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Abstract

The energy E(G) of a simple graph G is defined as the sum of the absolute values of all eigenvalues

of its adjacency matrix. This concept was introduced by I. Gutman in 1977. Recently, Aouchiche

et al. proposed a conjecture about tricyclic graphs: If G is a tricyclic graphs on n vertices with

n = 20 or n ≥ 22, then E(G) ≤ E(P 6,6,6
n ) with equality if and only if G ∼= P 6,6,6

n , where P 6,6,6
n

denotes the graph with n ≥ 20 vertices obtained from three copies of C6 and a path Pn−18 by

adding a single edge between each of two copies of C6 to one endpoint of the path and a single

edge from the third C6 to the other endpoint of the Pn−18. Li et al. [X. Li, Y. Shi, M. Wei,

J. Li, On a conjecture about tricyclic graphs with maximal energy, MATCH Commun. Math.

Comput. Chem. 72 (2014) 183–214] proved that the conjecture is true for graphs in the graph

class G(n; a, b, k), where G(n; a, b, k) denotes the set of all connected bipartite tricyclic graphs

on n ≥ 20 vertices with three vertex-disjoint cycles Ca, Cb and Ck, apart from 9 subclasses of

such graphs. In this paper, we improve the above result and prove that apart from 7 smaller

subclasses of such graphs the conjecture is true for graphs in the graph class G(n; a, b, k).

1 Introduction

The energy E(G) of a simple graph G is defined as the sum of the absolute values of

all eigenvalues of its adjacency matrix. This concept was introduced [8] by Gutman in

1977. For details about the graph energy, we refer the reader to two surveys [9, 10] and

the book [28]. A lot of results have been obtained on the minimal and maximal energies

in some given classes of graphs, such as trees, unicyclic graphs, bycyclic graphs, etc.;

see [1, 2, 5, 7, 13–27,30–33].
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The problem of finding the tricyclic graphs maximizing the energy remains open.

Gutman and Vidović [12] listed some tricyclic molecular graphs that might have maximal

energy for n ≤ 20. Very recently, experiments using AutoGraphiX led the authors of

[3] to conjecture the structure of tricyclic graphs that presumably maximize energy for

n = 6, . . . , 21. For n ≥ 22, Aouchiche et al. [3] proposed a general conjecture obtained

with AutoGraphiX. First, let P 6,6,6
n (see Figure 3) denote the graph on n ≥ 20 obtained

from three copies of C6 and a path Pn−18 by adding a single edge between each of two

copies of C6 to one endpoint of the path and a single edge from the third C6 to the other

endpoint of the Pn−18.

Conjecture 1.1 [3] Let G be a tricyclic graphs on n vertices with n = 20 or n ≥ 22.

Then E(G) ≤ E(P 6,6,6
n ) with equality if and only if G ∼= P 6,6,6

n .

n− 17
︷ ︸︸ ︷

P 6,6,6
n

Figure 1: Tricyclic graph P 6,6,6
n .

Let G(n; a, b, k) denote the set of all connected bipartite tricyclic graphs on n ver-

tices with three disjoint cycles Ca, Cb and Ck, where n ≥ 20. In this paper, we try

to prove that the conjecture is true for graphs in the class G(n; a, b, k), but as a con-

sequence we can only show that this is true for most of the graphs in the class except

for 9 families of such graphs. From the definition of G(n; a, b, k), we know that a, b

and k are all even. We will divide G(n; a, b, k) into two categories GI(n; a, b, k; `1, `2; `c)

and GII(n; a, b, k; `1, `2, `3) in the following. We say that H is the central structure

of G if G can be viewed as the graph obtained from H by planting some trees on

it. Denote by HI(n; a, b, k; `1, `2; `c) and HII(n; a, b, k; `1, `2, `3) the central structures

of GI(n; a, b, k; `1, `2; `c) and GII(n; a, b, k; `1, `2, `3), respectively.

The graph class HI(n; a, b, k; `1, `2; `c) (see Figure 2) is the set of all the elements of

G(n; a, b, k) in which Ca and Cb are joined by a path P1 = u1 · · ·u2 (u2 ∈ V (Cb)) with `1

vertices, Ck and Cb are joined by a path P2 = v1 · · · v2 (v2 ∈ V (Cb)) with `2 vertices. In

addition, the smaller part u2 · · · v2 of Cb has `c vertices. When u2 = v2, we have `c = 1.
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u1 u2 v1v2

Ca Cb Ck

ℓ1 ℓ2
︷ ︸︸ ︷ ︷ ︸︸ ︷

Figure 2: HI(n; a, b, k; `1, `2; `c).

The graph class HII(n; a, b, k; `1, `2, `3) (see Figure 3) is also a subset of G(n; a, b, k).

For any H ∈ HII(n; a, b, k; `1, `2, `3), h has a center vertex v, Ca, Cb and Ck are joined

to v by paths P1 = u1 · · · v (u1 ∈ V (Ca)), P2 = u2 · · · v (u2 ∈ V (Cb)), P3 = u3 · · · v
(u3 ∈ V (Ck)), respectively. The number of vertices of P1, P2 and P3 are `1, `2 and `3,

respectively.

u1 u3

Ca

Cb

Ck

︷ ︸︸ ︷
ℓ3ℓ1 ︷ ︸︸ ︷

u2

v

︷
︸︸

︷

ℓ2

Figure 3: HII(n; a, b, k; `1, `2, `3).

It is clear that

G(n; a, b, k) = GI(n; a, b, k; `1, `2; `c) ∪ GII(n; a, b, k; `′1, `
′
2, `
′
3).

Now we introduce two special graph classes H∗1 and H∗2 as follows.

The graph class H∗1 consists of graphs H with the following four different possible

forms:

(i) H ∈ HI(n; a, 4, k; `1, `2; 2), where a ≥ 8, k ≥ 8, 2 ≤ `1 ≤ 3, 2 ≤ `2 ≤ 3.

(ii) H ∈ HI(n; a, b, k; `1, `2; 2), where a ≥ 8, b ≥ 6, k ≥ 8, 2 ≤ `1 ≤ 3, 2 ≤ `2 ≤ 3 and

`1 = `2 = 3 is not allowed.

(iii) H ∈ HI(n; 4, b, k; `1, `2; 2), where b ≥ 6, k ≥ 6, 2 ≤ `1 ≤ 3 and 2 ≤ `2 ≤ 3.

(iv) H ∈ HI(n; a, b, 4; `1, `2; 2), where 2 ≤ `2 ≤ 3.

Whereas H∗2 consists of graphs H with the following five different possible forms:

(i) H ∈ HII(n; a, b, k; 2, `2, `3), where a ≥ 8.

(ii) H ∈ HII(n; a, b, k; 3, 3, 3), where a ≥ k ≥ b ≥ 8.

(iii) H ∈ HII(n; a, 4, k; `1, 3, `3).

(iv) H ∈ HII(n; a, 4, k; `1, 2, `3).

(v) H ∈ HII(n; a, 4, k; 3, 4, 3), where a ≥ k ≥ 6.
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In [29], the authors tried to find the graphs with maximal energy among the two

categories of G(n; a, b, k): GI(n; a, b, k; `1, `2; `c) and GII(n; a, b, k; `1, `2, `3), respectively.

Apart from two classes H∗1 and H∗2, they obtained that P 6,6,6
n = HII(n; 6, 6, 6;n− 17, 2, 2)

has the maximal energy among all graphs in G(n; a, b, k) . Their main result is stated as

follows, which gives support to Conjecture 1.1.

Theorem 1.2 [29] For any tricyclic bipartite graph G ∈ G(n; a, b, k)\(H∗1∪H∗2), E(G) ≤
E(P 6,6,6

n ) and the equality holds if and only if G ∼= P 6,6,6
n .

In this paper, we try to improve the above result. Let us now introduce two graph

classes H∗∗1 and H∗∗2 . The graph class H∗∗1 consists of graphs H with the following three

different possible forms:

(i) H ∈ HI(n; a, 4, k; `1, `2; 2), where a ≥ 8, k ≥ 8, 2 ≤ `1 ≤ 3, 2 ≤ `2 ≤ 3.

(ii) H ∈ HI(n; a, b, k; `1, `2; 2), where a ≥ 8, b ≥ 6, k ≥ 8, 2 ≤ `1 ≤ 3, 2 ≤ `2 ≤ 3 and

`1 = `2 = 3 is not allowed.

(iii) H ∈ HI(n; a, b, 4; `1, `2; 2), where 2 ≤ `2 ≤ 3.

Whereas H∗∗2 consists of graphs H with the following four different possible forms:

(i) H ∈ HII(n; a, b, k; 2, `2, `3) ∪ HII(n; a, 6, 6; 2, `′2, `
′
3), where a ≥ 8, `′3 ≥ 8, and `1 = 2

or `3 = 2 or 6 ≤ a+ `1 ≤ 7 or 6 ≤ k + `3 ≤ 13.

(ii) H ∈ HII(n; a, b, k; 3, 3, 3), where a ≥ k ≥ b ≥ 8, and a ≡ 0 (mod 4) or k ≡ 0 (mod 4).

(iii) H ∈ HII(n; a, 4, k; `1, 3, `3), where `1 = 2 or `3 = 2 or 6 ≤ a+`1 ≤ 7 or 6 ≤ k+`3 ≤ 13.

(iv) H ∈ HII(n; a, 4, k; `1, 2, `3) ∪ HII(n; 6, 4, 6; 2, 2, `), where ` ≥ 8, and `1 = 2 or `3 = 2

or 6 ≤ a+ `1 ≤ 7 or 6 ≤ k + `3 ≤ 13.

We obtain the following theorem, whose proof will be given in Section 3.

Theorem 1.3 For any tricyclic bipartite graph G ∈ G(n; a, b, k) \ (H∗∗1 ∪ H∗∗2 ), E(G) ≤
E(P 6,6,6

n ) and the equality holds if and only if G ∼= P 6,6,6
n .

2 Preliminaries

In the sequel, let Pn, Cn, P a
n and P a,b

n be a path, cycle, the graph obtained by connecting

a vertex of the cycle Ca with a terminal vertex of the path Pn−a, the graph obtained from

cycles Ca and Cb by joining a path of order n− a− b+ 2, respectively. We refer to [4] for

graph theoretical notation and terminology not described here.
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The following are some elementary results on the characteristic polynomial of graphs

and graph energy, which will be used later.

Lemma 2.1 [6] Let uv be an edge of a graph G. Then

φ(G, λ) = φ(G− uv, λ)− φ(G− u− v, λ)− 2
∑

C∈ϕ(uv)
φ(G− C, λ),

where φ(G, λ) denotes the characteristic polynomial of G, and ϕ(uv) is the set of cycles

of G containing uv. In particular, if uv is a pendant edge of G with the pendant vertex

v, then

φ(G, λ) = λφ(G− v, λ)− φ(G− u− v, λ).

Lemma 2.2 [29] Let uv be an edge of a bipartite tricyclic graph G which contains three

vertex-disjoint cycles. Then

b2i(G) = b2i(G− uv) + b2i−2(G− u− v) + 2
∑

Cl∈ϕ(uv)
(−1)1+

l
2 b2i−l(G− Cl),

where ϕ(uv) is the set of cycles of G containing uv. In particular, if uv is a pendant edge

of G with the pendant vertex v, then

b2i(G) = b2i(G− uv) + b2i−2(G− u− v).

It is well-known [6] that if G is a bipartite graph, then the characteristic polynomial

of G has the following form

φ(G, λ) =

bn
2
c∑

i=0

(−1)ib2iλ
n−2i,

where b2i ≥ 0 for all i = 1, · · · , bn
2
c. For two bipartite graphs G1 and G2, Gutman and

Polansky in [11] defined a quasi-order G1 � G2 or G2 � G1 if b2i(G1) ≤ b2i(G2) hold for

all i = 1, 2, · · · , bn
2
c; moreover, G1 ≺ G2 or G2 � G1 if b2i(G1) < b2i(G2) holds for some

i. The above quasi-order implies the following quasi-order relation on graph energy

G1 � G2 ⇒ E(G1) ≤ E(G2), G1 ≺ G2 ⇒ E(G1) < E(G2).

From Sachs Theorem [6], we can obtain the following properties for bipartite graphs.

Lemma 2.3 [6] (1) If G1 and G2 are both bipartite graphs, then b2k(G1∪G2) =
k∑

i=0

b2i(G1)·
b2k−2i(G2).

(2) If G0, G1, G2 are all bipartite and G1 � G2, since b2i(G0) ≥ 0 and b2i(G1) ≥ b2i(G2)

for all positive integer i, we have G0 ∪G1 � G0 ∪G2. Moreover, for bipartite graphs Gi,

G′i, i = 1, 2, if Gi has the same order as G′i and Gi � G′i, then G1 ∪G2 � G′1 ∪G′2.
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Lemma 2.4 [11] Let n = 4k, 4k + 1, 4k + 2 or 4k + 3. Then

Pn � P2 ∪ Pn−2 � P4 ∪ Pn−4 � · · · � P2k ∪ Pn−2k � P2k+1 ∪ Pn−2k−1

� P2k−1 ∪ Pn−2k+1 � · · · � P3 ∪ Pn−3 � P1 ∪ Pn−1.

3 Proof of Theorem 1.3

We are now in a position to prove our main result.

3.1 For (v) of the graph class H∗2
In [29], the authors obtained the following lemma.

Lemma 3.1 [29] For any graph H ∈ HII(n; 6, 6, 6; `1, 2, `3) \ P 6,6,6
n , H ≺ P 6,6,6

n .

Proposition 3.2 For any graph H1 ∈ HII(n; a, 4, k; 3, 4, 3) where a ≥ k ≥ 6, there exists

a graph H2 ∈ HII(n; 6, 6, 6; `1, 2, `3) such that H1 � H2.

Proof. Fix parameter n. For any H1 ∈ HII(n; a, 4, k; 3, 4, 3), we choose a graph H2 ∈
HII(n; 6, 6, 6; `1, 2, `3) such that `1 = a − 3 and `3 = k − 3 (see Figure 4). It suffices to

show that H1 � H2.

u1
v1

H1

u2

ℓ1︷ ︸︸ ︷

v2

H2

︷ ︸︸ ︷ℓ3

Ca Ck

Figure 4: Graphs for Proposition 3.2

From Lemma 2.2, we have

b2i(H1) = b2i(H1 − u1v1) + b2i−2(H1 − u1 − v1)

= b2i(P
a,k
a+k+3 ∪ P 4

6 ) + b2i−2(P
a
a+1 ∪ P k

k+1 ∪ P 4
5 )

b2i(H2) = b2i(H2 − u2v2) + b2i−2(H2 − u2 − v2)

= b2i(P
6,6
`1+`3+9 ∪ C6) + b2i−2(P

6
`1+4 ∪ P 6

`3+4 ∪ P5)

Since φ(P 4
6 ;λ) = λ6 − 6λ4 + 6λ2 and φ(C6;λ) = λ6 − 6λ4 + 9λ2 − 4, it follows that

P 4
6 ≺ C6. Similarly, φ(P 4

5 ;λ) = λ5−3λ3 +2λ and φ(P5;λ) = λ5−4λ3 +3λ yields P 4
5 ≺ P5.
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Because `1 = a − 3 and `3 = k − 3, we have a + k + 3 = `1 + `3 + 9, a + 1 = `1 + 4

and k + 1 = `3 + 4. Since P a
a+1 � P 6

`1+4, P
k
k+1 � P 6

`3+4 and P a,k
a+k+3 � P 6,6

`1+`3+9, we have

H1 � H2 by Lemma 2.3.

Remark 1. Proposition 3.2 indicates that the energy of any graph inHII(n; a, 4, k; 3, 4, 3)

is not larger than the energy of a graph in HII(n; 6, 6, 6; `1, 2, `3) with `1 = a − 3 and

`3 = k − 3. From Lemma 3.1, H ≺ P 6,6,6
n for any graph H ∈ HII(n; 6, 6, 6; `1, 2, `3)

satisfying H 6= P 6,6,6
n . So we exclude the possibility of any graph in (v) of the graph class

H∗2 posses maximal energy among all the tricyclic graphs and hence (v) of the graph class

H∗2 can be deleted in Theorem 1.3.

3.2 For (iii) of the graph class H∗2
Now we focus our attention on (iii) of the graph class H∗2. For H ∈ HII(n; a, 4, k; `1, 3, `3),

one can see that there is no restrictive conditions on the parameters a, k, `1, `3. In this

section, we shall show that if `1 ≥ 3, `3 ≥ 3, a + `1 ≥ 8 and k + `3 ≥ 14 then H ≺ P 6,6,6
n

for any H ∈ HII(n; a, 4, k; `1, 3, `3). Therefore, we narrow the scope of this graph class by

putting extra conditions `1 = 2 or `3 = 2 or 5 ≤ a + `1 ≤ 7 or 5 ≤ k + `3 ≤ 13, which is

stated as (iii) of the graph class H∗∗2 in Theorem 1.3.

Lemma 3.3 For any graph H1 ∈ HII(n; a, 4, k; `1, 3, `3) where `1 ≥ 3, `3 ≥ 3, a+ `1 ≥ 8

and k + `3 ≥ 14, there exists a graph H2 ∈ HII(n; 6, 4, 6; `′1, 3, `
′
3) such that H1 � H2.

Proof. Fix parameter n. For any H1 ∈ HII(n; a, 4, k; `1, 3, `3), we choose a graph

H2 ∈ HII(n; 6, 4, 6; `′1, 3, `
′
3) where `′1 = a+ `1−6 and `′3 = k+ `3−6 (see Figure 5). Since

k+ `3 ≥ 14, it follows that `′3 ≥ 8. So we only need to show that H1 � H2. From Lemma

2.2, we have

b2i(H1) = b2i(H1 − u1v1) + b2i−2(H1 − u1 − v1)

= b2i(P
a,k
n−5 ∪ P 4

5 ) + b2i−2(P
a
a+`1−2 ∪ P k

k+`3−2 ∪ C4)

b2i(H2) = b2i(H2 − u2v2) + b2i−2(H2 − u2 − v2)

= b2i(P
6,6
n−5 ∪ P 4

5 ) + b2i−2(P
6
a+`1−2 ∪ P 6

k+`3−2 ∪ C4)

Since P a,k
n−5 � P 6,6

n−5, P
a
a+`1−2 � P 6

a+`1−2 and P k
k+`3−2 � P 6

k+`3−2, it follows from Lemma

2.3 that H1 � H2, as desired.
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u1
v1

H1

u2

ℓ′1︷ ︸︸ ︷

v2

H2

︷ ︸︸ ︷ℓ′3

Ca Ck

︷ ︸︸ ︷ ︷ ︸︸ ︷ℓ1 ℓ3

Figure 5: Graphs for Lemma 3.3.

Lemma 3.4 For any graph H1 ∈ HII(n; 6, 4, 6; `1, 3, `3) where `3 ≥ 8, there exists a graph

H2 ∈ HII(n; 6, 4, 6; 2, 3, `) such that H1 ≺ H2.

Proof. Fix parameter n. For any H1 ∈ HII(n; 6, 4, 6; `1, 3, `3), we select a graph H2 ∈
HII(n; 6, 4, 6; 2, 3, `) where ` = `1 + `3 − 2 (see Figure 6). Since `1 ≥ 2 and `3 ≥ 8, it

follows that ` ≥ 8. We only need to show that H1 ≺ H2.

H1

u1

ℓ1︷ ︸︸ ︷

v1

H2

︷ ︸︸ ︷ℓ3

v2

u2

︷ ︸︸ ︷ℓ

Figure 6: Graphs for Lemma 3.4.

Using Lemma 2.2, we have

b2i(H1) = b2i(H1 − u1v1) + b2i−2(H1 − u1 − v1)

= b2i(P
6,6
n−5 ∪ P 4

5 ) + b2i−2(P
6
`1+4 ∪ P 6

`3+4 ∪ C4)

b2i(H2) = b2i(H2 − u2v2) + b2i−2(H2 − u2 − v2)

= b2i(P
6,6
n−5 ∪ P 4

5 ) + b2i−2(C6 ∪ P 6
`+4 ∪ C4)

From Lemma 2.3, we need to prove P 6
`1+4 ∪ P 6

`3+4 ≺ C6 ∪ P 6
`+4. Clearly, we have

b2j(P
6
`1+4 ∪ P 6

`3+4) = b2j(C6 ∪ P`1−2 ∪ P 6
`3+4) + b2j−2(P5 ∪ P`1−3 ∪ P 6

`3+4)

b2j(C6 ∪ P 6
`+4) = b2j(C6 ∪ P`1−2 ∪ P 6

`3+4) + b2j−2(C6 ∪ P`1−3 ∪ P 6
`3+3)

By Lemma 2.3, it suffices to show P5 ∪ P 6
`3+4 ≺ C6 ∪ P 6

`3+3. We can easily obtain the

following equalities.

b2r(P5 ∪ P 6
`3+4) = b2r(P5 ∪ P 6

`3+3 ∪ P1) + b2r−2(P5 ∪ P 6
`3+2)

= b2r(P5 ∪ P 6
`3+3 ∪ P1) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P3 ∪ P 6
`3+2)
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= b2r(P5 ∪ P 6
`3+3 ∪ P1) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P3 ∪ P 6
`3+1 ∪ P1)

+b2r−6(P3 ∪ P 6
`3

)

= b2r(P5 ∪ P 6
`3+3 ∪ P1) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P3 ∪ P 6
`3+1 ∪ P1)

+b2r−6(P2 ∪ P1 ∪ P 6
`3

) + b2r−8(P1 ∪ P 6
`3

)

= b2r(P5 ∪ P 6
`3+3 ∪ P1) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P3 ∪ P 6
`3+1 ∪ P1)

+b2r−6(P2 ∪ P1 ∪ P 6
`3

) + b2r−8(P1 ∪ P 6
`3−1 ∪ P1) + b2r−10(P1 ∪ P 6

`3−2)

b2r(C6 ∪ P 6
`3+3) = b2r(P6 ∪ P 6

`3+3) + b2r−2(P4 ∪ P 6
`3+3) + 2b2r−6(P

6
`3+3)

= b2r(P6 ∪ P 6
`3+3) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P4 ∪ P 6
`3+1)

+2b2r−6(P
6
`3+3)

= b2r(P6 ∪ P 6
`3+3) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P3 ∪ P1 ∪ P 6
`3+1)

+b2r−6(P2 ∪ P 6
`3+1) + 2b2r−6(P

6
`3+3)

= b2r(P6 ∪ P 6
`3+3) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P3 ∪ P1 ∪ P 6
`3+1)

+b2r−6(P2 ∪ P1 ∪ P 6
`3

) + b2r−8(P2 ∪ P 6
`3−1) + 2b2r−6(P

6
`3+3)

= b2r(P6 ∪ P 6
`3+3) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P3 ∪ P1 ∪ P 6
`3+1)

+b2r−6(P2 ∪ P1 ∪ P 6
`3

) + b2r−8(P1 ∪ P1 ∪ P 6
`3−1) + b2r−10(P

6
`3−1)

+2b2r−6(P
6
`3+3)

= b2r(P6 ∪ P 6
`3+3) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P3 ∪ P1 ∪ P 6
`3+1)

+b2r−6(P2 ∪ P1 ∪ P 6
`3

) + b2r−8(P1 ∪ P1 ∪ P 6
`3−1) + b2r−10(P

6
`3−2 ∪ P1)

+b2r−12(P
6
`3−3) + 2b2r−6(P

6
`3+3)

One can easily see that P5 ∪ P 6
`3+4 ≺ C6 ∪ P 6

`3+3, which implies H1 ≺ H2. The result

follows.

Lemma 3.5 For any graph H1 ∈ HII(n; 6, 4, 6; 2, 3, `) where ` ≥ 8, there exists a graph

H2 ∈ HII(n; 6, 6, 6; 2, 2, `′) such that H1 ≺ H2.

Proof. Fix parameter n. For any H1 ∈ HII(n; 6, 4, 6; 2, 3, `), we choose a graph H2 ∈
HII(n; 6, 6, 6; 2, 2, `′) where `′ = `− 1 (see Figure 7). It suffices to show that H1 ≺ H2.

From Lemma 2.2, we have

b2i(H1) = b2i(H1 − u1v1) + b2i−2(H1 − u1 − v1)

= b2i(P
6,4
n−6 ∪ C6) + b2i−2(P5 ∪ P 6

`+4 ∪ P 4
5 )
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H1 H2

u2 v2

︷ ︸︸ ︷ℓ′

v1u1

︷ ︸︸ ︷ℓ

Figure 7: Graphs for Lemma 3.5.

b2i(H2) = b2i(H2 − u2v2) + b2i−2(H2 − u2 − v2)

= b2i(P
6,6
n−6 ∪ C6) + b2i−2(P5 ∪ P 6

`+3 ∪ C6)

From Lemma 2.3, we need to prove P 6
`+4 ∪ P 4

5 ≺ P 6
`+3 ∪ C6. Clearly, we have

b2j(P
6
`+4 ∪ P 4

5 ) = b2j(P
6
`+4 ∪ P5) + b2j−2(P

6
`+4 ∪ P2 ∪ P1)

where

b2j(P
6
`+4 ∪ P5) = b2j(P

6
`+3 ∪ P5 ∪ P1) + b2j−2(P

6
`+2 ∪ P5)

= b2j(P
6
`+3 ∪ P5 ∪ P1) + b2j−2(P

6
`+2 ∪ P4 ∪ P1) + b2j−4(P

6
`+2 ∪ P3)

= b2j(P
6
`+3 ∪ P5 ∪ P1) + b2j−2(P

6
`+2 ∪ P4 ∪ P1) + b2j−4(P

6
`+1 ∪ P3 ∪ P1)

+b2j−6(P
6
` ∪ P3)

= b2j(P
6
`+3 ∪ P5 ∪ P1) + b2j−2(P

6
`+2 ∪ P4 ∪ P1) + b2j−4(P

6
`+1 ∪ P3 ∪ P1)

+b2j−6(P
6
` ∪ P2 ∪ P1) + b2j−8(P

6
` ∪ P1)

= b2j(P
6
`+3 ∪ P5 ∪ P1) + b2j−2(P

6
`+2 ∪ P4 ∪ P1) + b2j−4(P

6
`+1 ∪ P3 ∪ P1)

+b2j−6(P
6
` ∪ P2 ∪ P1) + b2j−8(P

6
`−1 ∪ P1 ∪ P1) + b2j−10(P

6
`−2 ∪ P1)

and

b2j−2(P
6
`+4 ∪ P2 ∪ P1) = b2j−2(P

6
`+3 ∪ P1 ∪ P2 ∪ P1) + b2j−4(P

6
`+2 ∪ P2 ∪ P1)

Similarly, we have

b2j(P
6
`+3 ∪ C6) = b2j(P

6
`+3 ∪ P6) + b2j−2(P

6
`+3 ∪ P4) + 2b2j−6(P

6
`+3)

where

b2j(P
6
`+3 ∪ P6) = b2j(P

6
`+3 ∪ P5 ∪ P1) + b2j−2(P

6
`+3 ∪ P4)

= b2j(P
6
`+3 ∪ P5 ∪ P1) + b2j−2(P

6
`+2 ∪ P4 ∪ P1) + b2j−4(P

6
`+1 ∪ P4)

= b2j(P
6
`+3 ∪ P5 ∪ P1) + b2j−2(P

6
`+2 ∪ P4 ∪ P1) + b2j−4(P

6
`+1 ∪ P3 ∪ P1)

+b2j−6(P
6
`+1 ∪ P2)
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= b2j(P
6
`+3 ∪ P5 ∪ P1) + b2j−2(P

6
`+2 ∪ P4 ∪ P1) + b2j−4(P

6
`+1 ∪ P3 ∪ P1)

+b2j−6(P
6
` ∪ P2 ∪ P1) + b2j−8(P

6
`−1 ∪ P2)

= b2j(P
6
`+3 ∪ P5 ∪ P1) + b2j−2(P

6
`+2 ∪ P4 ∪ P1) + b2j−4(P

6
`+1 ∪ P3 ∪ P1)

+b2j−6(P
6
` ∪ P2 ∪ P1) + b2j−8(P

6
`−1 ∪ P1 ∪ P1) + b2j−10(P

6
`−1)

= b2j(P
6
`+3 ∪ P5 ∪ P1) + b2j−2(P

6
`+2 ∪ P4 ∪ P1) + b2j−4(P

6
`+1 ∪ P3 ∪ P1)

+b2j−6(P
6
` ∪ P2 ∪ P1) + b2j−8(P

6
`−1 ∪ P1 ∪ P1) + b2j−10(P

6
`−2 ∪ P1)

+b2j−12(P
6
`−3)and

b2j−2(P
6
`+3 ∪ P4) = b2j−2(P

6
`+3 ∪ P3 ∪ P1) + b2j−4(P

6
`+3 ∪ P2)

Since b2r(P
6
`+3) = b2r(P

6
`+2 ∪ P1) + b2r−2(P 6

`+1), it follows that P 6
`+2 ∪ P1 � P 6

`+3 and hence

P 6
`+4 ∪ P 4

5 ≺ P 6
`+3 ∪ C6 by Lemma 2.3. So H1 ≺ H2. The proof is now complete.

The following proposition is immediate by Lemmas 3.3, 3.4 and 3.5.

Proposition 3.6 For any graph H1 ∈ HII(n; a, 4, k; `1, 3, `3) where `1 ≥ 3, `3 ≥ 3,

a + `1 ≥ 8 and k + `3 ≥ 14, there exists a graph H2 ∈ HII(n; 6, 6, 6; 2, 2, `) = P 6,6,6
n such

that H1 ≺ H2.

3.3 For (ii) of the graph class H∗2
Proposition 3.7 For any graph H1 ∈ HII(n; a, b, k; 3, 3, 3) where a ≥ k ≥ b ≥ 8, a ≡
2 (mod 4) and k ≡ 2 (mod 4), there exists a graph H2 ∈ HII(n; a, b, k; 2, `2, `3) such that

H1 ≺ H2.

Proof. Fix parameter n. For any H1 ∈ HII(n; a, b, k; 3, 3, 3), we choose a graph H2 ∈
HII(n; a, b, k; 2, 3, 4) (see Figure 8). It suffices to show that H1 ≺ H2.

u1
v1

H1

Ca Ck

Cb

u2
v2

H2

Ca Ck

Cb

Figure 8: Graphs for Proposition 3.7.

From Lemma 2.2, we have

b2i(H1) = b2i(H1 − u1v1) + b2i−2(H1 − u1 − v1)
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= b2i(P
a,k
a+k+3 ∪ P b

b+1) + b2i−2(P
a
a+1 ∪ P k

k+1 ∪ Cb)

b2i(H2) = b2i(H2 − u2v2) + b2i−2(H2 − u2 − v2)

= b2i(P
a,k
a+k+3 ∪ P b

b+1) + b2i−2(Ca ∪ P k
k+2 ∪ Cb)

Applying Lemma 2.3, we only need to show that P a
a+1 ∪ P k

k+1 ≺ Ca ∪ P k
k+2.

From Lemma 2.2, we have

b2j(P
a
a+1 ∪ P k

k+1) = b2j(Ca ∪ P k
k+1 ∪ P1) + b2j−2(Pa−1 ∪ P k

k+1)

= b2j(Ca ∪ P k
k+1 ∪ P1) + b2j−2(Pa−1 ∪ Ck ∪ P1) + b2j−4(Pa−1 ∪ Pk−1)

= b2j(Ca ∪ P k
k+1 ∪ P1) + b2j−2(Pa−1 ∪ Ck ∪ P1)

+b2j−4(Pa−2 ∪ Pk−1 ∪ P1) + b2j−6(Pa−3 ∪ Pk−1)

b2j(Ca ∪ P k
k+2) = b2j(Ca ∪ P k

k+1 ∪ P1) + b2j−2(Ca ∪ Ck)

= b2j(Ca ∪ P k
k+1 ∪ P1) + b2j−2(Pa ∪ Ck) + b2j−4(Pa−2 ∪ Ck)

+2(−1)1+
a
2 b2j−2−a(Ck)

= b2j(Ca ∪ P k
k+1 ∪ P1) + b2j−2(Pa ∪ Ck) + b2j−4(Pa−2 ∪ Pk)

+b2j−6(Pa−2 ∪ Pk−2) + 2(−1)1+
k
2 b2j−4−k(Pa−2 + 2(−1)1+

a
2 b2j−2−a(Ck)

Since a ≡ 2 (mod 4) and k ≡ 2 (mod 4), it follows that 2(−1)1+
k
2 b2j−4−k(Pa−2) ≥ 0

and 2(−1)1+
a
2 b2j−2−a(Ck) ≥ 0. Furthermore, Pa−3 ∪ Pk−1 ≺ Pa−2 ∪ Pk−2 since both a and

k are even. One can easily see that P a
a+1 ∪ P k

k+1 ≺ Ca ∪ P k
k+2. Furthermore, we have

H1 ≺ H2. The proof is now complete.

Remark 2. From the above proposition, for any graph H ∈ HII(n; a, b, k; 3, 3, 3) where

a ≥ k ≥ b ≥ 8 and a ≡ 2 (mod 4) and k ≡ 2 (mod 4), H can not posses the maximal

energy in G(n; a, b, k). So the remaining case is a ≥ k ≥ b ≥ 8, and a ≡ 0 (mod 4) or

k ≡ 0 (mod 4), which is stated as (ii) of the graph class H∗∗2 in Theorem 1.3.

3.4 For (i), (iv) of the graph class H∗2 and (iii) of the graph class
H∗1

In this section, we mainly discuss (i), (iv) of the graph class H∗2, and the graph class (iii)

of H∗1 is discussed in Remark 4.

Lemma 3.8 For any graph H1 ∈ HII(n; a, b, k; 2, `2, `3) where a ≥ 8, `2, `3 ≥ 3, b+`2 ≥ 8

and k + `3 ≥ 14, there exists a graph H2 ∈ HII(n; a, 6, 6; 2, `′2, `
′
3) such that H1 � H2.
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Proof. Fix parameter n. For any graph H1 ∈ HII(n; a, b, k; 2, `2, `3) where `2, `3 ≥ 3,

b + `2 ≥ 8 and k + `3 ≥ 14, we choose a graph H2 ∈ HII(n; a, 6, 6; 2, `′2, `
′
3) such that

`′2 = `2 + b− 6 and `′3 = `3 + k− 6 (see Figure 9). Clearly, `′3 ≥ 8. It suffices to show that

H1 � H2.

u1

Ca

Cb

Ck

ℓ3︷ ︸︸ ︷v1
︷

︸︸
︷

ℓ2

u2

v2

H2

︷ ︸︸ ︷ℓ′3

︷
︸︸

︷

ℓ′2

H1

Ca

Figure 9: Graphs for Lemma 3.8

From Lemma 2.2, we have

b2i(H1) = b2i(H1 − u1v1) + b2i−2(H1 − u1 − v1)

= b2i(P
b,k
n−a ∪ Ca) + b2i−2(Pa−1 ∪ P b

b+`2−2 ∪ P k
k+`3−2)

b2i(H2) = b2i(H2 − u2v2) + b2i−2(H2 − u2 − v2)

= b2i(P
6,6
n−a ∪ Ca) + b2i−2(Pa−1 ∪ P 6

`′2+4 ∪ P 6
`′3+4)

Because `′2 = `2 + b − 6 and `′3 = `3 + k − 6, we have `′2 + 4 = `2 + b − 2 and

`′3 + 4 = `3 + k − 2. Therefore, P b
`2+b−2 � P 6

`′2+4, P
k
`2+k−2 � P 6

`′3+4 and P b,k
n−a � P 6,6

n−a.

Lemma 2.3 yields H1 � H2, as desired.

Lemma 3.9 For any graph H1 ∈ HII(n; a, 6, 6; 2, `2, `3) where `3 ≥ 8, there exists a graph

H2 ∈ HII(n; a, 6, 6; 2, 2, `) such that H1 ≺ H2.

Proof. Fix parameter n. For any graph H1 ∈ HII(n; a, 6, 6; 2, `2, `3) where `3 ≥ 8, we

choose a graph H2 ∈ HII(n; a, 6, 6; 2, 2, `) such that ` = `2 + `3 − 2 (see Figure 10). Since

`2 ≥ 2 and `3 ≥ 8, it follows that ` ≥ 8. It suffices to show that H1 ≺ H2.

u2 v2

H2

︷ ︸︸ ︷ℓ

H1

Ca

u1 v1

︷ ︸︸ ︷ℓ3

︷
︸︸

︷

ℓ2
Ca

Figure 10: Graphs for Lemma 3.9
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From Lemma 2.2, we have

b2i(H1) = b2i(H1 − u1v1) + b2i−2(H1 − u1 − v1)

= b2i(P
6,6
n−a ∪ Ca) + b2i−2(Pa−1 ∪ P 6

`2+4 ∪ P 6
`3+4)

b2i(H2) = b2i(H2 − u2v2) + b2i−2(H2 − u2 − v2)

= b2i(P
6,6
n−a ∪ Ca) + b2i−2(Pa−1 ∪ P 6

`+4 ∪ C6)

Similarly to the proof of Lemma 3.4, we can obtain P 6
`2+4 ∪ P 6

`3+4 ≺ P 6
`+4 ∪ C6. From

Lemma 2.3, we have H1 ≺ H2, as desired.

Proposition 3.10 For any graph H1 ∈ HII(n; a, b, k; 2, `2, `3) where a ≥ 8, `2 ≥ 3,

`3 ≥ 3, b + `2 ≥ 8 and k + `3 ≥ 14, there exists a graph H2 ∈ HII(n; a, 6, 6; 2, 2, `) such

that H1 ≺ H2.

Similarly to the proof of Proposition 3.10, we can derive the following result.

Proposition 3.11 For any graph H1 ∈ HII(n; a, 4, k; `1, 2, `3) where `1 ≥ 3, `3 ≥ 3,

a+ `1 ≥ 8, k+ `3 ≥ 14, there exists a graph H2 ∈ HII(n; 6, 4, 6; 2, 2, `) such that H1 ≺ H2.

Remark 3. From the above propositions, for (i) of the graph class H∗2, the remaining

graph classes under consideration are HII(n; a, b, k; 2, `2, `3)∪HII(n; a, 6, 6; 2, 2, `), where

a ≥ 8, ` ≥ 8, and `2 = 2 or `3 = 2 or 6 ≤ b+`2 ≤ 7 or 6 ≤ k+`3 ≤ 13; for (iv) of the graph

class H∗2, the remaining graph classes under consideration are HII(n; a, 4, k; `1, 2, `3) ∪
HII(n; 6, 4, 6; 2, 2, `), where ` ≥ 8, and `1 = 2 or `3 = 2 or 6 ≤ a+`1 ≤ 7 or 6 ≤ k+`3 ≤ 13.

Remark 4. For any H ∈ HI(n; 4, b, k; `1, `2; 2) where b ≥ 6, k ≥ 6, 2 ≤ `1 ≤ 3

and 2 ≤ `2 ≤ 3, one can see that H ∈ HI(n; a, b, 4; `1, `2; 2) where 2 ≤ `2 ≤ 3. This

observation suggests that the graph class (iii) of H∗1 is a subset of the graph class (iv) of

H∗1, thus omitted and deleted in Theorem 1.3.
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