
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 12, 323-342 (1991) 

VORTICITY-STREAMFUNCTION FORMULATION OF 
UNSTEADY INCOMPRESSIBLE FLOW PAST A CYLINDER: 
SENSITIVITY OF THE COMPUTED FLOW FIELD TO THE 

LOCATION OF THE OUTFLOW BOUNDARY 

M. BEHR, J. LIOU, R. SHIH AND T. E. TEZDUYAR 
Department of Aerospace Engineering and Mechanics, and Minnesota Supercomputer Institute. 

University of Minnesota, Minneapolis, MN 55455, U.S.A.  

SUMMARY 
The influence of the location of the outflow computational boundary on the unsteady incompressible flow 
past a circular cylinder at Reynolds number 100 is examined. The vorticity-streamfunction formulation of 
the Navier-Stokes equations is used in all computations. Two types of outflow boundary conditions are 
subjected to a series of tests in which the domain length is gradually reduced. The traction-free condition 
performs well in most cases and allows the outflow boundary to be located as close as 6.5 cylinder diameters 
from the body. The other boundary condition type is not as forgiving, but has the advantage of being simpler 
to implement and can still provide reasonably accurate solutions. It is also observed that both condition 
types can influence the flow field strongly and globally when the boundary is brought closer than 2.5 
diameters from the body. In such cases the temporal periodicity of the solution is lost. 
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1 .  INTRODUCTION 

The choice of the size and shape of the computational domain is an important part of every 
numerical simulation. In some cases it is possible to place the domain boundaries exactly as 
dictated by the problem being modelled; but frequently the physical domain is too large (perhaps 
infinitely large) to be represented fully, and truncation of the model size is necessary to make the 
numerical task manageable. One can simply hope that the computational boundaries so 
introduced do not degrade the quality of the results in the region of interest. In incompressible 
flow problems the outflow boundary is usually only an approximation to the flow field extending 
farther downstream. This boundary can play an important role in determining the solution. 
Therefore care must be taken to ensure that the numerical boundary conditions employed, as well 
as the point of their application, result in faithful representation of the flow field despite the 
truncation of the domain. 

The research which led to the material presented here was motivated by a series of discussions 
with P. M. Gresho' and an upcoming outflow boundary condition (OBC) symposium (Stanford 
University, Stanford, CA, July 1991). We attempt to provide a few guidelines for the placement 
of the outflow boundary and the choice of OBC type. For this purpose, for flow past a circular 
cylinder, we study the behaviour of significant flow quantities, namely the drag, lift and Strouhal 
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number, as the downstream part of the mesh is truncated. This procedure closely follows similar 
experiments performed within the framework of the velocity-pressure formulation.2 We also 
examine two different types of OBC which arise in the context of the vorticity-streamfunction 
formulation of the Navier-Stokes equations in two dimensions. The first type of OBC is the 
homogeneous form of the natural boundary conditions associated with the vorticity transport 
equation and the Poisson equation for the streamfunction; we will refer to this as the HN-type 
OBC. This OBC implies vanishing normal derivatives for the vorticity and streamfunction at  the 
outflow boundary. While the assumption of zero normal derivative for the vorticity is quite 
reasonable for advection-dominated flows, similar treatment of the streamfunction results in zero 
tangential velocity at the boundary. This restriction of course influences the flow field upstream of 
the boundary, and such undesirable influence has to be weighed against the simplicity of the HN- 
type OBC. The second type of OBC is the vorticity-streamfunction equivalent of the tractionfree 
condition commonly seen in velocity-pressure formulations (see e.g. Reference 3). This OBC 
assumes zero normal and shear stresses; we will refer to it as the TF-type OBC. 

The spatial discretization of the governing equations is based on the streamline-upwind/ 
Petrov-Galerkin (SUPG) modification of the finite element formulation employing bilinear shape 
functions for both the vorticity and streamfunction. A central-difference-type temporal discretiz- 
ation is used and the fully coupled equations involving all the unknowns are solved simultan- 
eously at each time level. 

2. FORMULATION OF THE PROBLEM 

Consider an incompressible fluid occupying an open bounded region R E R2. The boundary of R is 
denoted by r, and this boundary consists of an external boundary To and q internal boundaries 
denoted by rk, k =  1, 2, . . . , q, such that 

r=r,Ur,u.. . q. (1) 

The fluid velocity vector is denoted by u(x, t) ,  where x E R and t E [0, T I ,  a given time interval. The 
vorticity w(x, t )  and streamfunction @(x, t )  are defined by 

au au o=2-1 
ax, ax,’ 

U =  {”. -3}. 
ax, ax, (3) 

The vorticity-streamfunction formulation of the two-dimensional incompressible Navier-Stokes 
equations is given as 

(4) 

V 2 $ + w = 0  on Rx(0,  T ) ,  (5 )  

w(x, 0) = w,(x), x E R. (6) 

am 
at 
- + u ~ ~ v o - v V 2 w = 0  on Rx(0, T ) ,  

with initial condition 

Here v is the kinematic viscosity of the fluid. The problem statement is completed by imposing 
suitable boundary conditions on the vorticity and streamfunction. Let rod c ro be the downstream 
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(outflow) boundary, treated separately to facilitate the choice of two alternative types of OBC. The 
HN-type OBC is the homogeneous natural boundary condition associated with (4) and ( 5 )  and 
can be expressed as follows: 

-=0 
an  on rod x (0, T ) ,  a* 

(7) 

The TF-type OBC, which was derived in Reference 4, is equivalent to the homogeneous natural 
boundary conditions for the momentum equation in the velocity-pressure formulation with the 
stress divergence form. These conditions imply zero normal and 
boundary; they can be respectively written as 

au, au, a z U  ia(a+/az)2 a+ a o  
at aT a T 2  2 aT az a n  

- + u  - - 2 v T =  -- _- o - v -  on 

where n and T represent the normal and tangential coordinates 

tangential stresses at the 

(0, T) ,  (9) 

(10) 

along r o d ,  and u, is the 
tangential component of the velocity vector. This type of OBC is commonly known as the 
traction-free condition. Equations (9) and (10) can be used to determine, respectively, u, and $ 
on r o d .  At this Reynolds number (i.e., 100) it is reasonable to assume that the flow is nearly inviscid 
at the downstream boundary; therefore we discard the outflow boundary condition given by (10) 
and replace it with the zero-normal-derivative condition for the vorticity. Equation (9) is then 
discretized using the finite element approximation in space and the trapezoidal rule in time to form 
a secondary system of equations. This system is solved at every time step in a block iteration 
fashion along with the equation system resulting from (4) and (5) until a predetermined 
convergence condition is met. The full description of the boundary conditions on the parts of r 
other than r o d  is omitted here and the reader is referred to Reference 5 for details. 

To compute the drag and lift on the cylinder, it is necessary to recover the pressure distribution 
on the cylinder surface from the known vorticity and streamfunction fields. An arbitrary pressure 
value p1 is assumed at a reference point on the obstacle surface, and the following line integral is 
used to calculate the pressure pz at other surface points: 

The normal and tangential components of the stress on a solid surface, 

on= -p ,  (12) 

a,= - p v w ,  (13) 
can then be numerically integrated along the surface to give the drag and lift on the obstacle. 

The governing equations (4) and (5) are discretized by using bilinear shape functions for both the 
vorticity and streamfunction. The internal boundary gives rise to an additional variational 
equation for the unknown value of the streamfunction there. The full description of the 
discretization procedure can be found in Reference 5. If the TF-type OBC is used, equation (9) 
leads to the additional equations needed to determine the value of u, on rod. 
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3. NUMERICAL RESULTS 

As the test problem for which the influence of the outflow boundary condition is to be investigated, 
we choose a well-known, yet non-trivial two-dimensional case. Wake formation behind a circular 
cylinder has attracted the attention of many researchers in the past and thus provides us with a 
large pool of experimental and numerical results. At the same time the complex Karman vortex 
street extending downstream of the cylinder for sufficiently large Reynolds numbers makes the 
detection of the boundary-induced changes in the solution simple. 

In all results presented here the Reynolds number based on the cylinder diameter of 2.0 and the 
uniform free-stream velocity of 0.125 is 100. All linear dimensions are normalized by the cylinder 
diameter. The computational domain extends 8 units upstream and in both cross-flow directions, 
as measured from the cylinder centre. The location of the downstream boundary is different for 
each mesh used, as shown in Table I. In further references to various mesh configurations we will 
adopt the following naming convention: the shortest mesh is denoted as mesh 000; the longest 
mesh, which is 22.5 units longer than mesh 000, will be referred to as mesh 225. In all other cases 
the names are assigned in a similar fashion. The longest domain is drawn to scale in Figure 1. 

The numbers of nodes and quadrilateral elements for each mesh are also given in Table I. Our 
previous experience with the cylinder problem indicates that any additional mesh refinement only 
increases the computational burden, without significant improvement in the quality of the 
solution. Mesh 000 forms the basis for all other meshes, which are constructed by simply adding a 
number of uniform elements downstream. 

The upper and lower boundaries are assumed to be flow symmetry lines (in the Appendix 
we also discuss the tow tank boundary conditions in the context of the velocity-pressure 
formulation). A uniform velocity is assumed at  the upstream boundary. Both HN- and TF-type 
OBCs are tested. For both types of OBC the computations were initially performed for mesh 225, 
starting with wo = 0 in the entire domain, and were continued until temporally periodic vortex 

Table I. The mesh parameters 

Mesh Distance B (see Figure 1) Number of nodes Number of elements 

OOO 
040 
080 
120 
160 
200 
225 

2.5 
5.5 

10.5 
14.5 
18.5 
22.5 
25.0 

2124 
3084 
3444 
3804 
4164 
4524 
4749 

2608 
2960 
3312 
3664 
4016 
4368 
4588 

Figure 1. The computational domain 
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shedding was achieved. The periodic solution obtained with mesh 225 was then used as the initial 
condition for mesh 200. By always initializing the solution for a given mesh with an already 
periodic solution from the closest longer mesh, we were able to speed up the convergence to the 
temporally periodic solution. The time step chosen for all computations is 0.125, providing us with 
a good resolution of the vortex-shedding period, lasting about 730 time steps. 

The time histories of the drag and lift coefficients for various meshes along with the 
corresponding Strouhal number (defined as St = f d / U ,  where f is the frequency of the vortex 
shedding, U is the free-stream velocity, and d is the cylinder diameter) values are shown in Figures 
2-5. The mean and amplitude of the drag, the amplitude of the lift and the Strouhal number are 
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Figure 2. Time history of the drag coefficient for the longer meshes 
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Figure 3. Time history of the drag coefficient for the shorter meshes (note the change of scale for mesh OOO) 

plotted against the mesh length in Figures 6-8. The periodic flow patterns corresponding to the 
crest value of the lift coefficient are presented in Figures 9-15. In the plots of the drag and lift 
coefficients, t = O  is assigned to a crest value of the lift coefficient. 

For the TF-type OBC, for all meshes except mesh OOO, we obtain the same values for the drag 
and lift coefficients and the Strouhal number. For mesh 000, because the downstream boundary is 
placed too close to the cylinder, the stability of the periodic flow field is disturbed and instead a 
steady solution is obtained. All in all, our version of the traction-free outflow boundary condition 
exerts very little influence on the flow field, allowing the relevant boundary to be brought as close 
as 6.5 diameters to the body, with no more than 0.5% change in the lift and drag coefficients and 
with no visible changes in the flow patterns. 

The situation is different when the HN-type OBC is used. Even for the longer meshes we observe 
slight variations in the drag coefficient. As the mesh is truncated, the average drag coefficient 
strays significantly from the value of 1.405 obtained with mesh 225. For mesh 080 this difference is 
- 3%; for mesh 040 it amounts to 2%. For the amplitude of the lift coefficient and the Strouhal 
number we also see large changes for meshes 080 and 040 but little or no variation for longer 
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Figure 4. Time history of the lift coefficient for the longer meshes 
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Figure 5. Time history of the lift coefficient for the shorter meshes 

domains. Finally, for mesh 000 the solution again loses its temporal periodicity and tends to a 
steady state solution different from the one obtained by using the TF-type OBC (see Figure 15). 
For all meshes there are observable alterations in the downstream streamline patterns, since the 
streamlines must be perpendicular to the boundary to satisfy (7). The numerical code employing 
the HN-type OBC was observed to be about 10% faster than the code involving the TF-type 
OBC. 

It should be noted that the TF-type OBC used in conjunction with mesh 000 admits not one but 
at least two distinct steady state solutions. As seen in Figure 15, the time-dependent algorithm 
produces an asymmetric steady flow pattern if the temporally periodic solution from mesh 040 is 
used as the initial condition. However, when that initial condition is replaced by the symmetric 
steady flow (similar to the final solution for the HN-type OBC) obtained with a steady state 
algorithm, the flow remains symmetric and steady. In fact both the symmetric and asymmetric 
solutions satisfy both the time-dependent and steady state equations. 

The results described here for the TF-type OBC agree well with a similar study reported in 
Reference 2, where the velocity-pressure variables were used in place of the vorticity and 
streamfunction. 
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Figure 6. Variation of the drag coefficient with the mesh length 

Figure 7. Variation of the lift coefficient with the mesh length 
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B 

Figure 8. Variation of the Strouhal number with the mesh length 

4. CONCLUSIONS 

We presented a set of results for the flow past a circular cylinder at Reynolds number 100 to check 
the proper placement of the outflow boundary in the presence of wakes in the flow field. We also 
compared the two types of outflow boundary conditions available in the vorticity-streamfunction 
formulation of the Navier-Stokes equations. By using a number of meshes with differing lengths, 
we computed the drag and lift coefficients obtained with each mesh. We also measured the 
frequency of the vortex shedding. For each mesh the computations were initialized with the 
temporally periodic solution obtained with the next longer mesh, if available, and were continued 
until the fully periodic solution was reached or until the periodicity was lost in the case of the 
shortest mesh. 

On the basis of these numerical results we conclude that when the TF-type OBC is used we may 
position the outflow boundary as close as 6.5 cylinder diameters from the cylinder centre without 
any significant variations in the observed quantities or the general appearance of the near-field 
solutions. Moreover, when that distance is reduced to 2 5  diameters, the temporal periodicity of 
the solution is lost and the flow becomes steady. When the HN-type OBC is employed, reliable 
values for the drag and lift coefficients and the Strouhal number can be obtained with the distance 
between the boundary and the cylinder centre as low as 145 diameters. Similar to the previous 
case, when the HN-type OBC is imposed at 2.5 diameters from the cylinder centre, the solution 
becomes unacceptably altered and loses its periodic nature. For both types of OBCs the critical 
distance between the outflow boundary and the cylinder centre, for which the solution becomes 
steady falls between 6.5 and 2.5 diameters. 
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Figure 9. Mesh 225: periodic solutions (corresponding to the crest value of the lift coefficient) obtained with HN (left) and 
TF (right) 
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Figure 10. Mesh 200: periodic solutions (corresponding to the crest value of the lift coefficient) obtained with HN (left) and 
TF (right) 
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Figure 12. Mesh 120 periodic solutions (corresponding to the crest value of the lift coefficient) obtained with HN (left) and 
TF (right) 
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Figure 13. Mesh 080: periodic solutions (corresponding to the crest value of the lift coefficient) obtained with HN (left) and 
TF (right) 
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Figure 14. Mesh 040: periodic solutions (corresponding to the crest value of the lift coefficient) obtained with HN (left) and 
TF (right) 
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APPENDIX: SELECTED NUMERICAL EXPERIMENTS WITH THE 
VELOCITY-PRESSURE FORMULATION 

In this appendix we repeat our experiments for certain cases, which were not described in 
Reference 2, related to the velocity-pressure formulation. These cases, which were investigated in 
Reference 6, involve configurations which were agreed on as designated test geometries at the 
international (and unpublished) mini-symposium on outflow boundary conditions held at the 
University of Wales, Swansea, U.K. in July 1989. One such geometry is the shortest mesh 
considered in Reference 6; it coincides with our meshes as far as the upstream and the upper and 
lower boundaries are concerned, but extends 4.0 units downstream from the cylinder centre, and 
thus falls between mesh 000 and mesh 040. We will refer to it as mesh 015. The second geometry is 
the longest mesh investigated in Reference 6, with downstream boundary located 25.2 units from 
the cylinder centre, and therefore is almost the same as our mesh 225. Also in the aforementioned 
symposium, the so-called tow tank boundary condition was designated as the condition at the 
upper and lower computational boundaries. The tow tank boundary condition imposes the free- 
stream velocity, and as such, it differs from the symmetry boundary condition used in our 
computations. We conducted numerical experiments for meshes 225 and 015 with both types of 
boundary conditions and found that the tow tank and symmetry conditions lead to almost 
identical results. In all computations performed within the velocity-pressure formulation we use 
traction-free outflow boundary conditions. In Figure 16 we present the time history of the .drag 
and lift coefficients for meshes 225 and 015 obtained with both symmetry and tow tank conditions. 
Table I1 provides the parameters for the two meshes. Table I11 shows, for all four cases discussed in 
this appendix, the mean and amplitude of the drag, the amplitude of the lift and the Strouhal 
number. 

Table 11. The mesh parameters 

Mesh Distance B (see Figure 1) Number of nodes Number of elements 

015 
225 

4.0 
25.0 

2859 
4749 

2740 
4588 

Table 111. Summary of the results for the Appendix 
~ ~ ~ ~ ~ ~~~ 

Case Cd mean Cd amplitude Cl amplitude Strouhal number 

Mesh 015: symmetry 1.380 0.033 0.857 0.165 
Mesh 015: tow tank 1.383 0.033 0.858 0.166 
Mesh 225: symmetry 1.413 0.026 0.808 0.174 
Mesh 225: tow tank 1.415 0.026 0.809 0.1 74 
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Figure 16. Time history of the drag and lift coefficients for the meshes discussed in the Appendix 
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