paired noise vocoded frame than randomly selected noise 

vocoded frame. 

to 1 kHz noise vocoding bandwidth. In addition, the burst 
peak frequency is particularly robust in noise vocoded speech 
up to 2 kHz. 

It has also been shown that low order mel-frequency 
cepstral coefficients- and in particular global spectral tilt at 
burst onset-are also well preserved. 

While either may account for high performance levels 
for listeners of noise vocoded speech, we do not know if 
systematic misclassification of stop place of articulation is 
due to distortion in detailed spectral information such as 
formant or burst frequencies, or because of changes in global 
spectral properties such as gross spectral shape at burst onset 
or at the onset of voicing. 

The next section describes a perceptual experiment 
designed to evaluate both these sets of cues via explicit 
modeling of listeners’ responses to noise vocoded speech. 

3. PERCEPTION EXPERIMENT 
3.1. Subjects 
Nine graduate and undergraduate students of Linguistics were 
paid as subjects in a speech perception experiment. None 
reported any hearing impairment and all were native speakers 
of Western Canadian English. 

3.2. Procedure 
Stimuli from the twelve speakers described in Section 2.1 
were presented to subjects for classification of the syllable 
initial stop. Only 500 and 1000 Hz noise vocoded stimuli 
were included in the set of spectrally distorted stimuli. In 
addition to these, the original stimuli were presented after 
having been decomposed/resynthesized without substitution 
with signal correlated noise in order to evaluate the effects (if 
any) of the filter bank reconstruction (which introduces some 
noise) as a baseline. In total, 864 stimuli were presented to 
listeners in two sessions of approximately 25 minutes each 

All stimuli were completely randomized and presented 
to listeners who received no prior training. This is in 
contrast to procedure described by Shannon et a2. [9] in 
which listeners received extensive training. Subjects were 
asked to indicate by clicking on the appropriate button on a 
computer screen which consonant they thought began each 
syllable. 

Stimuli were played through a Gina AD/DA at 16bps 
and 44.1 kHz on a PC. Subjects heard stimuli in a sound 
treated room at a comfortable listening level. 

lab 

alv 

vel 

reconstructed 500 Hz 

lab alv vel lab alv vel 

.65 .Ol .oo 

.02 .64 .Ol 

.oo .02 .65 

.60 .04 .02 .58 .04 .04 

.06 .58 .03 .12 .53 .02 

.02 .06 .59 .ll .16 .40 

1000 Hz 

lab alv vel 

Table 3. Probability of correct classification of place of 
articulation. 

3.3. Results 
The mean probability of correct classification of place of 
articulation over the nine listeners was .97, .89 and .76 for the 
reconstructed, 500 Hz noise vocoded and 1000 Hz noise vocoded 
syllables respectively as compared to .33 for chance. McNemar 
tests [3] showed that there were significant differences in 
performance between correct classification for the reconstructed 
stimuli and the 500 bandwidth noise vocoded stimuli as well as 
between 500 and 1000 Hz bandwidth stimuli for all subjects at 
the a 5 .OOl level of significance. 

Responses to place of articulation (voicing was discarded for 
the purposes of this analysis), was fit with a generalized linear 
model in which the multinomial frequency data was treated as a 
Poisson log-linear process conditional on the total number of 
responses per stimulus [6]. Although this was done using an 
iterative weighted least squares regression, this is equivalent to a 
single layer neural network using maximum conditional likelihood 
fitting used by Smits et al. [ 121. 

Initially, four simple fixed effects were considered: actual 
place of articulation, voicing of the prevocalic stop, identity of 
the vowel and whether the stimulus was channel reconstructed, or 
was noise vocoded at either 500 or 1000 Hz bandwidth. The 
optimal model was selected by backwards stepwise minimization 
of the Akaike information criterion (AIC) which is based on the 
residual deviance plus two times the number of estimated 
parameters [6]. A separate model was fit for each subject and the 
deviances from each subject was summed along with the total 
number of parameters to determine the AIC. 

The only processing condition interaction effect included by 
the optimized model was placexprocessing. Although it is known 
that minimization of the AIC biases model selection towards the 
larger of nested models, it is unlikely to exclude interactions that 
are significant [lo]. 

The coefficients (weights) for the placexprocessing 
interaction show that responses to alveolar and velar place of 
articulation drop with increased spectral distortion. When 
coefficients from individuals are treated as random variables [7], 
this difference is significant at the a I .05 level only for alveolar 
responses to alveolar stops between 500 and 1000 Hz bandwidth 
noise vocoded speech. 

Table 3 gives the probabilities for correct identification of 
stop place of articulation for each processing condition. The 
actual place of articulation is given along the left and response 
labels are given along the top of the table. It shows that incorrect 
labial responses increase with increased spectral distortion as do 
incorrect alveolar responses to velars. Interestingly, this seems to 
parallel the behavior observed in the perception of burstless stops 
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Factors e. d.J AIC 

Burst and formant frequencies 

burst and onset cepstra (l-3) 

burst cepstra (l-3) and form. 

burst and onset cepstra (l-4) 

28 13101 13045 

20 12784 12745 

26 12447 12395 

26 12297 12245 

Dev. 

Table 4. Analysis of deviance for four models including 
formant/burst peak frequency and MFCCs. 

[ 121. Why this should be the case is difficult to explain, 
since in section 2.2, we show that burst peak frequency is a 
robust cue in spectrally reduced stimuli. What it perhaps 
indicates is that while spectral peak is well preserved, it is 
not a good correlate for place of articulation perception. 

Data were fit with a generalized log-linear regression 
using estimated spectral parameters as continuous covariates. 
The first model considered consisted of burst peak frequency 
and formant frequencies measured at the onset of voicing and 
at the vowel steady state. Because locus equations have been 
shown to provide some separability between different places 
of articulation [ 141, interactions between onset formant 
frequencies and the corresponding formant frequencies at 
vowel steady state were also included (e.g., F2, by F2,,, 
interactions). In addition, because it is known that burst peak 
frequencies are dependent on vowel context (most notably for 
velars [2]), all burst peak by onset formant frequencies were 
also included (which produced a lower deviance than burst 
peak by vowel formant interactions). Table 4 shows the total 
number of estimated parameters “e.d$“, the AIC and the 
residual deviance for this and the following models. 

The second model considered used the first three 
MFCCs measured at the burst onset as well as at the onset of 
voicing. Based on Lahiri et aZ.‘s suggestion that the relative 
change in spectral tilt between these two frames may be an 
important correlate to place perception [5], all interactions of 
same index coefficients in these two frames were also 
included. 

Despite having fewer estimated coefficients, this model 
has a lower residual deviance than the first, suggesting that 
global spectral measures provide a better fit to the data. 

The third model included the first three cepstral 
coefficients measured at the burst as well as formant 
frequency covariates used in the first model. Again this 
model estimates fewer parameters than the first but has a 
lower residual deviance. Although it contains more 
parameters than the second model, the AIC is lower. 

To generate a model with as many estimated parameters 
as the third using only cepstral coefficients, a forth model 
was fit using the first four MFCCs measured at the onset of 
release burst and at the onset of voicing along with all 
pairwise interactions. The model has the lowest residual 
deviance and although it contains more parameters, has a 
lower AIC than the second. 

Although model selection by minimization of AIC is 
biased towards larger models the magnitude of the difference 

between the second and fourth models appears large relative to 
the increase in e.d.f However, a conclusion cannot be made until 
a less biased criterion is used. 

4. DISCUSSION 
Absent from the analysis in Section 3.4 are other potentially 
important cues such as burst peak amplitude, and burst duration. 
In addition, formant measurements were not made during the 
aspiration portions of voiceless stops, which are much more 
difficult to extract, but may provide a better fit to listeners’ 
responses. In addition a more vigorous comparison of models 
must be made using an unbiased procedure such as bootstrap 
model selection [ lo]. 

However, it would appear that, overall, MFCCs are better 
correlates to stop consonant place of identification than detailed 
formant and burst peak frequency estimates. This may be related 
to the difficulty in calculating the latter, but it could also be 
related to the robustness of global spectral shape measures in 
noise vocoded speech as indicated by the randomization tests in 
Section 2.3. 
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