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Abstract
Against the background of an adaptation of Cognitive Load Theory to learner-controlled settings we investigated the impact of learner
characteristics on information utilization strategies, cognitive load, and learning outcomes in a hypermedia environment. Based on the data of 79
students, five clusters of students were identified according to their learner characteristics by means of a cluster analysis. Further analyses
showed that learners with more favorable characteristics (i.e., higher prior knowledge, more complex epistemological beliefs, more positive
attitudes towards mathematics, better cognitive and metacognitive strategy use) tended to show a more adaptive example utilization behavior,
reported less cognitive load, and solved more problems correctly than learners with less favorable characteristics.
� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Hypermedia learning comprises a high level of interactivity,
where students may decide on the order of information, the to-
be-retrieved content and on its display format. This learner
control is seen as the major advantage for learning, because it
supposedly facilitates the active construction of flexible
knowledge structures (Jacobson & Spiro, 1995). However,
respective literature reviews fail to show that hypermedia
supports interactive knowledge construction (Dillon & Gab-
bard, 1998). To make hypermedia learning more effective,
Dillon and Jobst (2005) recently proposed applying instruc-
tional-design theories like the Cognitive Theory of Multimedia
Learning (CTML; Mayer, 2005) or the Cognitive Load Theory
(CLT; Sweller, van Merriënboer, & Paas, 1998) to hypermedia.
Both theories argue that humans’ information processing
capacities are limited with regard to the amount of information
that they can handle in parallel in working memory. Thus,
* Corresponding author.

E-mail address: k.scheiter@iwm-kmrc.de (K. Scheiter).

0959-4752/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.learninstruc.2009.02.004
instructional design should reduce processing demands irrel-
evant to learning and thereby free cognitive resources for
sense-making knowledge-construction activities. At this
general level, this guideline is applicable to every instructional
setting irrespective of whether it is controlled by the system or
by the learner. However, from a theoretical perspective both
theories are more in accordance with system-controlled
instruction, where learners are presented with predefined
contents displayed in a specific representational format to-be-
studied in a fixed order and which constrains the range of
observable and cognitive learner activities. Thus, a one-to-one
mapping of instructional design and cognitive activities is
assumed in that ‘‘a given instructional design will elicit the
same specific learner activities for all learners’’ (Van Gog,
2006, p. 22).

In learner-controlled settings, however, students may
assemble different information diets. For instance, one learner
may decide to study only animations, whereas another reads
text only. CTML and CLT assume that these representational
formats are associated with different cognitive activities and
patterns of cognitive load, which in turn determine learning
outcomes. Thus, although the two learners have studied within
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the same learning environment, they will not necessarily
experience the same pattern of cognitive load or show similar
learning outcomes due to the fact that they have decided on
different information diets eliciting different cognitive activi-
ties (one-to-many mapping). Accordingly, Gerjets and
colleagues (Gerjets & Hesse, 2004; Gerjets & Scheiter, 2003)
have proposed that in learner-controlled instructional settings
the relation between instructional design and cognitive load
becomes less deterministic, as it is moderated by the way
learners make use of the information offered to them during
interactive knowledge construction.

A major question in hypermedia research has been from
where the aforementioned variability in information utilization
strategies emerges. There is converging evidence that learner
characteristics moderate the way in which the students process
hypermedia environments and, thus, how they succeed in
interactive knowledge construction. These complex relation-
ships among learner characteristics, information utilization
strategies, cognitive load, and learning outcomes are captured
in the augmented CLT model suggested by Gerjets and
colleagues (Gerjets & Hesse, 2004; Gerjets & Scheiter, 2003),
which is thus used as a framework for the present study.
1.1. The role of learner characteristics
Learner characteristics have been shown to moderate
instructional effectiveness in a wide range of instructional
settings since the discovery of so-called aptitudeetreatment-
interactions (Cronbach & Snow, 1977). Nevertheless, they
have their strongest impact in learner-controlled settings as
was demonstrated in research by Young (1996) or by
Schwartz, Anderson, Hong, Howard, and McGee (2004), for
instance. The present study focused on investigating multiple
learner characteristics in parallel, whose impact has either
been substantiated theoretically or empirically in prior
research. A multivariate approach was chosen to assess the
degree of interplay that may exist among multiple
characteristics.

There is consistent evidence that students with high levels
of prior knowledge apply deeper processing strategies, require
less instructional support, and produce better learning
outcomes when learning with hypermedia (for a review see
Chen, Fan, & Macredie, 2006). Prior knowledge guides
information selection, whereby students with high prior
knowledge are better able to identify their knowledge needs
and make their selections accordingly (Gall & Hannafin, 1994;
Lawless & Kulikowich, 1996; MacGregor, 1999). While the
impact of prior knowledge on hypermedia effectiveness is well
established, it is interesting to investigate whether other
learner characteristics may account for additional variability.
Possible candidates comprise students’ self-regulatory skills,
preferences for amounts of instruction, and epistemological
beliefs.

Hypermedia has been shown to be more effective for
learners with good self-regulatory skills, which include
cognitive and metacognitive, motivational and emotional, as
well as behavioral processes that result in active learning
(Azevedo, 2005). Metacognitive skills refer to learners’ abil-
ities to set goals, determine the information that is suited to
achieve those goals, and to monitor progress towards these
goals; they can be seen as a necessary prerequisite to exercise
control over instruction. Motivational and emotional processes
are often linked to students’ attitudes towards a learning
domain in that students with a positive attitude are more
motivated, value the topic, feel enjoyment when dealing with
it, and are sufficiently confident regarding their skills in the
domain (Tapia & Marsh, 2004). As a consequence for
learning, students with more positive attitudes show a higher
engagement in the task and invest more resources into learning
(e. g., time; Lawless & Kulikowich, 1996). The latter may be
moreover affected by students’ preferences for amount of
instruction, whereby students with a preference for receiving
larger amounts of instruction are more successful in learner-
controlled settings (Hannafin & Sullivan, 1996).

Finally, students with more complex epistemological beliefs
have been shown to perform better in hypermedia learning
than those with more simplistic beliefs (Bendixen & Hartley,
2003; Jacobson, Maouri, Mishra, & Kolar, 1995; Jacobson &
Spiro, 1995). This multidimensional construct refers to the
conceptions that learners have with regard to knowledge and
its acquisition. For instance, students with na€ıve epistemo-
logical beliefs tend to believe that absolute knowledge exists
and will eventually be known, knowledge acquisition occurs
as an orderly process, or that learning occurs either in a quick
or all-or-none fashion (cf. Schraw, 2001). To explain how
epistemological beliefs affect hypermedia learning it is
assumed that students with more complex beliefs are more
willing to invest mental effort in comparing and contrasting
different sources of information, reflecting on the validity of
information, and in finding as much information as possible to
satisfy their learning goals (Bendixen & Hartley, 2003;
Jacobson & Spiro, 1995). A heated discussion in the literature
on epistemological beliefs focuses on their dual nature with
regard to whether they are domain-specific or not. More recent
research suggests that both e domain-general and domain-
specific beliefs e exist in parallel and influence each other. A
recent study by Schommer-Aikins, Duell, and Hutter (2005)
showed that both types of beliefs were highly correlated to
each other and that both were able to predict middle school
students’ academic performance in mathematics. Buehl and
Alexander (2005) conclude that domain-specific epistemo-
logical beliefs may emerge in more precise situations;
however, they are developed from more general beliefs and are
thus highly connected to them. Thus, while being aware of this
ongoing discussion, in the present study it was decided to
assess epistemological beliefs as a domain-general construct,
thereby also owing to the fact that it was aimed at being able
to compare results to prior studies, where epistemological
beliefs had been assessed at a general level (Bendixen &
Hartley, 2003; Jacobson et al., 1995).

To conclude, the aforementioned learner characteristics are
very likely to affect interactive knowledge construction in
hypermedia environments. They do so by influencing a learn-
er’s information utilization strategies (e.g., comparing
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information, processing information more extensively etc.) in
that learners with a higher level of prior knowledge, good self-
regulatory skills, high preferences for amount of instruction, as
well as more sophisticated epistemological beliefs are
assumed to deploy more effective strategies than learners with
different characteristics. Hence, strategies are assumed to
mediate the relationship between learner characteristics and
learning outcomes (Hartley, 2001; Scheiter & Gerjets, 2007).
To predict how effective information utilization strategies
might look like, these will be conceptualized against the
background of a specific instructional approach in the
following (i.e., example-based learning).
1.2. Information utilization strategies and instructional
approaches
Several studies have shown that learners can be distinguished
according to their navigational profiles and that different navi-
gational profiles are associated with differences in learning
outcomes (Barab, Bowdish, & Lawless, 1997; Lawless &
Kulikowich, 1996; MacGregor, 1999). The emerging picture is
that students who are using an either passive or an active-but-
superficial approach to navigating hypermedia environments
score low on learning outcome measures, whereas an active-
and-thorough approach results in favorable learning outcomes.
The apparent superficiality of this statement is caused by the
fact that there is no common way of describing and interpreting
information utilization across different studies; rather, what
constitutes a thorough approach solely depends on the hyper-
media environment investigated. As a solution to this problem,
several authors (Jacobson & Spiro, 1995; Scheiter & Gerjets,
2007) have proposed to link information utilization strategies to
the specific instructional approach implemented in the hyper-
media environment and to interpret strategies in reference to
this instructional approach. Following this suggestion, in the
present study, hypermedia research was combined with cogni-
tive task analyses to determine successful processing strategies
and with insights on the acquisition of problem schemas from
worked-out examples, as this was the learning approach that
was implemented in the hypermedia environment.

Example-based learning can be characterized by a set of
cognitive processes that enable the acquisition of problem-
solving skills, where different cognitive processes require
different information as input. From a cognitive load
perspective (Sweller et al., 1998), effective example utilization
strategies consist in using examples that facilitate cognitive
processes relevant for the acquisition of problem schemas by
improving the ratio of intrinsic, extraneous, and germane
cognitive load. In the following, four groups of example
utilization strategies will be introduced that comply with this
general cognitive load argumentation. Prior to the present
study, several system-controlled studies were conducted in the
domain of probability theory by the authors, where the
example formats described in the subsequent sections were
compared to each other to determine their effectiveness. In the
present study, all these example formats were made available
in a hypermedia environment.
At this point, it is important to not to confuse two types of
meaning that may be associated with the term ‘‘strategy’’.
Strategies of information/example utilization refer to the
observable selection behavior in the hypermedia environment
that can be made accessible through logfiles (i.e., how often is
a specific example format retrieved and for how long is it
studied by a learner?). These strategies are assumed to be
moderated by learner characteristics (e.g., a learner with
a high level of prior knowledge selecting more examples of
type A than of type B). At the same time, each of the example
formats offered in the hypermedia environment enables and
facilitates specific cognitive processes like self-explanations or
comparisons, that is, strategies of learning from examples. The
latter strategies are linked to the design of the examples.
Hence, it is assumed that a learner deploys a specific example
utilization strategy by selecting an example format for further
processing. By selecting this example, s/he can now apply
strategies of learning from examples that are more likely to
occur with this example format and that would be less likely if
a different example format had been chosen initially. This
distinction between two levels of strategy application is very
alike to that of Kennedy (2004), who distinguishes between
functional interactivity at a behavioral level and cognitive
interactivity in his model on interactivity in multimedia
research. Both types of interactivity are assumed to influence
each other in that functional interactivity enables cognitive
interactivity, whereby the latter in turn influences the prior
(e.g., the wish to compare examples requires the selection of
another example).

To conclude, an effective example utilization strategy is
characterized by the fact that examples are chosen that facil-
itate the application of helpful strategies of learning from
examples. The latter strategies are discussed in the following.

1.2.1. Example formats with low intrinsic cognitive load
In a number of studies we analyzed the effectiveness of

modular and molar examples for teaching students how to
calculate complex-event probabilities (Gerjets, Scheiter, &
Catrambone, 2006). Molar examples (see Fig. 1a) have
a recipe-like structure and refer to complex entities like
problem categories, clusters of structural task features, and
category-specific solution procedures. In modular examples,
solution procedures are broken down into smaller meaningful
solution steps. They require learners to keep only a limited
number of elements active in working memory, thereby
abating intrinsic cognitive load. Modular examples (see
Fig. 1b) reduce learning time and self-reported cognitive load,
as well as improve problem-solving performance for isomor-
phic and novel problems (Gerjets et al., 2006). Accordingly, an
effective example utilization strategy consists in preferring
modular to molar examples.

1.2.2. Examples that compensate for lacking self-
explanations

Effective examples will facilitate higher-level cognitive
processes (e.g., elaborations) and thereby increase germane
cognitive load. Elaborations occur when learners draw



Fig. 1. (a) Molar example formats. (b) Modular example formats.
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inferences concerning the structure of example solutions, the
rationale behind solution procedures, and the goals that are
accomplished by individual solution steps (i.e., self-explana-
tions; Renkl, 2002). However, students often overestimate
their understanding of examples and thus refrain from further
elaborating them. Moreover, even if they have noticed gaps in
their knowledge, they may not be able to generate self-
explanations to overcome those gaps. These problems may be
solved by providing additional instructional explanations,
particularly for learners with low prior knowledge (Renkl,
2002). Thus, an effective example utilization strategy for
novices would be to retrieve examples that contain additional
instructional explanations. However, as explanations some-
times do not affect learning or are even harmful because they
hinder learners in generating explanations themselves (Gerjets
et al., 2006), learners should retrieve them only if they cannot
produce explanations themselves. Similarly, Renkl (2002)
suggests to provide as few instructional explanations as
necessary and to stimulate as many self-explanations as
possible.

1.2.3. Examples that stimulate self-explanations
Self-explanations can be fostered by incomplete examples

whose gaps need to be filled in (Paas, 1992) or by prompting
learners to generate self-explanations (Atkinson, Renkl, &
Merrill, 2003). Therefore, selecting incomplete examples or
examples with self-explanation prompts may be an effective
strategy for increasing germane cognitive load. However,
when combining self-explanation prompts with modular
examples it was found that self-explanation prompts hindered
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learning (Gerjets et al., 2006). A possible explanation for these
results is that the learners had already sufficiently understood
the principles when studying worked examples without
prompts, before being asked to generate explanations for
a second problem. Thus, they were prompted to elaborate
information that was redundant to them (cf. expertise reversal
effect; Kalyuga, Ayres, Chandler, & Sweller, 2003). Accord-
ingly, for knowledgeable learners an ineffective example
utilization strategy might consist in retrieving examples that
contain self-explanation prompts, because it increases extra-
neous cognitive load.

1.2.4. Example combinations that support comparisons
Beyond self-explanations, learners should engage in

example comparisons as a means of increasing germane
cognitive load. Comparing examples that are embedded in
different cover stories, but belong to the same problem cate-
gory may help learners to discover that these varying features
of the cover story are irrelevant to the solution of the problem,
because if they were not, different solution procedures would
be required for each problem. On the other hand, common-
alities of examples within a problem category may indicate
structural features. The same conclusion can be drawn from
comparing examples with similar cover stories across problem
categories, where despite these similar surface features
different solution procedures are required, thereby hinting to
the irrelevance of these features and highlighting structural
differences among the examples. Both types of comparisons
are helpful to identify the relevant structural features of
problem categories (Cummins, 1992; Quilici & Mayer, 1996;
Scheiter & Gerjets, 2005). Thus, examples should be selected
that facilitate these comparisons, either because they vary
cover stories within problem categories or because they keep
the cover story constant across categories.
1.3. The present study e hypotheses
Students were first distinguished according to their learner
characteristics by means of a cluster analysis. It was expected
that there would be distinct clusters, whose profiles are not
determined only by differences in prior knowledge, but also by
differences in self-regulation abilities, preferences for amount
of instruction, and epistemological beliefs (Hypothesis 1).
Second, it was analyzed how these profiles of learner char-
acteristics would affect strategies of using different example
formats in a hypermedia environment, the experienced
cognitive load, and problem-solving performance. In line with
the prior research (Azevedo, 2005; Bendixen & Hartley, 2003;
Chen et al., 2006) it was assumed (Hypothesis 2) that learners
with a more favorable pattern of learner characteristics (i.e.,
a higher level of prior knowledge, better self-regulatory skills,
a preference for receiving large amounts of instruction, and
more complex epistemological beliefs) would show more
effective example utilization strategies (i.e., select modular
examples more frequently, choose elaborated and incomplete
examples only if necessary, and select examples to conduct
helpful comparisons within and across problem categories);
also they would experience less cognitive load during learning
(Hypothesis 3), and show better problem-solving performance
(Hypothesis 4).

2. Method
2.1. Participants
Participants were 79 students (34 male, 45 female) of the
University of Tuebingen, Germany, were paid to participate in
the study (average age: 25.05 years, SD¼ 3.00). Of them 22.8
percent were freshmen, 74.7 percent were sophomores, and
2.5 percent were senior students. The largest groups came
from the Social Sciences (27.8%), Law and Business (24.1%),
Teacher Education (22.8%), and the Natural Sciences (15.2%).
The groups determined in the cluster analysis reported below
(see Results) did not differ with regard to the distribution of
any of these measures.
2.2. Materials e procedure
The hypermedia environment on probability theory con-
sisted of a technical instruction, an introduction to the domain,
an example-based learning phase, and a subsequent test phase.
For the learning phase, learners were told that they had to
acquire knowledge on four different problem categories,
where each category was explained by two examples. To
access an example, learners first had to select one of the
problem statements from the left navigation bar (Fig. 2). For
the problem statements two different types of cover stories
were used: The urn examples always dealt with selecting
marbles from an urn and thus had the same cover story across
problem categories. The all-day examples were related to real-
life situations and had varying cover stories across categories
(see Appendix A for all-day examples).

Once a learner had selected one of the eight problem
statements, it was displayed on the format-selection page
together with eight hyperlinks that allowed retrieving different
formats for the presentation of the solution procedure. These
formats varied with regard to the solution approach (molar vs.
modular examples), the degree of elaboration (highly-elabo-
rated examples with detailed justifications for each solution
step, medium-elaborated examples without further justifica-
tions, condensed examples with only mathematical expres-
sions), and the availability of self-explanation prompts.
Examples with self-explanation prompts were first presented
in the medium-elaborated version. Learners were then
prompted to type in the missing elaborations and to subse-
quently compare their elaborations to the highly-elaborated
explanations that were presented to them. The latter explana-
tions were then added to the examples’ description. This cycle
had to be repeated for each solution step and could not be
terminated before the worked-out example was highly-
elaborated.

The different degrees of elaboration and the self-explana-
tion prompts were available for molar as well as for modular
examples (see rows of Fig. 2). According to the provided



Fig. 2. Example-selection page (molar example formats were labeled ‘formula-based approach’ and modular example formats were labeled ‘individual event

probability approach’ in the hypermedia environment).
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options learners could choose among 64 formats of presenta-
tion (i.e., eight problem statements� eight solution formats).
The differences among these options were explained to
learners on entering the learning phase. Moreover, a page with
descriptions of the different formats was accessible via
a hyperlink displayed on the format-selection page; however,
this page was retrieved by only 11.4% of all learners. Students
could start working on the test problems whenever they
wanted by clicking a ‘‘Test’’-button. Before solving the
problems, learners had to give an estimate of their cognitive
load and related variables.
2.3. Measures

2.3.1. Domain-specific prior knowledge
Eleven multiple-choice questions assessed students’

domain-specific prior knowledge on important concepts in
probability theory, whereby for each correct answer students
were assigned one credit. A sample question was ‘‘What is
meant by ‘possible outcomes’ in probability theory?’’ Cron-
bach’s a was .57 for this test.

All the other learner characteristics were assessed by
translated and slightly modified versions of preexisting ques-
tionnaires. The responses to the questionnaires’ items were
based on five-point Likert-type response scales, whereby
higher values indicated a stronger presence of the registered
trait.

2.3.2. Use of cognitive and metacognitive strategies
The Domain-Specific Cognitive and Metacognitive Strate-

gies questionnaire (Wolters, 2004) consisted of seven items to
estimate how inclined students are to apply cognitive strate-
gies during studying mathematical contents (e.g., ‘‘I generate
own examples that help to understand the main concepts in
mathematics’’; Cronbach’s a¼ .68) and eight items to assess
use of metacognitive strategies (e.g., ‘‘Before trying to solve
a problem in mathematics, I think about the best way of
approaching it’’; Cronbach’s a¼ .69).

2.3.3. Epistemological beliefs
Students’ epistemological beliefs were registered with an

instrument by Jacobson and Jehng (1999). Three scales
assessed certainty of knowledge (nine items; e.g., ‘‘If scientists
try hard enough, they can find an answer to almost every
problem’’; Cronbach’s a¼ .63), knowledge acquisition as an
orderly process (seven items; e.g., ‘‘If a problem has more than
one solution, it is usually easy to find the best one’’; Cron-
bach’s a¼ .18), and quick learning (eight items; e.g., ‘‘I either
understand a new topic on the first try or never’’; Cronbach’s
a¼ .58).

2.3.4. Attitudes towards mathematics
Twenty items from the Attitudes towards Mathematics

Inventory by Tapia and Marsh (2004) were used to assess
students’ self-confidence (5 items; e.g., ‘‘It makes me nervous
to even think about having to do a mathematics problem’’;
Cronbach’s a¼ .94), value (four items; e.g., ‘‘Mathematics is
a very worthwhile and necessary topic’’; Cronbach’s a¼ .73),
enjoyment (five items; e.g., ‘‘I have usually enjoyed studying
mathematics in school’’; Cronbach’s a¼ .83), and motivation
(six items; e.g., ‘‘The challenge of mathematics appeals to
me’’; Cronbach’s a¼ .84).
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2.3.5. Preferences for amount of instruction
Students’ preferences for amount of instruction were

assessed by a seven-item scale by Hannafin and Sullivan
(1996). The questionnaire asked learners to indicate their
agreement towards four domain-specific statements (e.g., ‘‘If I
learn something new in mathematics, I want to review the
content several times’’). Moreover, students had to answer
three domain-general questions (e.g., ‘‘If you learn something
new, how much practice you want?’’). The responses to the
seven items were aggregated into a single score, where higher
values indicated a stronger preference for receiving large
amounts of instruction (Cronbach’s a¼ .72).
2.3.6. Metacognitive activity
Contrary to the aforementioned measures, metacognitive

activity was assessed after interacting with the hypermedia
environment, as it was supposed to measure students’ self-
reported metacognitive behavior in the concrete situation. The
Metacognitive Activity questionnaire (Schmidt & Ford, 2003)
consisted of 15 statements, where learners had to indicate how
often they showed metacognitive activities during learning
(e.g., ‘‘During this training program, I tried to change the way
I learned in order to fit the demands of the situation or topic’’;
Cronbach’s a¼ .83).
2.3.7. Example utilization strategies
Students’ example utilization strategies were assessed

based on the frequency of retrieving urn or all-day example
statements, of selecting either modular or molar examples, of
retrieving highly-elaborated, medium-elaborated, or
condensed examples, and of choosing examples with self-
explanation prompts. As time data, we assessed the overall
time spent on processing examples without self-explanation
prompts. Moreover, we measured the time spent on the
format-selection page as a potential indicator for meta-
cognitive awareness.
2.3.8. Learning outcomes
Learning outcomes comprised self-reported cognitive load

and problem-solving performance for the 11 test problems.

2.3.8.1. Cognitive load. Cognitive load was assessed by
means of three items, which referred to (a) task demands (how
much mental and physical activity was required to accomplish
the learning task, e.g., thinking, deciding, calculating,
remembering, looking, searching etc.), (b) effort (how hard the
participant had to work to understand the contents of the
learning environment), and (c) navigational demands (how
much effort the participant had to invest to navigate the
learning environment). The last item can be considered to
assess extraneous load in hypermedia learning. The mapping
of the first two items onto intrinsic and germane cognitive load
is less evident, as learners usually cannot distinguish between
demands inherent to the task (as suggested in the first item)
and demands caused by additional elaboration activities
(as suggested in the second item) based on introspection.

Two additional items assessed feelings of success and
experienced stress during learning.

All items had to be rated on a response scale from 0 (very
low) to 10 (very high).

2.3.8.2. Problem-Solving Performance test. Performance was
assessed for each of the 11 test problems, with one point
assigned for each correct answer. The five isomorphic test
problems differed from the instructional examples only with
regard to their surface features. The six novel test problems
were constructed in a way that two complex-event probabili-
ties had to be considered, the outcomes of which had to be
multiplied in order to calculate the required probability.
A sample novel test problem was:

‘‘At a soccer stadium, there are two dressing rooms for the
two opposing teams. The 11 players from Oxford wear
T-shirts with odd numbers from 1 to 21 and the 11 players
from Manchester have even numbers from 2 to 22. Because
the aisle from the dressing rooms is very narrow only one
player at a time can enter the field. The players of the two
teams leave their rooms alternately with a player from
Oxford going first. What is the probability of the first five
players entering the field having the numbers 5, 2, 13, 8,
and 1 (i.e., the first has the number 5, the second has the
number 2, and so on)?’’

Cronbach’s a for the Problem-Solving Performance test
was .79.

3. Results
3.1. Clusters of student characteristics
The z-standardized learner characteristics data were
submitted to a cluster analysis using the common Ward
algorithm based on the squared Euclidian distance as the
recommended proximity measure. To determine the optimal
number of clusters, the step within the agglomerative cluster
analysis was identified, where a further merging of clusters
would have yielded an unacceptable large increase in within-
cluster variance (cf. stepsize criterion; Johnson, 1967). Thus,
the clustering was terminated after five clusters had been
formed (see Table 1). It was decided against stopping the
clustering at an earlier point in the procedure, because this
would have yielded rather small clusters.

To assess the quality of this solution, we first determined the
homogeneity of each of the clusters with respect to the learner
characteristics variables by calculating an F-score, where the
within-cluster variance is divided by the overall variance for
each variable. A good homogeneity is achieved if the within-
group variance is less than the overall variance (i.e., F< 1). As
can be seen in Table 2, this is the case for most of the
comparisons made. Only students in Cluster 5 are rather
heterogeneous with respect to all learner characteristics expect
for their attitudes towards mathematics. In addition, the learner



Table 1

Means (and standard deviations) of learner characteristics as a function of cluster.

Variables and ANOVA results Cluster 1 (n¼ 25) Cluster 2 (n¼ 14) Cluster 3 (n¼ 19) Cluster 4 (n¼ 9) Cluster 5 (n¼ 12) Post-hoc Tukey tests

M (SD) M (SD) M (SD) M (SD) M (SD)

Prior knowledge

(% of correct answers)

F(4, 74)¼ 4.95; p¼ .001,

partial h2¼ .21

85.82 (9.85) 74.03 (21.65) 73.69 (16.01) 80.81 (16.67) 61.36 (20.56) 1 vs. 5**; 4 vs. 5 (*)

Epistemological beliefs

Certainty of knowledge:

F(4, 74)¼ 4.30;

p¼ .003, partial h2¼ .19

3.37 (.63) 2.97 (.58) 3.73 (.47) 3.14 (.27) 3.23 (.63) 2 vs. 3**; 3 vs. 4 (*)

Orderly process:

F(4, 74)¼ 4.09;

p¼ .005, partial h2¼ .18

2.94 (.44) 3.43 (.41) 3.25 (.28) 3.22 (.33) 3.30 (.47) 1 vs. 2**; 1 vs. 3 (*);

1 vs. 5 (*)

Quick learning:

F(4, 74)¼ 7.80;

p< .001, partial h2¼ .30

4.15 (.30) 4.00 (.45) 4.11 (.41) 3.35 (.46) 3.92 (.39) 4 vs. all**

Attitudes towards mathematics

Value: F(4, 74)¼ 27.08;

p< .001, partial h2¼ .59

4.34 (.47) 3.57 (.65) 3.84 (.47) 3.50 (2.58) 2.58 (.47) 1,5 vs. all**

Motivation: F(4, 74)¼ 30.14;

p< .001, partial h2¼ .62

3.71 (.57) 2.63 (.71) 2.25 (.44) 2.92 (.33) 1.87 (.62) 1 vs. all**; 5 vs. 1,2,4**;

3 vs. 4*

Enjoyment: F(4, 74)¼ 38.88;

p< .001, partial h2¼ .68

4.13 (.59) 2.61 (.69) 2.34 (.54) 3.56 (.46) 1.78 (.83) 1,4 vs. all*; 2,3 vs. 5**

Confidence: F(4, 74)¼ 41.49;

p< .001, partial h2¼ .69

4.15 (.48) 2.86 (.91) 1.88 (.60) 3.71 (.32) 1.87 (1.00) 1 vs. 2,3,5*; 4 vs. 2,3,5*;

3 vs. 5**

Cognitive strategies
F(4, 74)¼ 8.74;

p< .001, partial h2¼ .32

3.38 (.61) 3.41 (.44) 2.76 (.35) 3.00 (.57) 2.45 (.71) 3 vs. 1,2**; 5 vs. 1,2**

Metacognitive strategies
F(4, 74)¼ 9.19; p< .001,

partial h2¼ .33

3.49 (.57) 3.48 (.31) 3.07 (.40) 3.03 (.41) 2.56 (.62) 5 vs. 1,2,3*; 1 vs. 3*

Preference for amount
of instruction

F(4, 74)¼ 7.25; p< .001,

partial h2¼ .28

4.07 (.44) 4.67 (.23) 4.17 (.54) 3.75 (.61) 3.83 (.54) 2 vs. all*

Metacognitive activity

F(4, 74)¼ 2.71; p¼ .04,

partial h2¼ .13

3.31 (.69) 3.47 (.46) 3.05 (.64) 2.94 (.43) 2.80 (.66) 2 vs. 5 (*)

**p� .01; *p� .05; (*)p� .10.

1, 2, 3, 4, 5¼Cluster 1, 2, 3, 4, 5, respectively.
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characteristics data were submitted to a discriminant analysis as
suggested by Backhaus, Erichson, Plinke, and Weiber (1993).
Despite the fact that cluster analysis and discriminant analysis
use the data in different ways, the fit between the two methods
was almost perfect. That is, in 77 out of 79 cases (97.5%) the
discriminant analysis assigned students to the clusters that had
been previously determined with the cluster analysis. This high
fit also indicates that one of the major problems associated with
hierarchical cluster algorithms, namely, that they may result in
early undesirable ties that persist throughout the further
procedure, could be avoided.

The average discriminant coefficients emerging from this
analysis were used to determine the contribution of each
learner variable within the context of the other variables for
deciding about each individual’s cluster (see last column of
Table 2). The larger these coefficients are, the more the vari-
able contributes to the separation of clusters. Because this
method determines the relative strength of contribution of
each variable, it also allows detecting redundancies among
variables. Thus, a variable will have a weak discriminating
function, if the same separation can be achieved by another
variable already. The discriminant analysis revealed that
students’ prior knowledge as well as the way they valued
mathematics contributed most strongly to the separation of
clusters. Moreover, none of the variables was irrelevant to the
definition of clusters. On the contrary, there were quite a few
variables that had a strong predictive value for cluster sepa-
ration, showing the variables’ contribution beyond prior
knowledge.

To analyze the different cluster profiles, the five clusters
were compared by means of multiple one-factor ANOVAs
followed by post-hoc Tukey tests according to the different
learner characteristics (see Table 1). The overall differences
across the five clusters were all highly significant.



Table 2

Homogeneity indices and average discriminant coefficients for the learner characteristics variables as a function of cluster.

Variables Cluster 1 (n¼ 25) Cluster 2 (n¼ 14) Cluster 3 (n¼ 19) Cluster 4 (n¼ 9) Cluster 5 (n¼ 12) Discriminant coefficient

Prior knowledge (% correct answers)

.30 1.45 .79 .86 1.31 3.06

Epistemological beliefs
Certainty of knowledge 1.11 .94 .61 .19 1.08 1.30

Orderly process 1.06 .94 .44 .61 1.22 .93

Quick learning 1.45 1.00 .85 1.05 .75 .98

Attitudes towards mathematics

Value .39 .75 .39 .16 .39 3.35

Motivation .42 .66 .25 .13 .49 1.89

Enjoyment 1.30 .41 .25 .18 .59 1.56

Confidence 1.16 .57 .25 .07 .70 2.91

Cognitive strategies

.93 .46 .29 .78 1.24 .76

Metacognitive strategies

1.00 .30 .48 .52 1.15 1.46

Preference for amount of instruction

.30 .17 .97 1.23 1.00 1.40

Metacognitive activity
.67 .51 .98 .46 1.07 .75

The homogeneity is the ratio of within-cluster variance relative to the overall variance.
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Moreover, the difference between the cluster mean and the
overall mean was calculated for each learner characteristic and
divided by the overall standard deviation as a measure of
effect size that provides information on whether the cluster
profile is sufficiently distinct from the sample as a whole
(Table 3). Based on the results of the two analyses, predictions
were made for each of the five clusters concerning the suit-
ability of the learner characteristic profiles for achieving
positive learning outcomes.

Students in Cluster 1 had a high level of prior knowledge,
tended to believe in learning as a slow process, valued and
enjoyed mathematics, were motivated and confident when
dealing with mathematical problems, deployed cognitive as
well as metacognitive strategies frequently, preferred rather
large amounts of instruction, and reported having been meta-
cognitively active during learning. Only their conviction that
learning is a rather orderly process indicated simplistic epis-
temological beliefs. Learners in Cluster 1 form one end of
a continuum reaching from favorable to unfavorable prereq-
uisites for successful learning and are thus expected to show
adaptive strategies of using information, to experience low
levels of cognitive load, and demonstrate a good problem-
solving performance.

Learners in Cluster 5 build the opposite end of this
continuum. Specifically, they had a low level of prior knowl-
edge, disvalued and disliked mathematics, did not enjoy or
feel confidence in dealing with mathematical challenges,
reported a sparse use of cognitive and metacognitive strategies
in general and during the interaction with the environment,
and did not show a clear preference for receiving lots of
instructional materials. Their epistemological beliefs were at
an intermediate level of complexity. Taken together, the profile
of Cluster-5 students suggests that they would show an inad-
equate utilization of information, a high level of cognitive
load, and low problem-solving performance.

The three remaining clusters of learners fall in between
these extreme positions, but for different reasons. Students in
Cluster 4 had a rather high level of prior knowledge, had
simpler epistemological beliefs in terms of the certainty of
knowledge and the speed by which it is acquired, valued and
were motivated towards mathematics at an intermediate level,
but enjoyed it and were highly confident in dealing with the
domain. Their cognitive and metacognitive strategy use,
preferences for amount of instruction, and self-reported met-
acognitive activity were not distinct from others. Learners in
Cluster 4 are expected to perform better than students in
Cluster 5, although probably less good than students in Cluster
1 in terms of their information utilization strategies, cognitive
load, and problem-solving performance.

Students in Clusters 2 and 3 were alike with respect to their
intermediate level of prior knowledge, rather complex epis-
temological beliefs in terms of the orderliness and speed of
knowledge acquisition, and their intermediate value as well as
low motivation and enjoyment assigned to mathematics.
However, some differences in the two profiles suggested that
Cluster 2 would perform better than Cluster 3. Cluster 2
resembled Cluster 1 in that both clusters frequently deployed
cognitive and metacognitive strategies and reported being
metacognitively active. Moreover, Cluster 2 had the strongest
preference for large amounts of instruction of all clusters. It
might thus well be that these students, despite a lack of
positive attitudes towards mathematics, were willing to invest
time and effort into cognitive and metacognitive activities
during learning. Students in Cluster 3, on the other hand, had



Table 3

Standardized differences between cluster means and overall mean for the learner characteristics variables as a function of cluster.

Variables Cluster 1 (n¼ 25) Cluster 2 (n¼ 14) Cluster 3 (n¼ 19) Cluster 4 (n¼ 9) Cluster 5 (n¼ 12)

Prior knowledge (% correct answers)

.52 �.14 �.16 .24 �.84

Epistemological beliefs
Certainty of knowledge .05 �.62 .65 �.33 �.18

Orderly process �.60 .57 .14 �.07 .26

Quick learning .35 .02 .27 �1.42 �.16

Attitudes towards mathematics

Value .83 �.20 .16 .29 �1.52

Motivation 1.03 �.19 �.63 .15 �1.05

Enjoyment 1.06 �.34 �.59 .35 �1.11

Confidence .98 �.10 �.92 .61 �.93

Cognitive strategies

.52 .56 �.45 �.08 �.94

Metacognitive strategies

.52 .50 �.21 �.28 �1.09

Preference for amount of instruction

�.11 .98 .07 �.69 �.55

Metacognitive activity

.23 .48 �.17 �.33 �.55
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negative attitudes towards mathematics that resembled those
of Cluster 5. Although they valued mathematics, they were not
motivated towards it, did not enjoy dealing with mathematics
or feel any confidence in it. Moreover, their self-reported
frequency of using cognitive and metacognitive strategies was
almost as low as that of learners in Cluster 5. For these
reasons, it is expected that the students in Cluster 3 will be
similar to those of Cluster 5 and thus perform less well than
students in Clusters 1, 2, and 4. For the latter three clusters, the
best performance is expected for students in Cluster 1,
whereby no prediction can be made for distinguishing students
in Clusters 2 and 4.
3.2. Example utilization strategies as a function of
cluster
For the comparison of example utilization strategies
(Table 4), we conducted three MANOVAs to account for the
Table 4

Means (and standard deviations) of example utilization strategies as a function of

Strategies Cluster 1 (n¼ 25) Cluster 2 (n¼ 14)

Time (s)

Format-selection page 281.20 (192.75) 440.07 (252.38)

Worked examples 459.76 (348.68) 498.64 (203.51)

Frequency

Urn examples 9.08 (5.20) 10.79 (6.49)

All-day examples 7.48 (3.85) 7.79 (4.77)

Molar examples 8.96 (6.50) 11.79 (5.31)

Modular examples 7.60 (6.61) 6.79 (7.36)

Highly-elaborated examples 5.76 (4.92) 9.86 (9.04)

Medium-elaborated examples 3.44 (6.04) 4.21 (5.08)

Condensed examples 7.36 (7.20) 4.50 (4.99)

Examples with

self-explanation prompts

4.68 (11.95) 3.71 (7.04)
types of decisions a learner had to make with respect (a) to the
type of cover story for the problem statements (urn vs. all-
day), (b) the solution approach (molar vs. modular), and (c)
the degree of elaboration (high vs. medium vs. condensed).
For the time data and the frequency of retrieving examples
with self-explanation prompts separate ANOVAs were
computed. The between-subjects factor in the (M)ANOVAs
was Cluster.

The clusters tended to differ in the time spent on the
format-selection page, F(4, 74)¼ 2.39, p¼ .06, partial
h2¼ .11. In particular, students in Cluster 2 spent longer times
on this page than students in Cluster 3 ( p¼ .06). There were
no differences for the overall time spent on worked examples,
F< 1.

3.2.1. Type of cover story
With respect to the frequency of retrieving urn and all-day

examples, the 5(cluster)� 2(type of cover story) MANOVA
cluster.

Cluster 3 (n¼ 19) Cluster 4 (n¼ 9) Cluster 5 (n¼ 12)

216.37 (238.49) 404.00 (342.05) 270.83 (180.88)

564.84 (475.05) 382.22 (277.96) 471.50 (233.68)

8.16 (6.19) 10.56 (4.53) 6.83 (2.59)

4.42 (2.80) 7.44 (3.71) 5.33 (3.65)

6.58 (6.74) 5.00 (5.38) 7.00 (6.22)

6.00 (4.75) 13.00 (6.25) 5.17 (5.08)

7.58 (6.21) 6.00 (6.52) 6.58 (4.29)

2.95 (3.91) 7.22 (6.82) 2.42 (2.30)

2.05 (4.67) 4.78 (3.73) 3.17 (4.28)

1.47 (1.50) 2.89 (2.47) 3.83 (7.17)



Table 5

Means (and standard deviations) of learning outcomes as a function of cluster.

Learning outcomes Cluster 1 (n¼ 25) Cluster 2 (n¼ 14) Cluster 3 (n¼ 19) Cluster 4 (n¼ 9) Cluster 5 (n¼ 12)

Cognitive load (0e10)

Task demands 4.28 (2.06) 5.50 (2.35) 6.00 (2.60) 4.67 (2.17) 7.00 (1.90)

Effort 2.52 (1.62) 4.04 (1.91) 4.63 (2.59) 2.72 (1.73) 6.08 (2.37)

Navigational demands 1.14 (1.45) 1.46 (1.70) 3.08 (2.33) .61 (0.49) 2.33 (2.26)

Feelings of success 7.28 (1.61) 7.68 (1.07) 6.42 (1.48) 6.06 (2.59) 4.83 (2.07)

Stress 1.76 (1.82) 3.57 (2.45) 4.76 (2.64) 2.44 (2.57) 5.46 (2.71)

Performance

(% correct answers)

Isomorphic problems 61.60 (27.03) 60.00 (28.28) 29.47 (30.09) 75.56 (16.67) 38.33 (34.60)

Transfer problems 42.67 (32.66) 21.43 (28.06) 10.53 (19.41) 44.44 (40.82) 13.89 (30.01)
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revealed a main effect of cover story, Pillai’s trace¼ .18,
F(1, 74)¼ 16.11, p< .001, partial h2¼ .18. Students preferred
studying urn examples (M¼ 8.99, SD¼ 5.38) to all-day
examples (M¼ 6.49, SD¼ 3.93). There was no interaction of
cluster with cover story, F< 1. In the univariate analyses the
five clusters did not differ in the frequency of using urn
examples, F(4, 74)¼ 1.19, p> .30, partial h2¼ .06, but in the
frequency of using all-day examples, F(4, 74)¼ 2.71, p¼ .04,
partial h2¼ .13.

3.2.2. Solution approach
The 5(cluster)� 2(solution approach) MANOVA showed

that there was no overall preference for selecting either molar
or modular examples, Pillai’s trace< .01, F< 1. However,
there was an interaction between the solution approach and
cluster, Pillai’s trace¼ .12, F(4, 74)¼ 2.54, p¼ .047, partial
h2¼ .12, demonstrating that molar examples tended to be
chosen more often than modular examples by students in
Cluster 2 ( p¼ .06), whereas learners in Cluster 4 had a clear
preference for modular examples ( p¼ .02). The other clusters
showed a balanced retrieval of both example formats. The
univariate analyses revealed no differences across the five
clusters for the molar approach, F(4, 74)¼ 2.29, p¼ .07, but
there was a significant effect of cluster in the modular
approach, F(4, 74)¼ 2.59, p¼ .04, partial h2¼ .12. The post-
hoc comparisons, however, showed only that students in
Cluster 4 tended to retrieve modular examples more frequently
than those in Cluster 3 ( p¼ .06) and Cluster 5 ( p¼ .05).

3.2.3. Degree of elaboration
The 5(cluster)� 3(degrees of elaboration) MANOVA

showed that there was a significant effect of the degree of
elaboration, Pillai’s trace¼ .11, F(2, 73)¼ 4.51, p¼ .02,
partial h2¼ .11. There were overall differences in the
frequency of retrieving highly-elaborated, medium-elaborated,
and condensed examples, which were caused by the fact that
the students preferred highly-elaborated (M¼ 7.08,
SD¼ 6.25) to medium-elaborated examples (M¼ 3.73,
SD¼ 5.27, p¼ .005), and to condensed examples (M¼ 4.65,
SD¼ 5.79, p¼ .02). There was no interaction between the
degree of elaboration and clusters, F(8, 148)¼ 1.48, p> .10.
The univariate analyses showed no differences between clus-
ters for retrieving either highly-elaborated examples,
F(4, 74)¼ 1.09, p> .30, or medium-elaborated examples,
F(4, 74)¼ 1.35, p> .20. However, cluster differences were
found for the frequency of using condensed examples,
F(4, 74)¼ 2.75, p¼ .03, partial h2¼ .13, which were retrieved
more often by students in Cluster 1 than in Cluster 3 ( p¼ .02).

An ANOVA with cluster as independent variable and
retrieving examples with self-explanation prompts as depen-
dent variable revealed no main effect of cluster, F< 1.
3.3. Learning outcomes
The final analyses assessed whether the differences in
clusters would affect learning outcomes during learning
(see Table 5).
3.3.1. Cognitive load
The ANOVAs with cluster as independent variable and each

of the measures of cognitive load, that is, task demands, effort,
navigational demands, feelings of success, and stress experi-
enced during learning showed the following: for task demands,
F(4, 74)¼ 3.67, p¼ .009, partial h2¼ .17; for effort,
F(4, 74)¼ 7.44, p< .001, partial h2¼ .29; for navigational
demands, F(4, 74)¼ 4.53, p¼ .003, partial h2¼ .20; for
feelings of success, F(4, 74)¼ 5.82, p< .001, partial h2¼ .24;
for stress experienced during learning, F(4, 74)¼ 7.20,
p< .001, partial h2¼ .28. The lowest task demands were
reported by students in Cluster 1, which was less than that of
students in Cluster 5 ( p¼ .008). The effort ratings were the
highest in Cluster 5, which was the low prior knowledge
cluster, compared to Cluster 1 ( p< .001), and Cluster 4
( p¼ .004). Moreover, students in Cluster 3 reported higher
effort investments than those in Cluster 1 ( p¼ .01). Similarly,
students in Cluster 3 rated the navigational demands higher
than their counterparts in Cluster 1 ( p¼ .007), and Cluster 4
( p¼ .01). Feelings of success were lowest for students in
Cluster 5, which differed significantly from Cluster 1
( p¼ .001) and Cluster 2 ( p¼ .002). Finally, students in
Cluster 5 experienced a higher level of stress compared to
those of Cluster 1 ( p< .001) and Cluster 4 ( p< .05),
respectively. Similarly, students in Cluster 3 felt more stressed
during learning than those in Cluster 1 ( p¼ .001).
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3.3.2. Performance
The ANOVAs regarding the effects of clusters on perfor-

mance shoed that the five clusters differed significantly in their
performance on isomorphic problems, F(4, 74)¼ 6.23,
p< .001, partial h2¼ .25, and on transfer problems,
F(4, 74)¼ 3.52, p¼ .01, partial h2¼ .16. Both differences
correspond to large effect sizes. Post-hoc comparisons
revealed that the performance differences were in line with
differences in self-reported cognitive load and related vari-
ables as students with lower levels of cognitive load, stronger
feelings of success, and less stress also showed better
performance.

When solving isomorphic problems, students in Cluster 3
achieved the lowest performance, which differed significantly
from performance of students in Cluster 1 ( p¼ .003), Cluster
2 ( p¼ .03), and Cluster 4 ( p¼ .001), but not of students in
Cluster 5 ( p> .90). Moreover, participants in Cluster 5 solved
fewer problems correctly than those in Cluster 4 ( p¼ .03).
None of the other differences were significant. According to
these results, the five clusters can be classified as either being
successful problem solvers (Clusters 1, 2, and 4) or unsuc-
cessful problem solvers (Clusters 3 and 5). With regard to
transfer performance, the lowest performance was again ach-
ieved by Cluster 3, which was significantly less than that of
Cluster 1 ( p¼ .01), but failed to differ significantly from
Cluster 4 ( p¼ .12). None of the other differences were
significant, which was mainly caused by the large within-
group variances. On a descriptive level, students in Clusters 1
and 4 achieved the same high transfer performance, whereas
those in Clusters 3 and 5 both scored low. For transfer
performance, students in Cluster 2 did not keep up with the
performance level of Clusters 1 and 4, although the differences
between the first and the latter two clusters were not
significant.

4. Discussion

The present study investigated the impact of profiles of
learner characteristics on information utilization strategies,
cognitive load during learning, and problem-solving perfor-
mance in an example-based hypermedia environment. In line
with Hypothesis 1 we were able to identify distinct clusters of
learners, who differed according to their learner characteris-
tics. In Hypothesis 2, it had been assumed that learners with
a more favorable pattern of learner characteristics would show
more effective example utilization strategies. Differences
among the clusters were found in line with this assumption,
although the effects of learner characteristics on example
utilization strategies were weaker than had been initially
expected. Finally, learners with more favorable characteristics
experienced less cognitive load (Hypothesis 3) and showed
better problem-solving performance (Hypothesis 4). The
findings with regard to these hypotheses will be discussed in
more detail in the following.

Students in Cluster 1 were more than a quarter of learners,
possessed very promising learner characteristics in terms of
their prior knowledge, epistemological beliefs, self-regulation
abilities, and preferences for amount of instruction. They
showed a balanced processing of the different example
formats except for their preference of condensed examples to
highly-elaborated examples. This is adaptive, as they possess
the prior knowledge necessary to generate explanations for the
solution procedures of the example problems themselves.
Their behavior thus corresponds to the suggestion by Renkl
(2002) to provide instructional explanations only if learners
are not able to generate self-explanations. As expected, these
students experienced only moderate levels of cognitive load
and stress, reported strong feelings of success, and scored high
in terms of problem-solving performance.

Students in Cluster 4 comprised a rather small cluster very
similar to the students in Cluster 1 in terms of their high level
of prior knowledge and confidence when dealing with math-
ematics. However, their other attitudes towards mathematics
were less positive. Nevertheless, these students were still able
to regulate their learning behavior in adaptive ways. Most
importantly, they were the only cluster to clearly prefer
modular examples. This adaptive information selection
together with favorable learner characteristics paid off as
observable in the students’ cognitive load pattern and
problem-solving performance.

Students in Cluster 2, which were almost as successful as
students in Clusters 1 and 4, resembled the very unsuccessful
students in Cluster 3 in terms of prior knowledge, epistemo-
logical beliefs, and a relatively negative attitude towards
mathematics. However, students in Cluster 2 were able to
counteract their dislike of mathematics by a frequent use of
cognitive and metacognitive self-regulation strategies. Their
high level of metacognitive activity during learning was also
reflected in the very long times they spent on selecting an
example format, which may indicate intensive reflections
concerning the usefulness of the different presentation formats
made available through this page. Thus, their data show how
the presence of some positive learner characteristics may
compensate for a lack of others. Moreover, students in Cluster
2 showed the strongest preference compared to students in all
other clusters for receiving large amounts of instruction, which
on a behavioral level was in accordance with their frequent
retrieval of highly-elaborated examples. However, in contrast
to their performance for isomorphic problems, their perfor-
mance deteriorated for transfer problems. This dissociation
may provide first evidence for the relative impact of different
learner characteristics: Motivation and a high level of prior
knowledge might be necessary prerequisites for achieving the
deeper understanding needed for accomplishing transfer tasks,
whereas their lack can be compensated for working on simpler
tasks.

Students in Clusters 3 and 5 resembled each other in
qualitative ways, though quantitatively, Cluster 5 had the least
favorable learner characteristics. Students in both Clusters 3
and 5 reported a higher occurrence of navigational problems,
which might hinder learning as they imposed extraneous load
onto learners (Dias, Gomes, & Correia, 1999). These findings
replicate prior hypermedia research indicating that students
with less favorable learning prerequisites are most prone to
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navigational problems (Lawless & Kulikowich, 1996;
McDonald & Stevenson, 1998). One thing that is important
though is that students in Cluster 5 had a rather realistic
estimate of their learning progress as reflected in their reduced
feelings of success. Students in Cluster 3, on the other hand,
overestimated their progress and, therefore, seemed to suffer
from illusions of understanding (Renkl, 2002). The latter
students might thus be particularly endangered in learner-
controlled settings, as they might not feel the necessity to
adapt their learning behavior to their knowledge gaps.

It is important to note that while prior knowledge proved to
be important for defining the learner clusters, the other learner
characteristics considered in this study evidently had their own
distinct contribution to the findings. In particular, students’
attitudes towards mathematics were very important for defining
clusters. Moreover, it was only Clusters 1 and 5 that differed
significantly in their prior knowledge. Despite the similarities
among Clusters 2, 3, and 4 concerning prior knowledge,
students in Clusters 2 and 4 showed a much better problem-
solving performance than students in Cluster 3, which might be
explained by their differences in terms of either better meta-
cognitive skills of Cluster 2 or more complex epistemological
beliefs and more positive attitudes of Cluster 4. Thus, these
findings provide some support for the notion expressed in the
augmented CLT model by Gerjets and Hesse (2004) that
beyond prior knowledge other learner characteristics need to be
taken into account in learner-controlled instruction. Moreover,
epistemological beliefs and (meta-)cognitive strategy avail-
ability proved to be non-redundant. This contradicts findings by
Bråten and Strømsø (2005), who suggested that e depending on
academic context e epistemological beliefs predict self-
regulation strategies due to the strong interdependency of the
two constructs.

Despite these promising results regarding the impact of
learner characteristics on interactive knowledge construction,
at least two limitations need to be considered: First, the data
for the epistemological beliefs questionnaire appeared to be
inconsistent in some ways. That is, the unsuccessful students
in Cluster 5 were characterized by rather complex epistemo-
logical beliefs, whereas successful students in Cluster 1
na€ıvely believed in learning as an orderly process. It appears
that orderliness for the latter students might rather be an
indication of the confidence they have in their knowledge than
of their beliefs concerning learning and knowledge in general.
Analogously, Bendixen and Hartley (2003) found that the
na€ıve belief that learning occurs quickly was related to better
learning outcomes in their hypermedia environment. Beyond
this lack in validity, the orderly-process scale did not prove to
be a reliable measure (Cronbach’s a¼ .18); all other ques-
tionnaires had at least satisfactory reliabilities. Finally, for
future studies it might be advised to use both, domain-general
and domain-specific measures of epistemological beliefs to
assess their relative contribution to interactive knowledge
acquisition (cf. Schommer-Aikins et al., 2005; Strømsø,
Bråten, & Samuelstuen, 2008).

Second, the relationship between learner characteristics as
measured by paperepencil questionnaires and information
utilization strategies assessed through logfiles was rather
weak. Two reasons may be responsible for this finding: (a)
self-reports on personal characteristics may not be a good
predictor for observable learning behavior. Accordingly,
Winne, Jamieson-Noel, and Muis (2001) have suggested using
unintrusive data like logfiles not only to analyze strategic
behavior, but also to interpret this data as indicators for met-
acognitive abilities. However, then logfile data can no longer
be used as an indicator of information utilization strategies
irrespective of a learner’s specific characteristics. (b) The
information utilization strategies assessed were defined at
a very coarse level. In particular, they did not provide infor-
mation on how students cognitively processed the selected
examples. Therefore, in future studies logfile analyses should
be supplemented by more fine-grained measures that can be
obtained through think-aloud techniques, eyetracking, or
a combination of both (cf. Van Gog, Paas, & van Merriënboer,
2005). Multi-method approaches can be successful in further
analyzing the high variability within clusters of learners (cf.
Davidson-Shivers, Rasmussen, & Bratton-Jeffery, 1997 for
a combination of video recordings, think-aloud protocols, and
structured interviews).

Despite these weak relations between learner characteris-
tics and information utilization strategies, there are two more
interesting findings obtained from this data. First, students
irrespective of their learner characteristics profile preferred urn
examples to all-day examples, although one might have
assumed that the latter would appear more appealing to them.
Moreover, combining urn and all-day examples would have
allowed making effective within-category comparisons of
examples with varying surface features (Cummins, 1992;
Quilici & Mayer, 1996). On the other hand, focusing on urn
examples may have its benefits, because less irrelevant infor-
mation related to an example’s cover story needs to be pro-
cessed and students can rely on the examples’ repetitive
structure. Thereby, selecting urn examples facilitates the
comparison of examples across categories, because only the
structural features vary across these examples. Across-cate-
gory comparisons have been shown to be less cognitively
demanding for students, require less time or instructional
support, and frequently lead to better problem-solving
performance than comparing multiple examples within
problem categories (Scheiter & Gerjets, 2005). Based on the
present data, however, it is unclear whether students preferred
urn examples for these reasons.

The second interesting finding concerning students’ infor-
mation utilization strategies is that only students in Cluster 4
preferred modular to molar examples despite the lower effi-
ciency for learning of the latter. There are at least two possible
explanations for this finding: (a) students in Germany are more
familiar with molar examples, that is, ‘recipe-like’ examples
based on formulas, because these are heavily used in mathe-
matics textbooks; (b) the major advantage of molar examples
is that they are computationally-friendly, as multiple solution
steps are collapsed into a single formula that represents the
solution procedure (Atkinson et al., 2003). However, under-
standing the rationale of problems in probability theory can be
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much better conveyed by means of modular examples, where
a single structural feature is directly transferred into one part
of the solution procedure. This may also explain why students
in Cluster 4 had such a good problem-solving performance,
particularly with regard to transfer performance. With respect
to learner-controlled instruction, this sheds some doubt on
whether one should allow students to select among different
representational formats. If students are mainly oriented
towards avoiding obvious mental effort and reject formats that
appear too demanding to them, then these formats should not
be included in hypermedia environments, even if more
advanced learners (who have already understood the under-
lying principles) might derive some benefit from them.

To conclude, the study contributes to the position that the
same hypermedia features that may be potentially effective for
learning can be detrimental at the same time. This trade-off
may be different depending on which characteristics a learner
possesses. It provides further support for the augmentation of
CLT (Gerjets & Hesse, 2004; Gerjets & Scheiter, 2003) for
learner-controlled settings as it demonstrates that there are
other variables beyond prior knowledge and instructional-
design features, which may affect the emerging pattern of
cognitive load and learning outcomes. These variables may
thereby weaken the direct relationship between design aspects
and cognitive load traditionally assumed in CLT.

Appendix A. All-day examples

1. At the Olympics 7 sprinters participate in the 100 m-
sprint. What is the probability of correctly guessing the
winner of the gold, the silver, and the bronze medals?

2. A bank distributes a random four-digit secret code as
a personal identification number (PIN) for its credit cards.
Suppose one credit card has been lost. What is the proba-
bility that anybody finding the card and trying to get money
with it will guess the correct secret code on the first try?

3. You are playing cards with your friends. The card game
contains 52 cards and each person gets 4 cards. First, you
receive all your cards and then your friends receive their
cards. What is the probability that you get all four aces?

4. A car rental service owns 10 cars, each of which has
a unique color. Within 14 days a person rents a car twice and
chooses the car randomly. What is the probability of getting
a red car one of the times and a blue one the other time?
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