
University of Modena and Reggio Emilia

DISMI - Technical Report: 23/2002

Open Source Solutions for Optimization on Linux Clus-
ters

Roberto Aringhieri
DISMI - University of Modena and Reggio Emilia
Viale Allegri 13, 42100 Reggio Emilia - Italy
Email: aringhieri.roberto@unimore.it

Latest revision: August 5, 2002

Abstract: Parallel implementation of optimization algorithms is an alterna-
tive and effective paradigm to speed up the search for solutions of optimization
problems. Currently a Linux Cluster is probably the best technological solution
available considering both the overall system performance and its cost. Open
Source community offers to researchers a set of software tools for setting up
clusters and to optimize their performance. The aim of this paper is to review
the open source tools are useful to build a cluster which efficiently runs paral-
lel optimization algorithms. Particular attention is given to the OpenMosix
approach to scalable computing.

Keywords: Open Source, Linux Cluster, Optimization, OpenMosix, Dynamic
Load Balancing

1 INTRODUCTION

Although (sequential) optimization algorithms have reached a sophisticated
level of implementation allowing good computational results for a large vari-
ety of optimization problems, usually the running time required to explore the
solution space associated to optimization problems can be very large [33]. This
is due to the fact that the complexity of (real) problems dealt by Operations Re-
search community increased as well as the computational capacities (e.g. faster
CPU, larger memory spaces, and so on).

With the diffusion of parallel computers and fast communication networks,
parallel implementation of optimization algorithms can be an alternative and
effective paradigm to speed up the search for solutions of optimization problems.

1

R. Aringhieri

Klabjan, Johnson and Nemhauser [21] have proposed a parallel primal-dual
simplex algorithm ables to solve linear programs with thousands of rows and
millions of columns. The basic idea is to solve several linear programs in parallel
combining all dual solutions to obtain a new dual feasible solution.

Although its computational capacities are continuously increased, PC and
its components are cheaper than some years ago. By consequence, a great
impulse to the proliferation of clusters has been given. A cluster is a set of PCs
which communicates together through a network in order to carry out some
computations. Currently a Linux Cluster is probably the best technological
solution available considering both the overall system performance and its cost.

Recently, the Department of Energy’s Pacific Northwest National Laboratory
has ordered a 24.5 million Linux-based supercomputer. Consisting of 1,432
next-generation Intel Itanium, the new supercomputer will have an expected
total peak performance of more than 9.1 teraflops. The supercomputer will
be roughly 9,100 times faster than a current personal computer and it will be
used to answer questions such as how radioactive waste can be processed and
stored, and how proteins interact and behave in order to model a living cell.
Once fully operational, the supercomputer should be the world’s most powerful
Linux based supercomputer and one of the top supercomputers in the world [22].

In order to implement parallel algorithms, the researcher usually deal with
two main issues which are the communication overhead and the load balancing.

The first one is to find a good compromise between communication and pro-
cessing avoiding communication overhead, that is the situation in which the
algorithm is slow down by too much communication between CPUs. This prob-
lem can be solved at software engineering level by determining the degree of
parallelism, or granularity, of the application. Several approaches to determine
a good granularity of metaheuristic algorithms and the corresponding imple-
mentations are reviewed by Cung, Martins, Ribeiro and Roucairol in [11].

The second one is to find a policy giving a good load balancing. A good load
balancing means a distribution of computation through the parallel computer
which optimizes the utilization of the computational resources. As pointed out
in [11,33], a good load balancing is a crucial point to have good computational
performance. Barak, Guday and Wheeler in [8] have proposed a dynamic load
balancing approach based on preemptive process migrations.

The Open Source community offers to researchers interested in parallel com-
puting a large set of software tools which helps to build an efficient and easy-to-
use cluster. Recently, an article appeared in FreshMeat.net [17] counts more
than 100 projects concerning clustering softwares which are related to High Per-
formance Computing (HPC), High Availability, Load Balancing, File Systems,
Monitoring and Management and Programming and Execution Environments.

The classical approach to setting up a cluster of PC, the Beowulf approach
[36] consist of a set of Linux PCs connected by a private network (Fast Ethernet
or Myrinet) and communicating through some libraries such as the Parallel
Virtual Machine (pvm) [13] and the Message Passing Interface (mpi) [18, 30].

An alternative way is that proposed by Mosix team [28] which is a set of
enhancements of Linux/OS with adaptive resource sharing algorithms and a

page 2 of 15 DISMI Technical Report 23/2002, August 5, 2002

Open Source Solutions for Optimization on Linux Clusters

mechanism for preemptive process migration that are geared for efficient cluster
computing [8]. These algorithms are designed to respond dynamically to varia-
tions in resource usage among the nodes, by migrating processes from one node
to another, preemptively and transparently, to improve the overall performance.
Although Mosix became proprietary software in late 2001, the OpenMosix
project starts their activities in February 2002 under GPLv2 license providing
new releases and support to Open Source community.

In the rest of the paper, we consider a cluster composed by a server which
provides a series of services to a set of computer nodes connected together by a
fast Ethernet private network. The server play also the role of workstation for
local users. This configuration is the simplest available for a cluster.

In this paper we review some of the optimization tools provided by Open
Source community. The main contribution is to introduce the OpenMosix ap-
proach to scalable clustering in the field of optimization problems which seems,
to the best of our knowledge, unknown or not used implementing parallel algo-
rithms.

In Section 2 we report how to setting up a cluster. The two different approach
to parallel computing on a cluster of PC, introduced above, are discussed in
Section 3 and 4, respectively. The target of Section 5 is to highlight the pros

and cons of these approaches with respect to the development of algorithms for
solving optimization problems. Conclusions and future works are outlined in
Section 6.

2 SETTING UP A CLUSTER

Setting up a cluster could be a very difficult and long task for each system
administrator [37]. The Open Cluster Group provides its open source solution
called oscar standing for Open Source Cluster Application Resources.

oscar [19] is a package of rpm’s, perl-scripts, libraries, tools, and whatever
else is needed to build and use a modest-sized Linux cluster. The administrator
download a single package, install it and the users are ready to start their
parallel computation. In other words, oscar is a snapshot of current, best-
known-practices in cluster computing. The main packages of oscar are:

• sis, the System Installation Suite [34], is a Linux installation tool and it
is used to install heterogeneous Linux cluster over a network. sis uses an
image based model for each cluster meaning that a copy of all the files
that are installed on the nodes resides on the server. This also provides
an option for maintenance as well as nodes uses rsync to match the image
every time it is updated on the server.

• C3 is cluster management packages which allow to see the nodes of the
cluster as single computer. For example, it provides cshutdown which
allow to reboot or alt all the nodes of the cluster at the same time, or cpush
which allow copying a file (typically a configuration file) in a given path
to all nodes or to a subset of them. For example, cpush -s=/usr/ilog/

University of Modena and Reggio Emilia page 3 of 15

R. Aringhieri

-e=/usr copies the ilog packages to all nodes of the cluster putting them
in the /usr path.

• the programming environment provided by oscar is based on message
passing libraries. It provides both pvm and mpi. pvm library is that
distributed through the project’s home page [32]. Both mpich [29] and
lam/mpi [24], two different open source implementation of mpi, are in-
stalled by oscar. mpich is the default for mpi. We deeply discuss them
in Section 3.

• OpenSSH guarantees secure connection which is a key feature for each
system administrator whilst pbs manages workload ensuring that every
computation job gets fair share of the cluster, and all resources get used
efficiently.

Figure 1: The 8 processors cluster at DISMI

oscar requires to access (in some place of our local network or from CD)
to a list of packages distributed within red hat suite. The current distribution
of oscar, the release 1.3, works with distributions 7.1 and 7.2.. Usually, some
standard and important packages are continuously updated from its distribu-
tor. In this case, before starting the installation process, the administrator can
upgrade or modify the list of packages required to build the image which it will
be copied to the nodes. For example, the administrator can prefer to install the
latest versions of OpenSSH, kernel, and so on.

page 4 of 15 DISMI Technical Report 23/2002, August 5, 2002

Open Source Solutions for Optimization on Linux Clusters

Our experience with oscar has been done with a cluster composed by a
server (which also serves as workstation) and 4 dual processor nodes. The
whole installation process (considering also the modification of the list of the
packages required to build the image) takes about 1 workday. The operating
cluster is that reported in Figure 1.

3 PARALLELIZATION USING MESSAGE PASSING LIBRARIES

The common programming environments available to develop algorithms on a
cluster are certainly pvm and mpi. They are two Application Programming
Interfaces (api) which provide different features to application developers of
parallel and distributed programs.

The general goals of pvm project are to investigate issues in, and develop
solutions for, heterogeneous concurrent computing. pvm is an integrated set of
software tools and libraries that emulates a general-purpose, flexible, heteroge-
neous concurrent computing framework on interconnected computers of varied
architecture. The overall objective of the pvm system is to to enable such a
collection of computers to be used cooperatively for concurrent or parallel com-
putation. Briefly, the main principles upon which pvm is based include the
following:

Process-based computation: the unit of parallelism in pvm is a task which
often corresponds to a Unix process. It is an independent sequential thread
of control alternating between communication and computation.

Explicit message-passing model: a collections of tasks cooperate by explic-
itly sending and receiving messages to one another which size is limited
only by the amount of available memory.

Heterogeneity support: pvm supports heterogeneity in terms of machines,
networks, and applications. It is also allowed the exchange of messages
containing more than one data type between machines having different
data representations.

Message passing is a paradigm used widely on certain classes of parallel ma-
chines, especially those with distributed memory and each vendor of Massively
Parallel Processor (mpp) has implemented its own variant. In order to give an
answer to the need of portability between different mpp, mpi is intended to be a
standard message passing specification that each mpp vendor would implement
on their system. The main features of mpi-1 specification are:

• a large set of point-to-point communication routines among two processes,

• a large set of collective communication routines for communication among
groups of processes,

• the ability to specify communication topologies.

Additional features are then added to mpi-2 specification, including:

University of Modena and Reggio Emilia page 5 of 15

R. Aringhieri

• a function allowing to start both mpi and not-mpi processes,

• one-sided communication functions,

• nonblocking collective communication functions.

A deeply comparisons of pvm and mpi has been done by Geist, Kohla and
Papadopoulos in [14]. The authors conclude their work observing that mpi has
“the advantage of expected higher communication performance” and a “much
richer set of communication functions”. From this point of view, mpi seems more
suitable than pvm in order to avoid communication overhead. On the other
side, mpi lacks of “the interoperability between any of the mpi implementation”
and “the ability to write fault tolerant applications”. Moreover, pvm “contains
process control functions that are important for creating portable applications
that run on cluster composed by workstations and mpps. Furthermore, “the
ability to write long running pvm applications that can continue even when
hosts or tasks fail” is a very important feature of pvm .

The aim of pvmpi is to interface the flexible process and virtual machine con-
trol from the pvm system with the enhanced communication system of several
mpi implementations [12].

Different projects developing Open Source packages both for pvm and mpi
are available.

pvm is supported by the original team of developers as research projects and
its distributed through NetLib.org. Although its popularity, the projects seems
to reach a final point with the latest version released in the late September 2001.

On the other side, the two main open source implementation of mpi, mpich
and lam/mpi seems to be more vital than pvm. Currently, the stable versions of
mpich and lam/mpi are respectively 1.2.4 and 6.5.6. Both mpich and lam/mpi
implement all the features defined in mpi-1.2. The two projects differ from the
implementation state of mpi-2 standards. In particular, lam/mpi implements
those functions concerning dynamic process spawning and one-sided communi-
cation which are not yet implemented in mpich. On the other side, mpich seem
more robust than lam/mpi.

An alternative project concerning high performance messaging is spread
[35]. spread is an API that provides a high performance messaging service
that is resilient to faults across external or internal networks. Is is designed to
encapsulate the challenging aspects of asynchronous networks and enable the
construction of scalable distributed applications, allowing application builders
to focus on the differentiating components of their application.

4 PROCESS MIGRATION FOR HPC

A process is an operating system abstraction representing an instance of a run-
ning computer program. Process migration is the act of transferring a process
between two machines during its execution. Process migration enables:

• dynamic load distribution, by migrating processes from overloaded
nodes to less loaded ones,

page 6 of 15 DISMI Technical Report 23/2002, August 5, 2002

Open Source Solutions for Optimization on Linux Clusters

• fault resilience, by migrating processes from nodes that may have expe-
rienced a partial failure,

• improved system administration, by migrating processes from the
nodes that are about to be shut down or otherwise made unavailable,

• data access locality, by migrating processes closer to the source of some
data.

A very detailed survey on process migration research has been done by Milojicic
and others in [27].

Mosix is one of the most famous research project concerning process mi-
gration. Mosix is a set of enhancements of Linux/OS with adaptive resource
sharing algorithms and a mechanism for preemptive process migration that are
geared for efficient cluster computing [8].

Mosix was originally developed by students of Prof. Amnon Barak at the
Hebrew University of Jerusalem and was in the eighties used by the US Air
Force to cluster its PDP11/45 computers. Scientific applications of Mosix are
protein sequences, quantum simulation of large molecules, molecular dynamics
simulation and others [9]. Recently, Mosix has been successfully applied to
improve the performance of a compiler farm [26].

Although Mosix is proprietary software from late 2001, the OpenMosix
project starts their activities in February 2002 under GPLv2 license providing
new releases and support to Open Source community. In this Section, we refer
to the OpenMosix project.

An OpenMosix cluster of Linux machines is a Single System Image cluster
in which the set of nodes cooperates in such a way that they emulate a bigger
computer in terms of computational resources. The most noticeable properties
of executing applications on OpenMosix are its adaptive resource distribution
policy and the symmetry and flexibility of its configuration. The combined
effect of these properties implies that users do not have to know the current
state of the resource usage of the various nodes, or even their number. Parallel
applications can be executed by allowing OpenMosix to assign and reassign
the processes to the best possible nodes, almost like an smp.

The OpenMosix technology basically consists of two parts: a Preemptive
Process Migration (ppm) mechanism and a set of algorithms for adaptive re-
source sharing. Both parts are implemented at the kernel level, using a loadable
module, such that the kernel interface remains unmodified. Thus they are com-
pletely transparent to the application level.

4.1 Preemptive Process Migration

ppm is the main tool for the resource management algorithms. ppm can mi-
grate any process, at anytime, to any available node. Usually, migrations are
based on information provided by one of the resource sharing algorithms, but
users may override any automatic system-decisions and migrate their processes
manually. Each process has a Unique Home-Node (uhn) where it was created.

University of Modena and Reggio Emilia page 7 of 15

R. Aringhieri

OpenMosix is a cache coherent cluster, in which every process seems to run
at its uhn, and all the processes of a user’s session share the execution envi-
ronment of the uhn. Processes that migrate to other (remote) nodes use local
(in the remote node) resources whenever possible, but interact with the user’s
environment through the uhn. For example, if the user executes ps, it will
report the status of all the processes, including processes that are executing on
remote nodes. To implement the ppm, the migrating process is divided into
two contexts: the user context (remote) and the system context (deputy) (see
figure 2). While the remote can migrate many times between different nodes,
the deputy is never migrated.

User−level

re
m

ote

Link
Layer

Link
Layer

User−level

de
pu

ty

pro
ce

sslo
ca

l

Kernel Kernel

Figure 2: A local process and a migrated process [10]

The migration time has a fixed component, for establishing a new process
frame in the new (remote) site, and a linear component, proportional to the
number of memory pages to be transferred. In [9] are reported some experimen-
tal data: to migrate a process of about 8 Mb is required less than 0.9 seconds
on a Ethernet-100 LAN and less than 0.3 seconds on a Myrinet LAN.

4.2 Resource Sharing Algorithms

The main resource sharing algorithms of OpenMosix are the load balancing
and the memory ushering.

The dynamic load balancing algorithm continuously attempts to reduce the
load differences between pairs of nodes, by migrating processes from higher
loaded to less loaded nodes. This scheme is decentralized and all the nodes
execute the same algorithms, and the reduction of the load differences is per-
formed independently by pairs of nodes. The number of processors at each node
and their speed are important factors for the load balancing algorithm. This
algorithm responds to changes in the loads of the nodes or the runtime character-
istics of the processes. It prevails as long as there is no extreme shortage of other
resources such as free memory or empty process slots. Determining the optimal
location for a job is a complicated problem since the resources are heteroge-
neous and so forth are incomparable. The algorithm employed by OpenMosix
tries to reconcile these differences based on economic principles and competitive

page 8 of 15 DISMI Technical Report 23/2002, August 5, 2002

Open Source Solutions for Optimization on Linux Clusters

analysis. The key idea of this strategy is to convert the total usage of several
heterogeneous resources, such as memory and CPU, into a single homogeneous
cost. This economic strategy provides a unified algorithm framework for alloca-
tion of computation, communication, memory, and I/O resources. It allows the
development of near optimal online algorithms for allocating and sharing these
resources [3].

The memory ushering (depletion prevention) algorithm is geared to place
the maximal number of processes in the cluster-wide RAM, to avoid as much as
possible thrashing or the swapping out of processes. The algorithm is triggered
when a node starts excessive paging due to shortage of free memory. In this case
the algorithm overrides the load balancing algorithm and attempts to migrate a
process to a node that has sufficient free memory, even if this migration would
result in an uneven load distribution [6].

4.3 Information Collection Statistics, Decentralized Control and Autonomy

Statistics about a process’ behavior are collected regularly, such as at every sys-
tem call and every time the process accesses user data. This information is used
to assess whether the process should be migrated from the uhn. These statis-
tics decay in time, to adjust for processes that change their execution profile.
Each process has some control over the collection and decay of its statistics.
For instance, a process may complete a stage knowing that its characteristics
are about to change, or it may cyclically alternate between a combination of
computation and I/O.

OpenMosix has no central control: each node operates as an autonomous
system, and all its decisions are independently. This design allows a dynamic
configuration, where nodes may join or leave the network with minimal disrup-
tions. Additionally, this allows for a very great scalability and ensures that the
system runs well both on small and large configurations. Scalability is achieved
by incorporating randomness in the system control algorithms, where each node
bases its decisions on partial knowledge about the state of the other nodes,
and does not even attempt to determine the overall state of the cluster or any
particular node. For example, in the probabilistic information dissemination
algorithm, each node sends, at regular intervals, information about its available
resources to a randomly chosen subset of other nodes. At the same time it main-
tains a small window, with the most recently arrived information. This scheme
supports scaling, even information dissemination and dynamic configurations.

4.4 Direct File System Access

When a process migrates, it has to be able to continue any I/O operations on
its uhn. A typical options is the mounting of all file systems needed by using
the network file systems protocol (nfs).

Taking the best of modern file system research such as Global File System
[38], OpenMosix proposed the Direct File System Access (dfsa) [2]. dfsa is
designed to reduce the extra overhead of executing I/O oriented system-calls

University of Modena and Reggio Emilia page 9 of 15

R. Aringhieri

of a migrated process. The basic idea is simple: unlike all existing network file
systems, i.e. nfs, which bring the data from the file server to the client node over
the network, OpenMosix attempts to migrate the process to the node in which
the file actually resides. This is done by allowing the execution of most such
system-calls locally, i.e. in the process’s current node. In addition to dfsa, an
algorithm that takes into account I/O operation was added to the OpenMosix
process distribution policy in such a way that a process that performs moderate
to high volume of I/O is encouraged to migrate to the node in which it does
most of its I/O.

A file system which guarantees cache consistency is needed by dfsa. Mosix
File System (mfs) is a prototype file system which guarantees cache consistency
and provides an unified view of all files on all mounted file systems on all the
cluster’s nodes.

Table 1: File systems access time (avg. time for 10 executions in sec.) [2]

access Data transfer block size
method 64B 512B 1KB 2KB 4KB 8KB 16KB

local 102.6 102.1 100.0 102.2 100.2 100.2 101.0

mfs with dfsa 104.8 104.0 103.9 104.1 104.9 105.5 104.4
nfs 184.3 169.1 158.0 161.3 156.0 159.5 157.5
mfs without dfsa 1711.0 382.1 277.2 202.9 153.3 136.1 124.5

Table 1 reports the results of different access methods simulating heavy file
system loads using PostMark benchmark [31]. The benchmark has been
executed between a pair of identical Pentium 550 MHz with ide disks using
four different file access methods and ranging block sizes from 64 bytes to 16K
bytes. The results show that mfs with dfsa is 1.8-4.9% slower than local access
method. Moreover, it is 51-76% faster than nfs.

4.5 Performance

Performance of pvm with the Mosix ppm are investigated in [7]. The authors
compares the execution of sets of identical cpu-bound processes under pvm,
with or without process migration, in order to highlight the advantages of the
ppm mechanism and its load balancing scheme.

The results (see the most significative in Table 2) show that at least Mosix
is not worse than pvm . When the number of processes increases, the average
slowdown of pvm vs. Mosix is over 15%. This slowdown can become very
significant, e.g. 32.3% for 17 processes and 28.4% for 33 processes. In contrast,
the measurements show that pvm with the Mosix ppm is slightly better than
Mosix itself, due to residency period that is imposed to any processes by Mosix.

page 10 of 15 DISMI Technical Report 23/2002, August 5, 2002

Open Source Solutions for Optimization on Linux Clusters

Table 2: Comparing pvm and Mosix execution times in secs. [7]

No. of Optimal Mosix pvm pvm slow- pvm on
processes time time time down % Mosix

8 300 305.73 308.57 0.9 301.88
16 300 310.83 317.12 2.0 303.40

17 450 456.91 604.36 32.3 452.84
27 525 549.07 603.86 10.0 559.81
32 600 603.17 603.14 0.0 604.64

33 700 705.93 906.31 28.4 707.39
40 750 767.67 905.39 17.9 771.71
48 900 916.11 908.51 -0.8 907.71

5 WHICH IS BETTER FOR OPTIMIZATION?

The answer strictly depends on the type of application that we are interested
to develop.

As already discussed in Section 1, the development of an efficient parallel
algorithm depend on the techniques used to avoid communication overhead and
the policy used to have a good load balancing.

While communication overhead can be avoided both defining the right granu-
larity of the application and using efficient communication libraries, a good load
balancing is a difficult task since we do not have any information concerning
the loads of other cluster machines. For example, let us consider the Knapsack
Problem (kp) (for a detailed presentation see [25]), whose mathematical model
is the following

KP: min

n∑

i=1

cixi

s.t.
n∑

i=1

pixi ≥ M

xi ∈ {0, 1},

and a simple Branch and Bound algorithm in which, at each branch decision,
a binary variable is fixed to 0 or 1. The subproblems obtained by fixing a
binary variable can be harder or easier than we will expect, but we do not know
anything about their running time before fixing that variable. In general, this
means that we can assign high loaded processes to machine in the same way as
we assign the lighted ones. Clearly, we can implements a sort of dynamic load
balancing in which, every period of time, information about running processes
are collected and then an assignments of new jobs to machines can be made.

University of Modena and Reggio Emilia page 11 of 15

R. Aringhieri

In the most simple case, the computation carried out by a parallel opti-
mization algorithm can be described as a set of tasks, which explores a part of
the solution space, usually communicating at the beginning and at the end of
their search. This is the case of neighborhood exploration done by some parallel
metaheuristics. Typically, high loaded processes can be generated by large scale
neighborhoods [1] or by the evaluation of hard objective functions arising in
some stochastic problems, e.g. the stochastic routing problem [15].

Usually there are also periodically synchronization steps in which some global
and crucial information are updated. For instance, during Branch and Bound
exploration, one process, usually the master, can collect all the current best
solutions, computes the best ones and then distributed it to all processes which
can continue their computation with an improved bound.

In most cases, we can suppose that an optimization algorithm does not
require so much sophisticated communication libraries as those defined by mpi
standards, mpi-1 and mpi-2. Actually, these libraries are developed keeping
in mind the efficiency of typical parallel computation, e.g. matrix operations,
which are the basic elements for computation in Physics, Computer Graphics
and so on.

On the contrary, optimization algorithms usually do not perform so compli-
cated computation and their difficulty depends on the magnitude of the solution
space which is required to be explored.

From our point of view, a good load balancing is the first issue which is
needed to be addressed. The second issue is the possibility of dynamic spawning
of new processes. This issue corresponds to the fork() system call provided
by C language. At more high level, both pvm and mpi (mpi-2 specification)
provides this issue. The third and last issue is that to have good communication
performance between processes.

In conclusion, we think that an appropriate programming environment should
be based on OpenMosix integrated by pvm or mpi depending on the needs
of good dynamic spawning procedures or more efficient and communication li-
braries. A well tuned OpenMosix cluster can guarantee a near optimal resource
sharing whilst pvm and mpi provide the required basic function to implement
an efficient parallel algorithm.

It is our opinion that, in most cases, the process control and the commu-
nication libraries provided by posix C language are all we need to implement
efficient parallel optimization algorithm running under OpenMosix cluster.

For instance, suppose to implement a Variable Neighborhood Search (vns)
algorithm [20]: vns is a metaheuristic in which, at each step, more than one
neighborhood are evaluated in order to chose the next solution among those
computed by exploring all the neighborhoods. A parallel vns can assign the
evaluation of each neighborhood to a different process and then collect all the
results to compute the next solution.

In this context, we observe that fork() creates a child process which in-
herits all the data structures (and their values) from the parent avoiding the
communication needed for starting the communication. The result of each sin-
gle exploration can be easily collected by using the interprocess communication

page 12 of 15 DISMI Technical Report 23/2002, August 5, 2002

Open Source Solutions for Optimization on Linux Clusters

library which allows both asynchronous communication and messages with pri-
ority.

Although it requires to make a further programming effort, the computer
programmer has the complete control of its computer code and he is able to gen-
erate simpler and smaller codes than those including communication libraries.
We observe that a small process migrates faster than a larger one.

6 CONCLUSIONS AND FUTURE WORK

Different Open Source tools for parallel programming on Linux clusters are
reviewd in this paper. These tools ranges from the installation and management
of a Linux cluster to programming environments such as pvm and mpi.

Great emphasis is given to OpenMosix approach to scalable computing
highlighting all the peculiarity which can be used to successfully address the
implementation of efficient optimization algorithms. In particular, the resource
sharing algorithms provided by OpenMosix seem to be very helpful to obtain
a good load balancing policy.

Current and future research tries to explore the potentiality of parallel opti-
mization under OpenMosix environment. In particular, we are addressing the
problem of solving a class of stochastic optimization problem arising from the de-
sign of sonet network for which efficient metaheuristics, based on Tabu Search
and Scatter Search methodologies [16, 23], have been already developed [4, 5].

Acknowledgments

This research was supported by University of Modena and Reggio Emilia, Italy
under “Progetto Giovani Ricercatori 2001”.

References

[1] R.K. Ahuja, Ö. Ergun, J.B. Orlin, and A.B. Punnen. A survey of very
large-scale neighborhood search techniques. Discrete Applied Mathematics,
123:75–102, 2002.

[2] L. Amar, Barak A., Eisenberg A., and Shiloh A. The MOSIX scalable
cluster file systems for linux. Technical report, www.mosix.org, 2000.

[3] Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, and A. Keren. An op-
portunity cost approach for job assignment in a scalable computing cluster.
IEEE Tran Parallel and Distribuited Systems, 11(7):760–768, 2000.

[4] R. Aringhieri and M. Dell’Amico. Intensification and diversification strate-
gies for the SONET network design problems. Working Paper, August
2002.

[5] R. Aringhieri and M. Dell’Amico. Solution of the SONET ring assignment
problem with capacity constraints. In C. Rego and B. Alidaee, editors,

University of Modena and Reggio Emilia page 13 of 15

R. Aringhieri

Adaptive Memory and Evolution: Tabu Search and Scatter Search. Kluwer
Academic Publishers, 2002.

[6] A. Barak and A. Braverman. Memory ushering in a scalable computing
cluster. Journal of Microprocessors and Microsystems, 22(3-4), 1998.

[7] A. Barak, A. Braverman, I. Gilderman, and O. Laden. Performance of
PVM with the MOSIX preemptive process migration. In Proc. 5-th Israeli

Conf. on Computer Sys and Software Eng., pages 38–45, 1996.

[8] A. Barak, S. Guday, and R. G. Wheeler. The MOSIX Distribuited Operating

System, Load Balancing for Unix, volume 672 of Lecture Notes in Computer

Science. Springer-Verlag, Berlin, 1993.

[9] A. Barak and O. La’adan. The MOSIX multicomputer operating system
for high performance cluster computing. Journal of Future Generation

Computer Systems, 13(4-5):361–372, 1998.

[10] A. Barak, O. La’adan, and A. Shiloh. Scalable cluster computing with
MOSIX for linux. In Proc. 5-th Annual Linux Expo, pages 95–100, 1999.

[11] V. Cung, S. L. Martins, C. C. Ribeiro, and C. Roucairol. Strategies for the
parallel implementation of metaheuristics. In C.C. Ribeiro and P. Hansen,
editors, Essays and Surveys in Metaheuristics, pages 263–308. Kluwer Aca-
demic Publishers, 2001.

[12] G. E. Fagg and J. J. Dongarra. PVMPI: An integration of the PVM and
MPI systems. Calculateurs Parallèles, 8(2):151–1660, 1996.

[13] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-
deram. PVM: Parallel Virtual Machine. MIT Press, Cambridge, MA, 1994.

[14] G. A. Geist, J. A. Kohla, and P. M. Papadopoulos. PVM and MPI: A
comparison of features. Calculateurs Parallèles, 8(2):137–150, 1996.

[15] M. Gendrau, G. Laporte, and R. Seguin. A tabu search heuristic for the ve-
hicle routing problem with stochastic demands and customers. Operations
Research, 44(3):469–447, 1996.

[16] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Boston, 1997.

[17] J. Greenseid. linux clustering software. Technical report, FreshMeat.net,
June 2002.

[18] W. Gropp, E. Lust, and A. Skjellum. Using MPI: Portable Parallel Pro-

gramming with the Message-Passing Interface. MIT Press, Cambridge, MA,
1994.

page 14 of 15 DISMI Technical Report 23/2002, August 5, 2002

Open Source Solutions for Optimization on Linux Clusters

[19] The Open Cluster Group. OSCAR: A packaged Cluster software stack for

High Performance Computing. http://www.openclustergroup.org, Febru-
ary 11 2002.

[20] P. Hansen and N. Mladenović. Variable neighborhood search. In P. M.
Pardalos and M. G. C. Resende, editors, Handbook of Applied Optimization.
Oxford Academic Press, 2001.

[21] D. Klabjan, E. L. Johnson, and G. L. Nemhauser. A parallel primal-dual
simplex algorithm. Operations Research Letters, 27(2):47–55, 2000.

[22] P.N.N. Laboratory. http://www.pnl.gov/news/2002/computer.htm, Aprile
2002.

[23] M. Laguna. Scatter search. In P. M. Pardalos and M. G. C. Resende,
editors, Handbook of Applied Optimization. Oxford Academic Press, 2001.

[24] LAM/MPI. http://www.lam-mpi.org.

[25] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer

Implementations. Wiley, Chichester, 1990.

[26] S. McClure and R. Wheeler. MOSIX: How linux clusters solve real world
problems. In Proc. 2000 USENIX Annual Tech. Conf., pages 49–56, 2000.

[27] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou. Process
migration survey. ACM Computing Surveys, 32(3):241–299, 2000.

[28] MOSIX. http://www.mosix.org.

[29] MPI. http://www-unix.mcs.anl.gov/mpi/.

[30] P. Pacheco. Parallel Programming with MPI. Morgan Kaufmann Pub. Inc.,
1996.

[31] PostMark. http://www.netapp.com.

[32] PVM. http://www.csm.ornl.gov/pvm/.

[33] C. Roucairol. Parallel processing for difficult combinatorial optimization
problems. European journal of Operational Research, 92(3):573–590, 1996.

[34] SIS. http://sisuite.org.

[35] Spread. http://www.spread.org.

[36] T. Sterling, G. Bell, and J. S. Kowalik. Beowulf Cluster Computing with

Linux. MIT Press, 2001.

[37] T. Sterling, J. Salmon, D. J. Becker, and D. F. Savarese. How To Build a

Beowulf: A Guide to the implementation and Application of PC Clusters.
MIT Press, 1999.

[38] Global File Sytem. http://www.gfs.org.

University of Modena and Reggio Emilia page 15 of 15

