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Abstract. A key goal in safety-critical system development is to provide 
assurance that the critical requirements are sufficiently addressed. This goal is 
typically refined into three sub-goals, namely that the safety requirements are 
validated, satisfied and traceable. The achievement of these sub-goals is 
typically communicated by means of a safety argument supported by items of 
evidence (e.g. testing, review or analysis). In this paper, we explore the 
relationships between goals, requirements, and arguments. We discuss how 
argumentation is used to assure the decomposition and traceability of 
requirements in safety-critical applications. Particularly, we focus on the 
achievement of goals related to both the requirements artefacts and the 
underlying requirements process.  

1   Introduction  

Goal-modelling techniques have long been recognised as an effective support to 
requirements engineering processes.  The work of van Lamsweerde and others [1, 2], 
for example, has demonstrated a powerful goal-based method to support requirements 
elicitation, refinement, trade-off analysis and documentation. A goal describes the 
objective that a system should meet, which may be classified further in terms of 
functional and quality goals. Goals can be refined hierarchically into sub-goals 
through various refinement strategies such as AND/OR decomposition, design 
decisions and domain-specific analysis results. The goal refinement process stops 
when all identified goals have been satisfied or achieved. Goals may be violated, 
however, due to unexpected behaviours of a system or its environment. The notion of 
obstacles [3] or anti-goals [4] has recently been introduced in order to integrate 
potential violations into goal modelling. 

Goal-based techniques have also been used to model the relationships between the 
system under definition and the environment in which it will operate.  For example, 
the i* technique has been used in early-stage requirements engineering, to capture 
aspects of user motivation, business and organisational goals in systems characterised 
by a high degree of human-computer interaction, such as Air Traffic Control [5, 6]. 
Chung et al [7] have also developed a goal-based framework for clarifying and 
prioritising non-functional requirements and managing trade-offs between them. At 
the design level, early work on argument-based design rationale developed a set of 
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generic models of design processes in terms of three common elements [8]: 
issues/questions, positions/options, and arguments/criteria. There have been several 
applications of design rationale to software engineering. The richest extension to date 
is the REMAP (REpresentation and MAintenance of Process knowledge) model 
developed by Ramesh [9], in which the notions of requirements/goals, assumptions, 
constraints and design objects have been incorporated into the Issue-Based 
Information System (IBIS) framework. 

In the safety-critical system domain, one of the key goals is to provide assurance that 
the critical requirements are sufficiently addressed. As a minimum, it should be 
demonstrated that these requirements are validated, satisfied and traceable. Particularly, 
software standards in the safety domain are shifting towards goal-based approaches 
where the validation, satisfaction and traceability of safety requirements are the primary 
goals for demonstrating that a safety-critical software system is acceptably safe. To 
justify that a software system is acceptably safe, a safety case is typically submitted. A 
safety case is defined in the UK Defence Standard 00-56 as [10]: 

“A structured argument, supported by a body of evidence that 
provides a compelling, comprehensible and valid case that a system is 
safe for a given application in a given operating environment.” 

 

Underlying the descriptions of the safety case is a view of the safety case 
consisting of three principal elements: Goals, Argument and Evidence [11]. The 
argument communicates the relationship between the evidence and goals. Argument 
without supporting evidence is unfounded, and therefore unconvincing.  Evidence 
without argument is unexplained – it can be unclear that (or how) goals have been 
satisfied.  

In this paper, we explore the relationships between goals, requirements, and 
arguments based on our experience in the software safety domain. We discuss how 
argumentation is used to assure the decomposition and traceability of software 
requirements in safety-critical applications. In particular, we focus on the 
achievement of goals related to both the requirements artefacts and the underlying 
requirements engineering process.  To create goal-based arguments, we use the Goal 
Structuring Notation (GSN) [11]. GSN is a graphical notation for the construction of 
safety and assurance arguments. Nonetheless, GSN is generic and can be used to 
structure and present goal-based arguments that demonstrate requirements validation 
and satisfaction.  

The rest of paper is structured as follows. Section 2 presents an overview of GSN 
and how it can be used to demonstrate how existing requirements are decomposed and 
managed. Section 3.1 presents an argumentation approach to refining safety goals and 
anti-goals. 3.2 shifts the discussion towards the assurance of goals related to the 
underlying requirements process. Section 3.3 focuses on one process aspect, namely 
requirements traceability. Finally, Section 4 presents a summary and conclusions. 

2   The Goal Structuring Notation (GSN) 

GSN explicitly represents the individual elements of goal-based arguments 
(requirements, goals, evidence and context) and (perhaps more significantly) the 
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relationships that exist between these elements (i.e. how individual requirements are 
supported by specific claims, how claims are supported by evidence and the assumed 
context that is defined for the argument).  The principal symbols of the notation are 
shown in Fig. 1 (with example instances of each concept). 

When the elements of the GSN are linked together in a network they are described 
as a ‘goal structure’. The principal purpose of any goal structure is to show how goals 
(claims about the system) are successively broken down into sub-goals until a point is 
reached where claims can be supported by direct reference to available evidence 
(solutions). As part of this decomposition, using the GSN it is also possible to make 
clear the argument strategies adopted (e.g. adopting a quantitative or qualitative 
approach), the rationale for the approach and the context in which goals are stated 
(e.g. the system scope or the assumed operational role). 

 

Fig. 1. Elements of the Goal Structuring Notation 

The GSN technique adds a rich semantics to this goal-breakdown structure, by 
forcing the explicit recording of and justification for the strategies used to refine and 
relate the goals in a semi-formal argument structure.  Since both the goals and these 
refinement strategies hold true only in a defined context (i.e. within the scope of a 
particular system, or under certain operational conditions), the notation's syntax 
requires that explicit reference is made to the evidential basis on which the goals and 
the refinement depend. Within Europe, GSN has been adopted by a growing number 
of companies within safety-critical industries (such as aerospace, railways and 
defence) for the presentation of safety arguments within safety cases. 

Arguably, GSN can be used in a broader and more general context. It can provide a 
means for decomposing requirements and recording traceability links between 
individual claims and sub-claims. These claims are represented as goals, and equate to 
the requirements statements and specifications. The notation also records the 
strategies used to decompose the goals. These strategies map to the ‘satisfaction 
argument’, in that they seek to provide a basis for the relationship between the goals. 
As well as presenting a clear record of the goal-decomposition strategy, however, 
GSN allows this strategy to be validated by the use of an apparatus of justifications 
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and assumptions. These justifications and assumptions are attached to goals and 
strategies within the structure, as well as by explicit references to artefacts such as 
system architectural models or contextual information. 

3   Modelling Requirements Artefacts and Processes Using GSN  

This section presents GSN arguments addressing (1) the refinement of safety goals 
and anti-goals and (2) the assurance of goals related to the underlying requirements 
process, with a particular emphasis on requirements traceability. 

3.1   Modelling Goals and Anti-goals 

Although several different goal formulation techniques exist, it is possible to identify 
four common elements in the 'goal' concept:  

• Artefact: The artefact is the composite system or its parts onto which a goal is 
applied.  

• Context: The context addresses the pre-conditions that a goal refers to and evolves 
over.  

• Stimulus: The stimulus is the trigger condition for the initiation of a goal.  
• Response: The response captures the desired properties (i.e., postconditions) that 

the artefact should hold over time. Quality requirements (e.g., deadline or failure 
rate) can be specified in this part if they exist.  
 
A GSN goal represents a requirement goal, and can thus be expressed using 

natural language in the following form: 
 

“The <artefact> shall <respond> upon <stimulus> when <context>”  
 

This goal formulation is consistent with the SEI’s quality attribute scenario 
framework [12]. It can be applicable to both functional and quality goals. As an 
example, consider a wheel braking system (WBS) on an aircraft [13]. We assume 
there are a number of top-level system goals that can be stated in terms of aircraft 
functionality e.g., controlling the aircraft on the ground and safety (Fig. 2). Despite 
their high level of abstraction, these system goals can be expressed in stimulus-
response form. Each functional goal can be decomposed further into a set of sub-goals 
and these should evolve separately given that they are independent. The goal 
decomposition may be guided by the decision to use various mechanisms for speed 
reduction. Goal structures can thus be constructed. Safety goals cannot simply be 
decomposed via functional goals or system structures; their refinement is based upon 
the results of deviation analysis and the chosen mitigation. For example, in the WBS, 
late output from a controller is likely to be safety-significant. A performance goal is 
thus derived and added into the safety goal structures. Fig. 2 shows a part of the goal 
structure in which the core functionality of WBS is elicited. All the goals in this 
structure are expressed using the above form (the context elements 
‘RefArf_SatisfactionArg’ and ‘ReqDev_SWReq’ are addressed separately in the next  
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Fig. 2. A top-level goal structure for the WBS example 

two sections). The expression language used is a structured natural language, and 
some expression can be very abstract at this level. For example, both the stimulus and 
response parts of the top-level goal G1 are very general and need to be refined. This 
should be acceptable, however, in the early development lifecycle in which many 
requirements are volatile and unclear. 

On the other hand, an anti-goal is the negative correlative of a goal: a condition 
that, if true, would immediately prevent the system from achieving the corresponding 
goal. Goals and anti-goals are complementary and thus capture the possible desired 
and undesired end states of a composite system. A common example of an anti-goal is 
the loss of a system function where the function is a goal. Nevertheless, the simple 
negation of a goal in terms of propositional logic cannot guarantee the sufficient 
completeness of the corresponding anti-goals. A less obvious but perhaps more severe 
anti-goal would be inadvertent application of that function. Given some goal 
formulation, it is important to ensure the exhaustiveness of deviations from that goal, 
at least from the viewpoint of safety. In the safety community, the possible deviations 
of a system are often characterised in terms of deviation or failure modes. Previous 
work in York has developed a collection of deviation modes for software systems: 
SHARD guidewords [14]. We interpret the SHARD modes with respect to the goal 
formulation in the following Table 1. 

By allocating the SHARD modes onto a formulated goal and interpreting them 
using the above table, we can achieve a high level of confidence in the exhaustiveness 
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of the set of anti-goals elicited. Note that anti-goals do not necessarily have safety 
implications, although they should always be evaluated with respect to possible 
safety-related consequences. Let us return to the WBS example. As soon as the 
system goals of WBS are formulated, the identification of anti-goals can start by 
considering the SHARD deviations first without information about the elaborated 
scenarios. In this example, only omission and commission modes are applicable. 
Table 2 illustrates an anti-goal by negating the context part – wheel braking when the 
context is not as intended. The definition of the stimulus part is trivial in this case. 
The anti-goal elicited is expressed at an abstract level. 

Table 1. The anti-goal interpretation using SHARD guidewords 

SHARD  Anti-Goal Interpretation 
Omission Response part does not hold while stimulus and environment parts hold 
Commission Stimulus or context parts do not hold while response part holds 
Timing Timing constraint specified in the response part is violated while the other parts 

hold 
Value Value constraint specified in the response part (e.g., accuracy or cost) is violated 

while the other parts hold  

Table 2. An example anti-goal formulation 

Portion of Goal Possible Value 
Artefact WBS 
Context NOT (Airframe is on ground AND aircraft is in landing/taxiing/RTO flight 

phase) 
Stimulus N/A 
Response All wheel brakes are applied 

 
By expanding the negation operation on the context part using Boolean logic, we 

can derive a set of well-refined anti-goals: e.g., wheel brakes applied when the aircraft 
is taking off or when the aircraft is in air (both of these conditions can lead, at worst, 
to total loss of control). It must be stressed that the expansion here cannot be achieved 
solely by formal Boolean logic and may need the help of domain experts. For the 
example of inadvertent wheel braking when the aircraft is taking off, we may need to 
distinguish further whether the aircraft is taking off before the decision speed V1, as 
the safety consequences before and after this threshold is passed would be different. 
Obviously, it would be impossible to identify these two anti-goals by the use of 
formal logic alone, without the requisite domain knowledge.  

When all anti-goals are identified and refined (say, eight anti-goals for the WBS 
example), they should be linked to the anti-goals of the parent goal of the WBS (i.e., 
aircraft deceleration) in a bottom up manner, thereby forming an anti-goal structure. 
The anti-goal structure in the WBS example is shown in Fig. 3. The anti-goal 
structure should refer to the corresponding functional goal structure. It should be 
noted that the expression languages used in functional goals, safety goals and anti-
goals are slightly different. The functional goals are simply operational and thus  
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Fig. 3. The anti-goal structure for the WBS example 

‘shall’ statements are suitable; the anti-goals are hypotheses about states and events of 
the system and thus ‘will’ statements should be used. The construction of anti-goal 
structures will prompt the refinement of the goal structure in which decisions need to 
be made regarding the mitigation of these anti-goals. 

3.2   Assuring Goals Concerning the Requirements Process 

The previous section has presented an argument supporting the decomposition of 
requirements goals in isolation from the underlying requirements process, i.e. the 
level of review, independence, traceability, competency of the requirements analysts 
and organisational agility. Uncertainties about the trustworthiness of this process may 
weaken confidence in the allocated and refined requirements. To this end, it is 
important to satisfy goals about the requirements process (i.e. not just the 
requirements artefacts). These goals address attributes such as process completeness, 
consistency and robustness since flaws in the requirements process may result in 
flaws in the requirements themselves. Such types of requirements flaws may only be 
discovered by independent reviews, for example. Factors that need to be addressed by 
an argument justifying the requirements process include issues such as: 

• Is the software requirements team independent from the systems requirements 
team? 

• Is requirements validation carried out using a repeatable and traceable technique? 
• Is requirements validation performed on a stable and identifiable version of the 

allocated system requirements? 
• Do the software engineers understand their relationship with the system 

requirements? 
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Fig. 4 shows a purely process-based argument that provides evidence addressing 
goals about the requirements process of the “Aircraft Software System” (G1.2 in  
Fig. 2). The process goals considered in that argument concern the clarity of the 
notation, the suitability of the validation methods, the consistency of the 
configuration, and the competency of the software engineers. Research has shown that 
domain knowledge is one of the most significant factors in achieving low rates for 
hazardous failure in safety-critical software development [15]. Validation of the 
requirements – and the consequent discovery of operational requirements errors – is 
best performed by domain experts. Therefore, regardless of how well the software 
requirements are structured, refined and documented, it is of equal importance to 
show the competency of personnel and it is therefore important that it is included as a 
separate goal in the process assurance argument. The next section focuses on assuring 
requirements traceability, a process goal central to all software safety standards. 

 

Fig. 4. Software Requirements Validation Argument 

3.3   Goal-Based Arguments for Requirements Traceability  

Zave and Jackson [16] observe that satisfaction of a requirement (R) can be 
demonstrated only by a sufficient combination of domain knowledge (K) and 
specifications (S): S, K ├ R. Jackson suggests that traceability links between 
requirements and specifications should be supported by textual ‘correctness 
arguments’ which explain how the specifications and domain behaviour combine to 
provide assurance that the engineered system satisfies the requirement in the 
application domain [17]. 'Satisfaction arguments' are a development from these 
'correctness arguments' and provide assurance that the traceability relationship 
between requirements at different levels of abstraction is valid within a given 
application domain [18]. For example, it is essential for the successful reuse of 
requirements across system families that there is some assurance that the satisfaction  
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relationships remain valid for requirements and specifications in the reuse domain.  
Failure to observe this principle risks the late, and therefore costly, delivery of 
erroneous or untenable requirements. 

The following example demonstrates how GSN can be used to document 
satisfaction arguments, and to indicate where changes in design commitments or 
contexts challenge the satisfaction of the requirements. The decomposition in Fig. 2 
does not attempt to justify the decomposition strategy employed. Instead, it contains 
an ‘away goal’ reference to a justification claim depicted in Fig. 5 (Satisfaction 
Argument). This goal is the top-level claim of the argument in Fig. 5, which is the 
satisfaction argument justifying the requirements decomposition. The argument 
strategy is a two-pronged one: the left-hand side of the goal structure argues that the 
checks, taken together, are sufficient to satisfy the top-level requirement, while the 
right-hand side (not fully developed here) argues that all possible failure modes have 
been considered and are adequately mitigated by the checks. The GSN structure 
makes clear what evidence is required to demonstrate the satisfaction of the top-level 
requirement (PSSA). 

 

Fig. 5. Satisfaction argument for the refinement of the G1 in Fig. 2 

The GSN structure provides a straightforward means for assessing which aspects 
of the satisfaction relationship are threatened by the design change. GSN satisfaction 
arguments thus allow for the clear record of domain information and assumptions, and 
indicate which information sources are required for adequate requirements 
traceability. The severity of the impact of requirements or contextual change can be 
assessed by reference to the satisfaction arguments on the requirements 
decomposition. 
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5   Summary and Conclusions 

In this paper we have discussed how goal-based argumentation can be used to provide 
assurance for the decomposition and traceability of safety-critical requirements. We 
have presented an integrated approach that addresses the achievement of goals related 
to both the requirements artefacts and the underlying requirement process. The key 
benefit of adopting GSN is that it improves comprehension of the requirements 
satisfaction and validation argument amongst all of the key project stakeholders (i.e. 
system developers, safety engineers, independent assessors and certification 
authorities).  In turn, this improves the quality of the debate and discussion amongst 
the stakeholders and reduces the time taken to reach agreement on the development 
and analysis approaches being adopted. 
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