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Abstract—Feature selection is an important data preprocessing
technique in classification problems. This paper proposes two new
fitness functions in binary particle swarm optimisation (BPSO)
for feature selection to choose a small number of features and
achieve high classification accuracy. In the first fitness function,
the relative importance of classification performance and the
number of features are balanced by using a linearly increasing
weight in the evolutionary process. The second is a two-stage
fitness function, where classification performance is optimised in
the first stage and the number of features is taken into account
in the second stage. K-nearest neighbour (KNN) is employed to
evaluate the classification performance in the experiments on ten
datasets. Experimental results show that by using either of the
two proposed fitness functions in the training process, in almost
all cases, BPSO can select a smaller number of features and
achieve higher classification accuracy on the test sets than using
overall classification performance as the fitness function. They
outperform two conventional feature selection methods in almost
all cases. In most cases, BPSO with the second fitness function
can achieve better performance than with the first fitness function
in terms of classification accuracy and the number of features.

I. INTRODUCTION
Classification is one of the major tasks in machine learning

and data mining, involving the prediction of class labels
based on information about different features. In classification,
datasets often have a large number of features. However,
not all of the features are useful for classification. Irrelevant
and redundant features may even reduce the classification
performance. Meanwhile, a large number of features leads to
the curse of dimensionality, which is a major obstacle in clas-
sification problems. Feature selection is an effective treatment
for this situation [1]. Feature selection is a process of choosing
a subset of relevant features from a large number of original
features. The selected feature subset should be sufficient to
describe the target concepts. By eliminating irrelevant and re-
dundant features, feature selection could improve classification
performance, make learning and executing processes faster,
and/or simplify the structure of the learned classifiers [2].

Existing feature selection methods can be broadly classified
into two categories: filter approaches and wrapper approaches.
The search process in filter methods is independent of a
learning algorithm and they are argued to be computationally
less expensive and more general than wrapper approaches [2].
On the other hand, wrapper approaches search for the best

feature subset using a learning algorithm as part of the evalu-
ation function. By considering the performance of the selected
feature subset on a particular learning algorithm, wrappers can
usually achieve better results than filter approaches [3].

Feature selection is a difficult problem, especially when
the number of available features is large, because the size
of search space grows exponentially with the number of
features. Therefore, it is impractical to search the whole
space exhaustively in most situations [3]. In order to avoid
exhaustive search, greedy algorithms have been introduced to
solve feature selection problems such as sequential forward
selection (SFS) [4] and sequential backward selection (SBS)
[5]. However, such greedy approaches usually suffer from the
problem of becoming stuck in local optima and/or high com-
putational cost. Therefore, an efficient global search technique
is needed to develop a good feature selection algorithm.

Recently, different evolutionary computation techniques,
which are well-known for their global search ability, have been
applied to feature selection problems, such as particle swarm
optimisation (PSO) [6, 7, 8], genetic algorithms (GAs) [9] and
genetic programming (GP) [10]. PSO is based on the idea of
swarm intelligence and inspired by social behaviour of birds
flocking or fish schooling. Compared with GAs and GP, PSO
is easier to implement, has fewer parameters, computationally
less expensive, and can converge more quickly [11]. Due to
these advantages, PSO has been used as a promising method
for feature selection problems [6, 7, 8]. However, feature
selection problems have two goals, which are maximising the
classification accuracy and minimising the number of features.
Most of existing feature selection approaches, including PSO
based approaches, aim to maximise the classification perfor-
mance only, so studies on addressing feature selection as a
multi-objective problem are rare. Therefore, it is needed to
develop a feature selection approach using PSO to simultane-
ously maximise the classification accuracy and minimise the
number of features selected.

A. Goals

The overall goal of this paper is to develop a new fitness
function in PSO for feature selection in classification problems
with the expectation of using a small number of features to
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achieve higher classification accuracy than using all features.
To achieve this goal, we will develop two new fitness functions
in PSO for feature selection for finding a good subset of
features for classification. The two new fitness functions will
be examined on ten benchmark datasets with different numbers
of features and instances. Specifically, we will investigate

• whether the use of PSO with the overall classification
performance as the fitness function can select a good
subset of features for classification,

• whether using only a single fitness function that considers
both the classification performance and the number of
features can further reduce the number of features se-
lected and improve the classification performance, and

• whether the use of two-stage training can further reduce
the number of features selected and increase the classifi-
cation performance.

B. Organisation
The remainder of the paper is organised as follow. Back-

ground information is provided in Section II. Section III
describes the two proposed BPSO based feature selection
approaches with new fitness functions. Section IV describes
experimental design and Section V presents experimental
results with discussions. Section VI provides conclusions and
future work.

II. BACKGROUND

A. Particle Swarm Optimisation (PSO)

PSO is a population based global search technique proposed
by Kennedy and Eberhart in 1995 [12]. In PSO, each candidate
solution of the problem is encoded as a particle moving in
the search space. The whole swarm searches for the optimal
solution by updating the position of each particle based on
the experience of its own and its neighbouring particles [13].
Generally, a vector xi = (xi1, xi2, ..., xiD) is used in PSO to
represent the position of particle i, where D is the dimension-
ality of the search space and a vector vi = (vi1, vi2, ..., viD)
represents the velocity of particle i. During the search process,
the best previous position of each particle is recorded as the
personal best called pbest and the best position obtained by
the swarm thus far is called gbest. The swarm is initialised
with a population of random solutions and searches for the
best solution by updating the velocity and the position of each
particle according to the following equations:

xt+1
id = xt

id + vt+1
id (1)

vt+1
id = w ∗ vtid + c1 ∗ r1i ∗ (pid − xt

id)

+ c2 ∗ r2i ∗ (pgd − xt
id) (2)

where t denotes the tth iteration in the search process. d ∈ D
denotes the dth dimension in the search space. c1 and c2
are acceleration constants. r1i and r2i are random values
uniformly distributed in [0, 1]. pid and pgd represent the
elements of pbest and gbest in the dth dimension, respectively.

w is inertia weight. The velocity vtid is limited by a predefined
maximum velocity, vmax and vtid ∈ [−vmax, vmax].

PSO was originally proposed as an optimisation technique
to address continuous problems. However, many optimisation
problems, such as feature selection, occur in a space featuring
discrete, qualitative distinctions between variables and be-
tween levels of variables. To extend the implementation of the
PSO algorithm, Kennedy and Eberhart [14] developed a binary
particle swarm optimisation (BPSO) for discrete problems.
The velocity in BPSO represents the probability of an element
in the position taking value 1. Equation (2) is still applied to
update the velocity while xid, pid and pgd are restricted to
1 or 0. A sigmoid function s(vid) is introduced to transform
vid to the range of (0, 1). BPSO updates the position of each
particle according to the following formulae:

xid =

{
1, if rand() < s(vid)
0, otherwise

(3)

where
s(vid) =

1

1 + e−vid
(4)

where rand() is a random number selected from a uniform
distribution in [0,1].

B. Recent Work Related to Feature Selection

Many feature selection approaches have been proposed and
typical algorithms are reviewed in this section.

1) Classical Feature Selection Approaches

The FOCUS algorithm [15] is a classical filter feature
selection algorithm. It starts with an empty feature subset and
exhaustively examines all subsets of features, and then selects
the minimal subset of features that is sufficient to determine
the class label for all instances in the training set. The FOCUS
algorithm performs an exhaustive search to determine the best
feature subset, which is computationally expensive.

The Relief algorithm is another popular filter feature selec-
tion method that assigns a relevance weight to each feature
[16]. The weight is intended to denote the relevance of the
feature to the target concept. However, Relief does not deal
with redundant features whose discriminative ability is covered
by other features, because Relief attempts to find all relevant
features regardless of the redundancy between them.

SFS [4] and SBS [5] are two commonly used wrapper
feature selection approaches. Both of them use a greedy hill-
climbing search strategy to search for the optimal feature
subset. SFS starts with an empty set of features and iteratively
adds one feature at one time until no improvement in classifi-
cation accuracy can be achieved. By contrast, SBS sequentially
removes features from a full candidate feature subset until the
removal of further features does not increase the classification
accuracy. Both SFS and SBS suffer from the so-called nesting
effect, which means that once a feature is selected (discarded)
it cannot be discarded (selected) later. Therefore, both SFS
and SBS are easily trapped in local optima.



2) BPSO based Feature Selection Approaches

BPSO has recently gained more attention for solving feature
selection problems. Chakraborty [17] proposes a BPSO based
filter feature selection algorithm with a fuzzy sets based fitness
function. The performance of BPSO is compared with that
of GA in two benchmark datasets. Experimental results show
that the BPSO based feature selection algorithm could achieve
slightly higher classification accuracy and computationally less
expensive than the GA based algorithm. However, only using
two datasets in the experiment is not enough to verify the
effectiveness of the proposed algorithm.

Wang et al. [18] define the velocity in BPSO as the number
of elements that should be changed in the position of a particle.
The performance of the improved BPSO is compared with that
of GA in a filter feature selection model based on rough sets
theories. Experiments show that the improved BPSO algorithm
is computationally less expensive than GA in terms of both
memory and running time. This work also shows that the
computation of the rough sets consumes most of the running
time, which is a drawback of using rough sets in feature
selection problems.

Based on BPSO, Unler and Murat [7] propose a wrapper
feature selection algorithm with an adaptive selection strategy,
where a feature is chosen not only according to the likelihood
calculated by BPSO, but also to its contribution to the features
already selected. Experimental results suggest that the pro-
posed BPSO method outperforms the tabu search and scatter
search algorithms.

Inertia weight is the most important parameter in BPSO,
which can improve the performance by properly balancing
its local search and global search. Yang et al. [6] propose
two BPSO based wrapper feature selection approaches by
developing two strategies to determine the inertia weight of
BPSO. Experiments show that the two proposed algorithms
can outperform other methods, including sequential forward
search, plus and take away, sequential forward floating search,
sequential GA and different hybrid GAs.

In order to keep the diversity of the population in BPSO,
Yang et al. [8] propose a strategy to set gbest during the search
process. In the proposed algorithm, when gbest is identical
after three iterations, a Boolean operator ‘and(.)’ will ‘and’
each bit of pbest of all particles in an attempt to create a
new gbest. Experiments show that feature subset selected by
the proposed method usually achieves higher classification
accuracy than that of GA and standard BPSO.

Chuang et al. [19] propose a feature selection algorithm
based on an improved BPSO in which all the elements of
gbest will be reset to 0 if it maintains the same value
after several iterations. Experiments with cancer-related gene
expression datasets show that the proposed BPSO outperforms
the approach proposed in [8] in most cases.

Alba et al. [20] develop a feature selection algorithm based
on a geometric BPSO with a support vector machine (SVM)
as the learning algorithm in a wrapper approach. In geometric
BPSO, pbest, gbest and the current position of a particle are

used as three parents in a three-parent mask-based crossover
operator to create a new position for the particle instead of
using the position update equation. Experiments show that the
proposed algorithm could achieve higher classification accu-
racy than GA with SVM in most cases, but the performance of
geometric BPSO is not compared with that of standard BPSO.

Based on PSO and SVM, Huang et al. [21] propose a
wrapper feature selection method in which BPSO is used to
search the optimal subset of features and continuous PSO
is used to simultaneously optimise the parameters in the
kernel function of SVM. Experiments show that the proposed
algorithm could determine the parameters, search the optimal
feature subset simultaneously and also achieve good classifi-
cation performance. However, the authors do not compare the
performance of the proposed method with other approaches.

Liu et al. [22] introduce a multi-swarm BPSO (MSPSO)
algorithm to search for the optimal feature subset and optimise
the parameters of SVM simultaneously. Experiments show
that the proposed feature selection method could achieve
higher classification accuracy than grid search, standard BPSO
and GA. However, the proposed algorithm is computationally
more expensive than other three methods because of the large
population size and complicated communication rules between
different subswarms.

3) Other Evolutionary Computation Techniques for Feature
Selection

Besides PSO, other different evolutionary computation al-
gorithms have been applied to feature selection problems,
such as GAs, GP and and ant colony optimisation (ACO).
Based on GA, Yuan et al. [9] propose a two-phase feature
selection approach using both filter and wrapper methods. In
the filter phase, GA was employed for feature selection with
an inconsistency criterion to evaluate the fitness of solutions
to remove irrelevant features. The wrapper phase starts with a
feedforward neural network whose input nodes are features in
the optimal feature subset obtained in the first phase. However,
without considering feature interactions, features that would
form the best feature subset may be removed in the first phase.

Neshatian and Zhang [10] propose a feature selection ap-
proach based on GP and a variation of naı̈ve bayes (NB).
A bit-mask representation is used for feature subsets and a
set of operators are used as primitive functions. GP combines
these feature subsets and operators together to find the opti-
mal subset of features. Experiments on a highly unbalanced
face detection problem show that the proposed algorithm
can achieve a significant reduction in dimensionality and
processing time.

He [23] proposes a filter approach for feature selection
based on ACO and rough set theory. The proposed method
starts with the features included in the core of the rough set
and forward selection is adopted to search for the best subset
of features. Experiments show that the proposed approach
achieves higher accuracy with fewer features than a C4.5
based feature selection approach. However, experiments do
not compare the proposed method with other commonly used



feature selection approaches.
Many studies have shown that BPSO is an efficient search

technique for feature selection. However, most of the existing
approaches are proposed to maximise the classification per-
formance and not much work has been conducted solving a
feature selection task as a multi-objective problem. Therefore,
development of a feature selection algorithm using BPSO
to simultaneously maximise the classification accuracy and
minimise the number of features is still an open issue.

III. PROPOSED BPSO BASED FEATURE SELECTION
APPROACHES

In this section, a BPSO based feature selection approach
with the overall classification performance as the fitness func-
tion is described. Two new fitness functions are proposed
to develop two BPSO based feature selection algorithms to
further improve the classification performance and reduce the
number of features selected.

A. Basic Fitness Function: Error Rate

Feature selection can be solved by BPSO as a single
objective problem to minimise the classification error rate
(maximise the classification accuracy) in a wrapper approach.
The goal is to see whether BPSO can select a subset of features
to achieve higher classification accuracy than using all avail-
able features and the results also could be used to as a baseline
to compare the performance of newly developed approaches.
The fitness function (See Equation 5) is to minimise the
classification error rate (maximise the classification accuracy)
obtained by the selected feature subset during evolutionary
training process.

Fitness1 = ErrorRate (5)

where ErrorRate is determined according to Equation 6:

ErrorRate =
FP + FN

TP + TN + FP + FN
(6)

where TP, TN, FP and FN stand for true positives, true
negatives, false positives and false negatives, respectively.

Algorithm 1 shows the pseudo-code of using BPSO for
feature selection. The representation of a particle in BPSO
is a n-bit binary string, where n is the number of available
features in the dataset and also the dimensionality of the search
space. In the binary string, “1” represents that the feature is
selected and “0” otherwise.
B. New Fitness Function: Error Rate and #Features

The feature subset selected by BPSO may still contain
potential redundancy, because the basic fitness function (Equa-
tion 5) does not intend to minimise the number of features.
We hypothesize that the same classification performance could
be achieved by a smaller feature subset. In order to address
this problem, a new fitness function is proposed with the
goals of maximising the classification performance (minimise
the classification error rate) and minimising the number of
features. The formula of the new fitness function is shown in
Equation 7.

Fitness2 = αt ∗
#Features

#All Features
+ (1− αt) ∗

ErrorRate

Error0
(7)

where
αt = αmax ∗ t

T
(8)

where αt ∈ [0, 1]. t denotes the tth iteration in the search pro-
cess. #Features represents the number of features selected.
#All Features stands for the number of all the available
features. ErrorRate is the classification error rate obtained by
the selected feature subset. Error0 is the error rate obtained
by using all the available features for classification on the
training set. αmax is the predefined maximum value of αt and
αmax ∈ [0, 1]. T represents the predefined maximum iterations
of the BPSO evolutionary process.

In the fitness function (Equation 7), αt and (1− αt) show
the relative importance of the number of features and the
classification error rate. (1 − αt) is set larger than αmax,
because the classification performance is assumed always more
important than the number of features. A linearly increasing
αt indicates that classification error rate dominates the fitness
function at the beginning of the evolutionary process and the
size of feature subset becomes more and more important at the
latter stages. However, the number of features is usually much
larger than the classification error rate. In order to balance
these two components, the size of feature subset is divided by
the total number of features, which transforms the value to the
range of (0, 1]. In some datasets, the classification error rate
changes in a small range in the whole evolutionary training
process. Therefore, the classification error rate is transformed
in to [0, 1] by dividing the error rate obtained by using all
available features. At the first few generations, ErrorRate

Error0
may

be larger than 1, but it will not influence the results because
we want the classification error rate to dominate the fitness
function at the beginning of the evolutionary process. When
αt increases to a relatively large value, BPSO is supposed to
evolve the ErrorRate to be smaller than Error0.

The representation of a particle in this algorithm is the same
as the n-bit binary string described in Section III-A. Algorithm
1 also can be used to show the pseudo-code of this algorithm
by replacing the Equation 5 with Equation 7 in Line 1.

C. New Fitness Function: A Two-Stage Approach
In the previous subsection (Section III-B), classification

performance and the number of features are balanced by using
a linearly increasing weight in the fitness function (Equation
7) in the evolutionary process, which is expected to solve the
problem of selecting a redundant feature subset. A potential
limitation of this fitness function (Equation 7) is that it may
guide the PSO algorithm to search for a small feature subset
with low classification performance instead of searching for
a large feature subset with high classification performance. In
order to overcome this limitation, we propose a two-stage fea-
ture selection approach, where the whole evolutionary process
is equally divided into two stages. In first stage, the algorithm
focuses on the optimisation of classification performance. In



Algorithm 1: The BPSO based feature selection algorithm

begin
divide Dataset into a Training set and a Test set;
randomly initialise the position and velocity of each particle;
while maximumiterations or the stopping criterion is not met do

evaluate fitness of each particle according to Equation 5 ; /* ErrorRate on the training set */
for i=1 to populationsize do

update the pbest of particle i;
update the gbest of particle i;

for i=1 to populationsize do
for d=1 to numberofavailablefeatures do

update the velocity of particle i according to Equation 2;
update the position of particle i according to Equations 3 and 4;

calculate the classification accuracy of the selected feature subset on the test set;
return the position of gbest (the selected feature subset);
return the training and test classification accuracies;

TABLE I
DATASETS

Dataset Number of Number of Number of
features classes instances

Wine 13 3 178
Vehicle 18 4 846
German 24 2 1000
World Breast Cancer 30 2 569
-Diagnostic (WBCD)
Ionosphere 34 2 351
Lung Cancer 56 3 32
Hill-Valley 100 2 606
Musk Version 1 (Musk1) 166 2 476
Madelon 500 2 4400
Isolet5 617 2 1559

the second stage, the number of features is added into the
fitness function. The second stage starts with the solutions
achieved in the first stage, which ensures that the minimisation
of the number of features is based on feature subsets with high
classification performance. The fitness function used in this
two-stage feature selection approach is shown in Equation 9.

Fitness3 =

{
ErrorRate, Stage 1
α ∗ #Features

#All Features
+ (1− α) ∗ ErrorRate

Error0
, Stage 2(9)

where α is constant values and α ∈ [0, 1]. α shows the relative
importance of the number of features and (1− α) shows the
relative importance of the classification error rate. ErrorRate,
#Features, #All Features, ErrorRate, Error0 are the
same as the ones used in Section III-B. As the classification
performance is assumed to be more important than the number
of features, α is set to be smaller than (1− α).

The representation of a particle in this algorithm is the same
as the n-bit binary string described in Section III-A. Algorithm
1 also can be used to show the pseudo-code of this algorithm
by replacing the Equation 5 with Equation 9 in Line 1.

IV. EXPERIMENTAL DESIGN
Ten benchmark datasets chosen from the UCI machine

learning repository [24] are used in the experiments, which

can be seen in Table I. The ten datasets were selected to
have different numbers of features, classes and instances as
the representative samples of the problems that the proposed
approaches can address. For each dataset, the instances are
randomly divided into two sets: 70% as the training set and
30% as the test set.

There are many learning algorithms that can be used here,
such as K-nearest neighbour (KNN), NB, and decision tree
(DT). One of the simplest learning algorithms, KNN, was se-
lected as the learning algorithm in three BPSO based wrapper
approaches. To simplify the evaluation process, we use K=5
in KNN (5NN). Classification accuracy is evaluated by 5NN
implemented in Java machine learning library (Java-ML) [25].

The parameters of BPSO are set as follows: inertia weight
w = 0.7298, acceleration constants c1 = c2 = 1.49618,
maximum velocity vmax = 6.0, population size P = 30,
maximum iteration T = 100. The fully connected topology is
used in BPSO. These values are chosen based on the common
settings in the literature [26]. As the maximum iteration is 100,
in the two-stage approach, the first 50 iterations are the first
stage and the last 50 iterations are the second stage. We assume
the number of features is important in feature selection, but
much less important than classification accuracy. Therefore,
αmax = 0.2 in Equation 7 and α = 0.2 in Equation 9 in the
second stage of the two-stage approach. For each dataset, each
approach has been conducted for 40 independent runs.

V. RESULTS AND DISCUSSIONS

Experimental results of three approaches on ten datasets
are shown in Table II. In the table, “All” means that all of the
available features are used for classification. “BPSO-Er” stands
for the BPSO based feature selection approach with Equation
5 as the fitness function. “BPSO-ErNo” and “BPSO-2Stage”
represent the two proposed feature selection approaches with
Equation 7 and Equation 9 as fitness functions, respectively.
“Ave-Size” represents the average size of the feature subsets
selected by each algorithm in 40 runs. “Ave-Acc” shows the



TABLE II
EXPERIMENTAL RESULTS

Dataset Method Ave-Size Ave-Acc Std-Acc
(Best-Acc)

Wine
All 13 76.54
BPSO-Er 8.32 95.96 (97.53) 1.87E-2
BPSO-ErNo 8.1 96.23 (98.77) 1.58E-2
BPSO-2Stage 5.1 96.94 (100) 2.51E-2

Vehicle
All 18 83.86
BPSO-Er 9.28 84.3 (85.83) 61.9E-4
BPSO-ErNo 7.68 84.34 (85.24) 60.3E-4
BPSO-2Stage 7.3 84.47 (85.04) 54.1E-4

German
All 24 68
BPSO-Er 12.9 68.73 (72) 1.3E-2
BPSO-ErNo 9.48 68.83 (71) 1.35E-2
BPSO-2Stage 8.62 68.93 (73.67) 1.65E-2

WBCD
All 30 92.98
BPSO-Er 14.92 92.98 (92.98) 3.33E-16
BPSO-ErNo 7.65 92.98 (92.98) 3.33E-16
BPSO-2Stage 6.68 92.98 (92.98) 3.33E-16

Ionosphere
All 34 83.81
BPSO-Er 10.38 89.05 (93.33) 1.84E-2
BPSO-ErNo 8.55 89.12 (94.29) 1.84E-2
BPSO-2Stage 8.9 89.52 (93.33) 1.59E-2

Lung
All 56 70
BPSO-Er 26.92 72.5 (80) 5.36E-2
BPSO-ErNo 23.5 73 (90) 5.57E-2
BPSO-2Stage 22.22 73.25 (80) 6.08E-2

Hill-Valley
All 100 56.59
BPSO-Er 47.55 57.56 (60.71) 1.48E-2
BPSO-ErNo 37.75 57.72 (60.16) 1.36E-2
BPSO-2Stage 37.1 57.61 (60.44) 1.19E-2

Musk1
All 166 83.92
BPSO-Er 83.6 85.65 (89.51) 2.1E-2
BPSO-ErNo 79.4 85.54 (90.91) 2.21E-2
BPSO-2Stage 80.72 85.7 (89.51) 2.05E-2

Madelon
All 500 70.9
BPSO-Er 244.68 76.83 (78.85) 1.23E-2
BPSO-ErNo 239.28 77.02 (79.49) 1.17E-2
BPSO-2Stage 241.35 77.34 (79.62) 1.13E-2

Isolet5
All 617 98.45
BPSO-Er 303.14 98.5 (98.75) 17.4E-4
BPSO-ErNo 297.02 98.58 (98.73) 8.72E-4
BPSO-2Stage 302.55 98.57 (98.77) 9.43E-4

average test accuracy of the feature subsets selected by each
algorithm in 40 runs and “Best-Acc” indicates the best test
accuracy. “Std-Acc” represents the standard deviation of the
40 test accuracies achieved by each algorithm.
A. Results of BPSO with Basic Fitness Function

According to the results in Table II, it can be seen that
in almost all the datasets, the feature subset selected evolved
by “BPSO-Er” only includes half of the available features.
With the selected feature subset, 5NN can achieve higher
classification accuracy than using all features in almost all
datasets (they are the same in the WBCD dataset). For
example, in the Wine dataset, with all the 13 features, 5NN
could achieve classification accuracy of 76.54% while with
around 8 features, it can increase the classification accuracy
to 95.96%. All the standard deviation values shown by “Std-
Acc” are smaller than 0.03 except in the Lung dataset, which
only has a small number of examples and the classification
accuracy changes more than in a dataset with more examples.
As can be seen in Table II, all the standard deviation values
for all methods in all datasets are small, which indicates that
all methods are considerably stable and statistical significant
testing is not necessary here.

The results suggest that BPSO with overall classification
error rate as fitness function can effectively select a subset
of relevant features that contains around half of the available
features and increase the classification performance.

B. Results of BPSO with New Fitness Function: Error Rate
and #Features

According to the results (“BPSO-ErNo”) shown in Table II,
in most cases, the feature subsets evolved by BPSO contains
fewer than half of the available features. With the selected
feature subsets, the classifier can achieve higher classification
accuracy than using all features in almost all datasets (except
for the same accuracy in the WBCD dataset).

Comparing the results achieved by “BPSO-ErNo” with that
of “BPSO-Er” , the average size of the feature subsets evolved
by “BPSO-ErNo” is always smaller than that of “BPSO-Er” .
The reduction of the average size is more than 10% in six of
ten datasets and it is 48.7% in the WBCD dataset. The average
classification accuracy achieved by the feature subsets resulted
from “BPSO-ErNo” is higher than that of “BPSO-Er” in all the
datasets. There is no obvious difference between the standard
deviation values in two approaches in each dataset.

The results show that by adding the size of the feature subset
into the fitness function (Equation 7), it could guide the BPSO
algorithm to search for a feature subset with a smaller number
of features. By further removing the redundant or unnecessary
features from the subset, the classification accuracy can be
improved, the testing time can be reduced and the learnt
classifiers can be simplified.

C. Results of BPSO with New Two-Stage Fitness Function
According to the results (“BPSO-2Stage”) shown in Table

II, two-stage feature selection approach selects a small number
of features, which is slightly more than one third of the
total number of features in many cases. With the selected
feature subsets, the classifier can achieve higher classification
accuracy than using all features in almost all cases (except for
the WBCD dataset).

Comparing “BPSO-2Stage” with “BPSO-Er”, “BPSO-
2Stage” can evolve smaller feature subsets than “BPSO-Er”
The reduction of the average size is more than 15% in seven
of ten datasets and it is 55.2% in the WBCD dataset. With
smaller feature subsets, “BPSO-2Stage” achieve better or same
classification performance as “BPSO-Er” in almost all datasets
(except for the WBCD dataset). The standard deviation values
in the two approaches are similar.

According to the results, in most cases, “BPSO-2Stage”
can evolve smaller feature subsets than “BPSO-ErNo”. The
reduction of the average size is 37% in the Wine dataset. The
average classification accuracy resulted from “BPSO-2Stage”
is higher or the same as that of “BPSO-ErNo” in almost all
datasets. Only in the Hill-Valley and Isolet5 datasets is the
average classification accuracy slightly lower (around 0.1% in
Hill-Valley and 0.01% in Isolet5) in “BPSO-2Stage” than in
“BPSO-ErNo”, but the “BPSO-2Stage” obtains better results
in terms of the best classification accuracy in the 40 runs. The
standard deviation values is similar in these two approaches.



The results show that by using two-stage evolutionary train-
ing process, BPSO can further reduce the number of features
selected and improve the classification performance in most
cases. In the first stage, the fitness function (Equation 9) could
guide BPSO to search for the feature subset with minimum
classification error rate without considering the number of
features selected. In the second stage, the fitness function
(Equation 9) can guide BPSO to search for a smaller feature
subset which could maintain the already achieved classification
performance.

D. Further Analysis

Table II show that “BPSO-Er” can successfully select a
subset of relevant features. “BPSO-ErNo” and “BPSO-2Stage”
can further reduce the number of features selected because the
number of features is included in the fitness functions.

In the WBCD dataset, the accuracies achieved by three
methods are the same, which means larger feature subsets
have redundant features. Therefore, we take the WBCD dataset
as an example to analysis the difference and the similarity
between the feature subsets evolved by BPSO with different
fitness functions.

Considering the results in a typical run (where three meth-
ods share the same settings except the fitness function), the
numbers of features selected by “BPSO-Er”, “BPSO-ErNo”
and “BPSO-2Stage” are 15, 7 and 6, respectively. The features
selected by “BPSO-Er” are F3, F5, F6, F9, F10, F11, F13, F15,
F19, F20, F22, F23, F25, F26 and F27, where Fi denotes the
ith feature in the dataset. The features selected by “BPSO-
ErNo” are F1, F3, F5, F22, F23, F25, F30. The features
selected by “BPSO-2Stage” are F3, F9, F10, F13, F22, F23.

Comparing the selected features, it can be observed that
all of the features selected by “BPSO-2Stage” are included in
the feature subset evolved by “BPSO-Er”. As in the first 50
generations, “BPSO-2Stage” and “BPSO-Er” share the same
fitness function (See Equation 5 and Equation 9), they achieve
the same results. This suggests because of the fitness function
(Equation 9), which includes a secondary stage considering
the number of features, “BPSO-2Stage” can effectively remove
the redundant features from the feature subset resulted from
the first stage. Two of the seven features chosen by “BPSO-
ErNo” are not included in the features selected by “BPSO-Er”,
because they use the different fitness functions to guide the
search of BPSO. In the other datasets, feature subsets evolved
by “BPSO-2Stage” also share more similarity with the subsets
evolved by “BPSO-Er” than “BPSO-ErNo”.

Results suggest different fitness functions guide BPSO to
search for different feature subsets and lead to various clas-
sification accuracies. “BPSO-2Stage” with a two-stage fitness
function, which firstly optimise the objective of maximising
the classification performance and then adds the objective
of minimising the number of features in the second stage,
can successfully remove the redundant features and achieve
high classification accuracy. “BPSO-ErNo” can achieve high
classification performance with a small number of features,
although the results are not as good as “BPSO-2Stage”.

E. Comparisons with Convential Feature Selection Methods
In order to show the performance of the proposed fitness

functions, we comparing BPSO-Er, BPSO-ErNo and BPSO-
2Stage with two conential feature selection methods, which
are linear forward selection (LFS) [27] and greedy stepwise
backward selection (GSBS) [28]. Taking the WBCD datasets
as examples, LFS selects 10 features with a classification
performance of 88.89% and GSBS selects 25 features and
achieved a classification accuracy of 83.63%. Comparing the
results in Table II, the average number of features in BPSO-
Er, BPSO-ErNo and BPSO-2Stage is 14.92, 7.65 and 6.68,
respectively. Their average classification accuracy is the same
value, 92.98%. Other datasets have similar results, which show
that in almost all cases, the classification performance achieved
by BPSO-Er and BPSO-ErNo is higher than that of LFS, but
the average number of features is larger (in some cases for
BPSO-ErNo). In almost all cases, the average classification
accuracy achieved by BPSO-2Stage is higher than that of LFS
and the average size of the feature subsets is smaller in many
cases. BPSO-Er, BPSO-ErNo and BPSO-2Stage outperformed
GSBS in terms of both the classification accuracy and the
number of features in almost all datasets.

VI. CONCLUSIONS AND FUTURE WORK

The goal of this paper was to investigate a fitness function
for a BPSO based feature selection approach to selecting a
smaller number of features and achieving higher classification
accuracy. This goal was successfully achieved by developing
two new fitness functions, which are a linearly changing
weights fitness function and a two-stage fitness function. Both
of them included the optimisation of both classification per-
formance and the number of features selected. The two fitness
functions were examined and compared with a commonly
used fitness function using overall classification performance
as measurement in a BPSO based wrapper feature selection
approach on ten problems of varying difficulty.

The results suggest that BPSO with overall classification
performance as fitness function can improve the classification
performance over the same classifier using all features. In
almost all cases, BPSO with either of the two proposed fitness
functions could achieve higher classification accuracy whilst
using fewer features than BPSO with overall classification
performance as the fitness function. BPSO with the two-stage
fitness function outperforms the linearly changing weights
fitness function in most cases in terms of the classification
performance and the number of features selected.

BPSO with the proposed fitness functions can successfully
reduce the number of features needed and achieve higher
classification performance, but it is unknown whether the
number of features selected could be further reduced without
deteriorating or even increasing the classification performance.
In the future, we will investigate a BPSO based evolution-
ary multi-objective feature selection approach to explore the
Pareto front of non-dominated solutions, which can help users
make a more informed choice of feature subsets. We also
intend to investigate the use of a simple learning algorithm



in the training process in a wrapper approach to obtain a good
feature subset for a complicated learning algorithm, such as
SVM and artificial neural network (ANN).

REFERENCES

[1] I. Guyon and A. Elisseeff, “An introduction to variable
and feature selection,” The Journal of Machine Learning
Research, vol. 3, pp. 1157–1182, 2003.

[2] M. Dash and H. Liu, “Feature selection for classifica-
tion,” Intelligent Data Analysis, vol. 1, no. 4, pp. 131–
156, 1997.

[3] R. Kohavi and G. H. John, “Wrappers for feature subset
selection,” Artificial Intelligence, vol. 97, pp. 273–324,
1997.

[4] A. Whitney, “A direct method of nonparametric measure-
ment selection,” IEEE Transactions on Computers, vol.
C-20, no. 9, pp. 1100–1103, 1971.

[5] T. Marill and D. Green, “On the effectiveness of receptors
in recognition systems,” IEEE Transactions on Informa-
tion Theory, vol. 9, no. 1, pp. 11–17, 1963.

[6] C. S. Yang, L. Y. Chuang, and J. C. Li, “Chaotic maps in
binary particle swarm optimization for feature selection,”
in IEEE Conference on Soft Computing in Industrial
Applications (SMCIA ’08), 2008, pp. 107–112.

[7] A. Unler and A. Murat, “A discrete particle swarm
optimization method for feature selection in binary clas-
sification problems,” European Journal of Operational
Research, vol. 206, no. 3, pp. 528–539, 2010.

[8] C. S. Yang, L. Y. Chuang, C. H. Ke, and C. H. Yang,
“Boolean binary particle swarm optimization for feature
selection,” in IEEE Congress on Evolutionary Computa-
tion (CEC’08), 2008, pp. 2093–2098.

[9] H. Yuan, S. S. Tseng, and W. Gangshan, “A two-phase
feature selection method using both filter and wrapper,”
in IEEE International Conference on Systems, Man, and
Cybernetics (SMC’99), vol. 2, 1999, pp. 132–136.

[10] K. Neshatian and M. Zhang, “Dimensionality reduction
in face detection: A genetic programming approach,” in
24th International Conference Image and Vision Com-
puting New Zealand (IVCNZ’09), 2009, pp. 391–396.

[11] J. Kennedy and W. Spears, “Matching algorithms to
problems: an experimental test of the particle swarm and
some genetic algorithms on the multimodal problem gen-
erator,” in IEEE Congress on Evolutionary Computation
(CEC’98), 1998, pp. 78–83.

[12] J. Kennedy and R. Eberhart, “Particle swarm optimiza-
tion,” in IEEE International Conference on Neural Net-
works, vol. 4, 1995, pp. 1942–1948.

[13] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intel-
ligence, ser. Evolutionary Computation Series. San
Francisco: Morgan Kaufman, 2001.

[14] J. Kennedy and R. Eberhart, “A discrete binary version
of the particle swarm algorithm,” in IEEE International
Conference on Systems, Man, and Cybernetics, 1997.
Computational Cybernetics and Simulation., vol. 5, 1997,
pp. 4104–4108.

[15] H. Almuallim and T. G. Dietterich, “Learning boolean
concepts in the presence of many irrelevant features,”
Artificial Intelligence, vol. 69, pp. 279–305, 1994.

[16] K. Kira and L. A. Rendell, “A practical approach to
feature selection,” Assorted Conferences and Workshops,
pp. 249–256, 1992.

[17] B. Chakraborty, “Feature subset selection by particle
swarm optimization with fuzzy fitness function,” in
3rd International Conference on Intelligent System and
Knowledge Engineering (ISKE’08), vol. 1, 2008, pp.
1038–1042.

[18] X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen, “Fea-
ture selection based on rough sets and particle swarm
optimization,” Pattern Recognition Letters, vol. 28, no. 4,
pp. 459–471, 2007.

[19] L. Y. Chuang, H. W. Chang, C. J. Tu, and C. H. Yang,
“Improved binary pso for feature selection using gene
expression data,” Computational Biology and Chemistry,
vol. 32, no. 29, pp. 29– 38, 2008.

[20] E. Alba, J. Garcia-Nieto, and L. Jourdan, “Gene selec-
tion in cancer classification using pso/svm and ga/svm
hybrid algorithms,” in IEEE Congress on Evolutionary
Computation (CEC’07), 2007, pp. 284–290.

[21] C. L. Huang and J. F. Dun, “A distributed pso-svm hybrid
system with feature selection and parameter optimiza-
tion,” Application on Soft Computing, vol. 8, pp. 1381–
1391, 2008.

[22] Y. Liu, G. Wang, H. Chen, H. Dong, X. Zhu, and
S. Wang, “An improved particle swarm optimization for
feature selection,” Journal of Bionic Engineering, vol. 8,
no. 2, pp. 191–200, 2011.

[23] H. Ming, “A rough set based hybrid method to feature
selection,” in International Symposium on Knowledge
Acquisition and Modeling (KAM ’08), 2008, pp. 585–
588.

[24] A. Frank and A. Asuncion, “UCI machine learning
repository,” 2010.

[25] T. Abeel, Y. V. de Peer, and Y. Saeys, “Java-ml: A
machine learning library,” Journal of Machine Learning
Research, vol. 10, pp. 931–934, 2009.

[26] F. Van Den Bergh, “An analysis of particle swarm
optimizers,” Ph.D. dissertation, Pretoria, South Africa,
2002.

[27] M. Gutlein, E. Frank, M. Hall, and A. Karwath, “Large-
scale attribute selection using wrappers,” in IEEE Sym-
posium on Computational Intelligence and Data Mining
(CIDM ’09), 2009, pp. 332–339.

[28] R. Caruana and D. Freitag, “Greedy attribute selec-
tion,” in International Conference on Machine Learning
(ICML’94), 1994, pp. 28–36.


