
J.-L. Hainaut et al. (Eds.): ER Workshops 2007, LNCS 4802, pp. 306–316, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Extending Argumentation to Goal-Oriented
Requirements Engineering

Ibrahim Habli, Weihang Wu, Katrina Attwood, and Tim Kelly

Department of Computer Science, The University of York, York YO10 5DD
{Ibrahim.Habli,Weihang.Wu,Katrina.Attwood,

Tim.Kelly}@cs.york.ac.uk

Abstract. A key goal in safety-critical system development is to provide
assurance that the critical requirements are sufficiently addressed. This goal is
typically refined into three sub-goals, namely that the safety requirements are
validated, satisfied and traceable. The achievement of these sub-goals is
typically communicated by means of a safety argument supported by items of
evidence (e.g. testing, review or analysis). In this paper, we explore the
relationships between goals, requirements, and arguments. We discuss how
argumentation is used to assure the decomposition and traceability of
requirements in safety-critical applications. Particularly, we focus on the
achievement of goals related to both the requirements artefacts and the
underlying requirements process.

1 Introduction

Goal-modelling techniques have long been recognised as an effective support to
requirements engineering processes. The work of van Lamsweerde and others [1, 2],
for example, has demonstrated a powerful goal-based method to support requirements
elicitation, refinement, trade-off analysis and documentation. A goal describes the
objective that a system should meet, which may be classified further in terms of
functional and quality goals. Goals can be refined hierarchically into sub-goals
through various refinement strategies such as AND/OR decomposition, design
decisions and domain-specific analysis results. The goal refinement process stops
when all identified goals have been satisfied or achieved. Goals may be violated,
however, due to unexpected behaviours of a system or its environment. The notion of
obstacles [3] or anti-goals [4] has recently been introduced in order to integrate
potential violations into goal modelling.

Goal-based techniques have also been used to model the relationships between the
system under definition and the environment in which it will operate. For example,
the i* technique has been used in early-stage requirements engineering, to capture
aspects of user motivation, business and organisational goals in systems characterised
by a high degree of human-computer interaction, such as Air Traffic Control [5, 6].
Chung et al [7] have also developed a goal-based framework for clarifying and
prioritising non-functional requirements and managing trade-offs between them. At
the design level, early work on argument-based design rationale developed a set of

 Extending Argumentation to Goal-Oriented Requirements Engineering 307

generic models of design processes in terms of three common elements [8]:
issues/questions, positions/options, and arguments/criteria. There have been several
applications of design rationale to software engineering. The richest extension to date
is the REMAP (REpresentation and MAintenance of Process knowledge) model
developed by Ramesh [9], in which the notions of requirements/goals, assumptions,
constraints and design objects have been incorporated into the Issue-Based
Information System (IBIS) framework.

In the safety-critical system domain, one of the key goals is to provide assurance that
the critical requirements are sufficiently addressed. As a minimum, it should be
demonstrated that these requirements are validated, satisfied and traceable. Particularly,
software standards in the safety domain are shifting towards goal-based approaches
where the validation, satisfaction and traceability of safety requirements are the primary
goals for demonstrating that a safety-critical software system is acceptably safe. To
justify that a software system is acceptably safe, a safety case is typically submitted. A
safety case is defined in the UK Defence Standard 00-56 as [10]:

“A structured argument, supported by a body of evidence that
provides a compelling, comprehensible and valid case that a system is
safe for a given application in a given operating environment.”

Underlying the descriptions of the safety case is a view of the safety case
consisting of three principal elements: Goals, Argument and Evidence [11]. The
argument communicates the relationship between the evidence and goals. Argument
without supporting evidence is unfounded, and therefore unconvincing. Evidence
without argument is unexplained – it can be unclear that (or how) goals have been
satisfied.

In this paper, we explore the relationships between goals, requirements, and
arguments based on our experience in the software safety domain. We discuss how
argumentation is used to assure the decomposition and traceability of software
requirements in safety-critical applications. In particular, we focus on the
achievement of goals related to both the requirements artefacts and the underlying
requirements engineering process. To create goal-based arguments, we use the Goal
Structuring Notation (GSN) [11]. GSN is a graphical notation for the construction of
safety and assurance arguments. Nonetheless, GSN is generic and can be used to
structure and present goal-based arguments that demonstrate requirements validation
and satisfaction.

The rest of paper is structured as follows. Section 2 presents an overview of GSN
and how it can be used to demonstrate how existing requirements are decomposed and
managed. Section 3.1 presents an argumentation approach to refining safety goals and
anti-goals. 3.2 shifts the discussion towards the assurance of goals related to the
underlying requirements process. Section 3.3 focuses on one process aspect, namely
requirements traceability. Finally, Section 4 presents a summary and conclusions.

2 The Goal Structuring Notation (GSN)

GSN explicitly represents the individual elements of goal-based arguments
(requirements, goals, evidence and context) and (perhaps more significantly) the

308 I. Habli et al.

relationships that exist between these elements (i.e. how individual requirements are
supported by specific claims, how claims are supported by evidence and the assumed
context that is defined for the argument). The principal symbols of the notation are
shown in Fig. 1 (with example instances of each concept).

When the elements of the GSN are linked together in a network they are described
as a ‘goal structure’. The principal purpose of any goal structure is to show how goals
(claims about the system) are successively broken down into sub-goals until a point is
reached where claims can be supported by direct reference to available evidence
(solutions). As part of this decomposition, using the GSN it is also possible to make
clear the argument strategies adopted (e.g. adopting a quantitative or qualitative
approach), the rationale for the approach and the context in which goals are stated
(e.g. the system scope or the assumed operational role).

Fig. 1. Elements of the Goal Structuring Notation

The GSN technique adds a rich semantics to this goal-breakdown structure, by
forcing the explicit recording of and justification for the strategies used to refine and
relate the goals in a semi-formal argument structure. Since both the goals and these
refinement strategies hold true only in a defined context (i.e. within the scope of a
particular system, or under certain operational conditions), the notation's syntax
requires that explicit reference is made to the evidential basis on which the goals and
the refinement depend. Within Europe, GSN has been adopted by a growing number
of companies within safety-critical industries (such as aerospace, railways and
defence) for the presentation of safety arguments within safety cases.

Arguably, GSN can be used in a broader and more general context. It can provide a
means for decomposing requirements and recording traceability links between
individual claims and sub-claims. These claims are represented as goals, and equate to
the requirements statements and specifications. The notation also records the
strategies used to decompose the goals. These strategies map to the ‘satisfaction
argument’, in that they seek to provide a basis for the relationship between the goals.
As well as presenting a clear record of the goal-decomposition strategy, however,
GSN allows this strategy to be validated by the use of an apparatus of justifications

 Extending Argumentation to Goal-Oriented Requirements Engineering 309

and assumptions. These justifications and assumptions are attached to goals and
strategies within the structure, as well as by explicit references to artefacts such as
system architectural models or contextual information.

3 Modelling Requirements Artefacts and Processes Using GSN

This section presents GSN arguments addressing (1) the refinement of safety goals
and anti-goals and (2) the assurance of goals related to the underlying requirements
process, with a particular emphasis on requirements traceability.

3.1 Modelling Goals and Anti-goals

Although several different goal formulation techniques exist, it is possible to identify
four common elements in the 'goal' concept:

• Artefact: The artefact is the composite system or its parts onto which a goal is
applied.

• Context: The context addresses the pre-conditions that a goal refers to and evolves
over.

• Stimulus: The stimulus is the trigger condition for the initiation of a goal.
• Response: The response captures the desired properties (i.e., postconditions) that

the artefact should hold over time. Quality requirements (e.g., deadline or failure
rate) can be specified in this part if they exist.

A GSN goal represents a requirement goal, and can thus be expressed using

natural language in the following form:

“The <artefact> shall <respond> upon <stimulus> when <context>”

This goal formulation is consistent with the SEI’s quality attribute scenario
framework [12]. It can be applicable to both functional and quality goals. As an
example, consider a wheel braking system (WBS) on an aircraft [13]. We assume
there are a number of top-level system goals that can be stated in terms of aircraft
functionality e.g., controlling the aircraft on the ground and safety (Fig. 2). Despite
their high level of abstraction, these system goals can be expressed in stimulus-
response form. Each functional goal can be decomposed further into a set of sub-goals
and these should evolve separately given that they are independent. The goal
decomposition may be guided by the decision to use various mechanisms for speed
reduction. Goal structures can thus be constructed. Safety goals cannot simply be
decomposed via functional goals or system structures; their refinement is based upon
the results of deviation analysis and the chosen mitigation. For example, in the WBS,
late output from a controller is likely to be safety-significant. A performance goal is
thus derived and added into the safety goal structures. Fig. 2 shows a part of the goal
structure in which the core functionality of WBS is elicited. All the goals in this
structure are expressed using the above form (the context elements
‘RefArf_SatisfactionArg’ and ‘ReqDev_SWReq’ are addressed separately in the next

310 I. Habli et al.

Fig. 2. A top-level goal structure for the WBS example

two sections). The expression language used is a structured natural language, and
some expression can be very abstract at this level. For example, both the stimulus and
response parts of the top-level goal G1 are very general and need to be refined. This
should be acceptable, however, in the early development lifecycle in which many
requirements are volatile and unclear.

On the other hand, an anti-goal is the negative correlative of a goal: a condition
that, if true, would immediately prevent the system from achieving the corresponding
goal. Goals and anti-goals are complementary and thus capture the possible desired
and undesired end states of a composite system. A common example of an anti-goal is
the loss of a system function where the function is a goal. Nevertheless, the simple
negation of a goal in terms of propositional logic cannot guarantee the sufficient
completeness of the corresponding anti-goals. A less obvious but perhaps more severe
anti-goal would be inadvertent application of that function. Given some goal
formulation, it is important to ensure the exhaustiveness of deviations from that goal,
at least from the viewpoint of safety. In the safety community, the possible deviations
of a system are often characterised in terms of deviation or failure modes. Previous
work in York has developed a collection of deviation modes for software systems:
SHARD guidewords [14]. We interpret the SHARD modes with respect to the goal
formulation in the following Table 1.

By allocating the SHARD modes onto a formulated goal and interpreting them
using the above table, we can achieve a high level of confidence in the exhaustiveness

 Extending Argumentation to Goal-Oriented Requirements Engineering 311

of the set of anti-goals elicited. Note that anti-goals do not necessarily have safety
implications, although they should always be evaluated with respect to possible
safety-related consequences. Let us return to the WBS example. As soon as the
system goals of WBS are formulated, the identification of anti-goals can start by
considering the SHARD deviations first without information about the elaborated
scenarios. In this example, only omission and commission modes are applicable.
Table 2 illustrates an anti-goal by negating the context part – wheel braking when the
context is not as intended. The definition of the stimulus part is trivial in this case.
The anti-goal elicited is expressed at an abstract level.

Table 1. The anti-goal interpretation using SHARD guidewords

SHARD Anti-Goal Interpretation
Omission Response part does not hold while stimulus and environment parts hold
Commission Stimulus or context parts do not hold while response part holds
Timing Timing constraint specified in the response part is violated while the other parts

hold
Value Value constraint specified in the response part (e.g., accuracy or cost) is violated

while the other parts hold

Table 2. An example anti-goal formulation

Portion of Goal Possible Value
Artefact WBS
Context NOT (Airframe is on ground AND aircraft is in landing/taxiing/RTO flight

phase)
Stimulus N/A
Response All wheel brakes are applied

By expanding the negation operation on the context part using Boolean logic, we

can derive a set of well-refined anti-goals: e.g., wheel brakes applied when the aircraft
is taking off or when the aircraft is in air (both of these conditions can lead, at worst,
to total loss of control). It must be stressed that the expansion here cannot be achieved
solely by formal Boolean logic and may need the help of domain experts. For the
example of inadvertent wheel braking when the aircraft is taking off, we may need to
distinguish further whether the aircraft is taking off before the decision speed V1, as
the safety consequences before and after this threshold is passed would be different.
Obviously, it would be impossible to identify these two anti-goals by the use of
formal logic alone, without the requisite domain knowledge.

When all anti-goals are identified and refined (say, eight anti-goals for the WBS
example), they should be linked to the anti-goals of the parent goal of the WBS (i.e.,
aircraft deceleration) in a bottom up manner, thereby forming an anti-goal structure.
The anti-goal structure in the WBS example is shown in Fig. 3. The anti-goal
structure should refer to the corresponding functional goal structure. It should be
noted that the expression languages used in functional goals, safety goals and anti-
goals are slightly different. The functional goals are simply operational and thus

312 I. Habli et al.

Fig. 3. The anti-goal structure for the WBS example

‘shall’ statements are suitable; the anti-goals are hypotheses about states and events of
the system and thus ‘will’ statements should be used. The construction of anti-goal
structures will prompt the refinement of the goal structure in which decisions need to
be made regarding the mitigation of these anti-goals.

3.2 Assuring Goals Concerning the Requirements Process

The previous section has presented an argument supporting the decomposition of
requirements goals in isolation from the underlying requirements process, i.e. the
level of review, independence, traceability, competency of the requirements analysts
and organisational agility. Uncertainties about the trustworthiness of this process may
weaken confidence in the allocated and refined requirements. To this end, it is
important to satisfy goals about the requirements process (i.e. not just the
requirements artefacts). These goals address attributes such as process completeness,
consistency and robustness since flaws in the requirements process may result in
flaws in the requirements themselves. Such types of requirements flaws may only be
discovered by independent reviews, for example. Factors that need to be addressed by
an argument justifying the requirements process include issues such as:

• Is the software requirements team independent from the systems requirements
team?

• Is requirements validation carried out using a repeatable and traceable technique?
• Is requirements validation performed on a stable and identifiable version of the

allocated system requirements?
• Do the software engineers understand their relationship with the system

requirements?

 Extending Argumentation to Goal-Oriented Requirements Engineering 313

Fig. 4 shows a purely process-based argument that provides evidence addressing
goals about the requirements process of the “Aircraft Software System” (G1.2 in
Fig. 2). The process goals considered in that argument concern the clarity of the
notation, the suitability of the validation methods, the consistency of the
configuration, and the competency of the software engineers. Research has shown that
domain knowledge is one of the most significant factors in achieving low rates for
hazardous failure in safety-critical software development [15]. Validation of the
requirements – and the consequent discovery of operational requirements errors – is
best performed by domain experts. Therefore, regardless of how well the software
requirements are structured, refined and documented, it is of equal importance to
show the competency of personnel and it is therefore important that it is included as a
separate goal in the process assurance argument. The next section focuses on assuring
requirements traceability, a process goal central to all software safety standards.

Fig. 4. Software Requirements Validation Argument

3.3 Goal-Based Arguments for Requirements Traceability

Zave and Jackson [16] observe that satisfaction of a requirement (R) can be
demonstrated only by a sufficient combination of domain knowledge (K) and
specifications (S): S, K ├ R. Jackson suggests that traceability links between
requirements and specifications should be supported by textual ‘correctness
arguments’ which explain how the specifications and domain behaviour combine to
provide assurance that the engineered system satisfies the requirement in the
application domain [17]. 'Satisfaction arguments' are a development from these
'correctness arguments' and provide assurance that the traceability relationship
between requirements at different levels of abstraction is valid within a given
application domain [18]. For example, it is essential for the successful reuse of
requirements across system families that there is some assurance that the satisfaction

314 I. Habli et al.

relationships remain valid for requirements and specifications in the reuse domain.
Failure to observe this principle risks the late, and therefore costly, delivery of
erroneous or untenable requirements.

The following example demonstrates how GSN can be used to document
satisfaction arguments, and to indicate where changes in design commitments or
contexts challenge the satisfaction of the requirements. The decomposition in Fig. 2
does not attempt to justify the decomposition strategy employed. Instead, it contains
an ‘away goal’ reference to a justification claim depicted in Fig. 5 (Satisfaction
Argument). This goal is the top-level claim of the argument in Fig. 5, which is the
satisfaction argument justifying the requirements decomposition. The argument
strategy is a two-pronged one: the left-hand side of the goal structure argues that the
checks, taken together, are sufficient to satisfy the top-level requirement, while the
right-hand side (not fully developed here) argues that all possible failure modes have
been considered and are adequately mitigated by the checks. The GSN structure
makes clear what evidence is required to demonstrate the satisfaction of the top-level
requirement (PSSA).

Fig. 5. Satisfaction argument for the refinement of the G1 in Fig. 2

The GSN structure provides a straightforward means for assessing which aspects
of the satisfaction relationship are threatened by the design change. GSN satisfaction
arguments thus allow for the clear record of domain information and assumptions, and
indicate which information sources are required for adequate requirements
traceability. The severity of the impact of requirements or contextual change can be
assessed by reference to the satisfaction arguments on the requirements
decomposition.

 Extending Argumentation to Goal-Oriented Requirements Engineering 315

5 Summary and Conclusions

In this paper we have discussed how goal-based argumentation can be used to provide
assurance for the decomposition and traceability of safety-critical requirements. We
have presented an integrated approach that addresses the achievement of goals related
to both the requirements artefacts and the underlying requirement process. The key
benefit of adopting GSN is that it improves comprehension of the requirements
satisfaction and validation argument amongst all of the key project stakeholders (i.e.
system developers, safety engineers, independent assessors and certification
authorities). In turn, this improves the quality of the debate and discussion amongst
the stakeholders and reduces the time taken to reach agreement on the development
and analysis approaches being adopted.

References

1. Lamsweerde, A.v., Dardenne, A., Fickas, S.: Goal-directed Requirements Acquisition.
Science of Computer Programming 20, 3–50 (1993)

2. Lamsweerde, A.v.: Goal-Oriented Requirements Engineering: A Guided Tour. In: RE
2001. Proceedings of 5th IEEE International Symposium on Requirements Engineering,
pp. 249–263. IEEE Computer Society Press, Los Alamitos (2001)

3. Lamsweerde, A.v., Letier, E.: Integrating Obstacles in Goal-Driven Requirements
Engineering. In: Proceedings of the 20th International Conference on Software
Engineering, pp. 53–62. IEEE Computer Society Press / ACM Press (1998)

4. Lamsweerde, A.v.: Elaborating Security Requirements by Construction of Intentional
Anti-Models. In: Proceedings of the 26th International Conference on Software
Engineering, pp. 148–157. IEEE Computer Society Press, Los Alamitos (2004)

5. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. In: RE 1997. Proceedings of the Third IEEE International Symposium on
Requirements Engineering, Washington D.C., USA, Jan 6-8, 1997, pp. 226–235. IEEE
Computer Society Press, Los Alamitos (1997)

6. Maiden, N., Jones, S.: Dependability in RESCUE: A Concurrent Engineering Approach to
the Specification of Requirements for Air Traffic Management. In: DSN2004. Proceedings
of the Workshop on Interdisciplinary Approaches to Achieving and Analysing System
Dependability, Washington D.C., USA, June 29, 2004 (2004)

7. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic, Boston, etc. (1999)

8. Shum, S.B.: Design Argumentation as Design Rationale. In: The Encyclopedia of
Computer Science and Technology, Marcel Dekker Inc., New York, pp. 95–128 (1996)

9. Ramesh, B., Dhar, V.: Supporting systems development by capturing deliberations during
requirements engineering. IEEE Trans. on Software Engineering 18(6), 498–510

10. UK Ministry of Defence, 00-56 Safety Management Requirements for Defence Systems,
Part 1: Requirements, Issue 3, UK Ministry of Defence (August 2004)

11. Kelly, T.P.: Arguing Safety - A Systematic Approach to Safety Case Management. DPhil
Thesis, University of York, York (1999)

12. Barbacci, M., Ellison, R., Lattanze, A., Stafford, J., Weinstock, C., Wood, W.: Quality
Attribute Workshops (QAWs), Third Edition. Technical Report (CMU/SEI-2003-TR-016)
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University (2003)

316 I. Habli et al.

13. ARP 4761: Guidelines and Methods for Conducting the Safety Assessment Process on
Civil Airborne Systems and Equipment, Society of Automotive Engineers, Inc. (1996)

14. Fenelon, P., McDermid, J., Nicholson, M., Pumfrey, D.: Towards Integrated Safety
Analysis and Design. ACM Computing Reviews 2(1), 21–32

15. McDermid, J.A.: Software Safety: Where’s The Evidence? In: Proceedings of the Sixth
Australian Workshop on Industrial Experience with Safety Critical Systems and Software,
Australian Computer Society (2001)

16. Zave, P., Jackson, M.: Four Dark Corners of Requirements Engineering. ACM
Transactions on Software Engineering and Methodology 6(1) (1997)

17. Jackson, M.: Problem Frames: Analysing and Structuring Software Development
Problems. Addison-Wesley, London (2001)

18. Hull, M., Jackson, K., Dick, J.: Requirements Engineering. Springer, London (2002)

	Extending Argumentation to Goal-Oriented Requirements Engineering
	Introduction
	The Goal Structuring Notation (GSN)
	Modelling Requirements Artefacts and Processes Using GSN
	Modelling Goals and Anti-goals
	Assuring Goals Concerning the Requirements Process
	Goal-Based Arguments for Requirements Traceability

	Summary and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

