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Abstract 

     In this paper, a new fifth-order family of methods free from second derivative 
is obtained. This new iterative family contains the King’s family, which is one of 
the most well-known family of methods for solving nonlinear equations, and some 
other known methods as its particular case. To illustrate the efficiency and 
performance of proposed family, several numerical examples are presented. 
Numerical results illustrate better efficiency and performance of the presented 
methods in comparison with the other compared fifth-order methods. Due to that, 
they can be effectively used for solving nonlinear equations. 

     Keywords: Iterative methods, Simple-root of nonlinear equations, Newton’s 
method. 

1      Introduction 
 
In this paper, we propose an iterative method to find a simple root aof a nonlinear 
equation ( ) 0f x = . i.e., ( ) 0f a = and ( ) 0f a′ ≠ .  
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Nonlinear equations arise in a wide variety of forms in all branches of science, 
engineering, and technology. In recent years, a large number of methods of 
different order have been proposed and analyzed for solving nonlinear equations. 
For example, we refer the readers to [1-8] and the references therein. 
It’s well-known that the Newton’s method is the most widely used (second-order) 
method for solving such equations, giving by 
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Here, our approach is based on fifth-order method defined in [5], as 
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Throughout the rest of this section, ny  is defined by (3).  
This paper is organized as follows: In Section 2, we consider a general iterative 
scheme, analyze it to present a family of fifth-order methods then several known 
special cases of this family are listed. Section 3 is devoted to numerical 
comparisons between the results obtained in this work and some known iterative 
methods. Finally, conclusions are drawn in the last section. 
 

2      Development of Method and Convergence Analysis  
 
In this section to derive a fifth order family of methods, we suggest and analyze 
the following iterative scheme: 
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where ( )H u is a function to be determined such that the iterative method defined 
by (4) has the order of convergence five, and 
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It can be obviously followed that for 
3
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, the iterative scheme (4), 

reduces to the method of Kou and Li (2). 
For the proposed family of methods (4) we have following analysis of 
convergence. 
 
Theorem 1. Let a I∈ be a simple root of a sufficiently differentiable function 

:f I → ℜ on an open interval which contains 0x as a close initial approximation 
to a . If satisfy ( )H u the conditions 
 
 (1) 1, (1) 1, (1) 5 / 2H H H′ ′′= = − =  (6)  
 
then the method defined by (2) and (3) is of order at least five. 
 
Proof. Let a  be a simple zero of f . Consider the iteration function F defined by 
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In view of an elementary, tedious evaluation of derivatives of F , we employ the 
symbolic computation of the Maple package to compute the Taylor expansion of 

( )nF x around x a= . We find after simplifying that 
 
 2 3 4 5

1 2 3 4( ) ( ).n n n n n nx F x a K e K e K e O e+ = = + + + +   

 
Where 
 
 ( )2 21 (1) ,K H c= −  

( ) ( ) 2
3 3 22 2 (1) 4 (1) 2 (1) 2 ,K H c H H c′= − + + −  

( ) ( ) ( )3
4 4 2 2 33 3 (1) 4 13 (1) 14 (1) 2 (1) 14 (1) 7 (1) 7 ,K H c H H H c H H c c′ ′′ ′= − + − − − + + −  

  

 
It can be easily verified that 2 3,K K and 4K can be vanished, when 

 
 (1) 1, (1) 1, (1) 5 / 2H H H′ ′′= = − =    
 
This completes the proof. 
From Theorem 1, we can see that the order of Newton's method can be improved 
three units with additional evaluations of the one function and one derivative. So 
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the order of convergence and computational efficiency of the method are greatly 
improved. 
Iterative scheme (4) with some special choices for the function of ( )H u  leads to 
the some known fifth-order methods, as follows: 
Case1: For the function ,H  defined by 
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we obtain the fifth-order scheme (2). 
Case2: For the function H giving by  
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in (4), a fifth-order method is obtained which has been introduced Fang et al. [6] . 
Case3: For the function H giving by  
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respectively, which all have been introduced by Fang et al. in [7]. 
It is worthy mentioned that the functions defined by in [8] as 
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do not satisfy the conditions (6). So, against what claimed in [8] the methods 
results with them aren’t the methods of order five. This fact has been also 
mentioned in [7]. 
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To obtain a general family, let’s consider the function H , as  
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It can easily be shown that ( )H u  satisfies the conditions of Theorem 1, when 
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where , ,D E F are the real parameters that can be freely chosen.  
It can easily be verified that (10) and (11) covers all the functions defined in (7)-
(9). 
If we take 1, 0and 0D E F= = = in (10) and (11), we obtain the following fifth-
order method 
 
 2

1 2

( ) ( ) ( ) ( )13 7 5
.

( ) 4 2 ( ) 4 ( ) ( )
n n n n

n n
n n n n

f x f y f y f y
x x

f x f x f x f x+

′ ′ 
= − − − + ′ ′ ′ ′ 

 
(12)  

 
If we take 0, 0and 1D E F= = = in (10) and (11), we obtain the following fifth-
order method 
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Per iteration in the methods defined by (4) requires two function and two first 
derivative evaluations. If we consider the definition of efficiency index [11] as 
r p , where p  is the order of the method and r  is the number of functional 

evaluations per iteration required by the method, we have that the iteration 
formula defined by (10) and (11) has the efficiency index equal to 4 5 1.5874≈ , 
which is better than the one of Newton’s method 2 1.4142≈ . 
 

3      Numerical examples  
 
In this section, some numerical test of some various root-finding methods as well 
as our new methods and Newton's method are presented. Compared methods were 
Newton's method (1) (NM), Chun’s method (2)(CM), the Grau et al. method 
(GM) [9] defined by 
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the method of Kou et al. (KM)[10] defined by  
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with the new presented methods by Eqs.(12)(BGM1) and (13)(BGM2), 
introduced in this contribution. All computations were done using MAPLE with 
128 digit floating point arithmetics (Digits =128). Displayed in Table 1 are the 
number of iterations and functional evaluations required such that 15( ) 10nf x −< . 

The following functions (which are taken from [5-7]), are used for the comparison 

and we display the approximate zeros *x found, up to the 28th decimal place. 
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The results presented in Table 1 show that for the functions we tested, the new 
methods introduced in this contribution need reduce the number of iterations and 
needed functional evaluations show that this family can be competitive to the 
known fifth-order methods and Newton's method and converge more quickly than 
the other compared methods. 
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Table 1: Comparison of Number of iterations of various fifth-order convergent 
iterative methods 

 NM  CM  GM  KM  BGM1 BGM2   

1 0, 0.3f x = −  55 11 27 24 8 7 

1 0, 1f x =  6 3 4 4 3 3 

2 0, 0f x =  5 3 3 3 2 2 

1, 02 =xf  
5 3 4 4 3 3 

3 0, 1f x = −  6 4 4 4 3 4 

3 0, 2f x = −  9 5 5 Div 6 5  

4 0, 2f x =  6 4 4 4 4 4  

4 0, 5f x = −  8 4 6 4 5 5  

5 0, 3f x =  7 4 4 4 3 3  

5 0, 4f x =  8 4 5 4 4 4  

6 0, 2f x =  9 5 5 Div 5 5  

6 0, 3.5f x =  11 5 6 Div 6 6  

7 0, 1f x =  7 4 4 5 6 4  

7 0, 2f x =  6 4 2 4 3 3  
 

4      Conclusion 
 
In this paper, we have constructed a new general fifth-order iterative family of 
methods for solving nonlinear equations. This proposed iterative family contains 
several well-known methods as special case. It is noteworthy that the presented 
methods show better performance and faster convergence than the King’s method 
and some recent its variants. A further research to find the optimal values of 
function to achieve faster convergence is required. 
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